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Abstract: Consider a unicyclic graph G with edge set E(G). Let f be a real-valued symmetric
function defined on the Cartesian square of the set of all distinct elements of G’s degree sequence. A
graphical edge-weight-function index of G is defined as If(G) = ∑xy∈E(G) f(dG(x), dG(y)), where
dG(x) denotes the degree a vertex x in G. This paper determines optimal bounds for If(G) in terms
of the order of G and a parameter z, where z is either the number of pendent vertices of G or the
matching number of G. The paper also fully characterizes all unicyclic graphs that achieve these
bounds. The function f must satisfy specific requirements, which are met by several popular indices,
including the Sombor index (and its reduced version), arithmetic–geometric index, sigma index, and
symmetric division degree index. Consequently, the general results obtained provide bounds for
several well-known indices.

Keywords: topological index; bond incident degree index; graphical edge-weight-function index;
degree-based index; unicyclic graph; matching number, pendent vertex; bound
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1. Introduction

For definitions of the graph-theoretical terms used in this paper but not defined here,
we refer the reader to the books [1–3]. For chemical-graph-theoretical terms, the books [4–6]
can be consulted.

We only consider nontrivial and connected graphs in this study. A graph of order n is
referred to as an n-order graph. The edge set of a graph G is represented by the notation
E(G), and its vertex set is represented by the notation V(G). The notation dG(x) is chosen
to represent the degree of x ∈ V(G). Particularly, if dG(x) = 1, then x is called a pendent
vertex. A nonempty subset M of E(G) is said to be a matching in G if the elements of M
are pairwise nonadjacent. A matching is called a β-matching when it has precisely β edges.
A maximum matching of G is a matching that consists of the maximum possible edges. If
M∗ is a maximum matching of G, then |M∗| (the number of its elements) is known as its
matching number.

A property of a graph that does not change with respect to graph isomorphism is
called a graph invariant [3]. The graph invariants that take only numerical quantities
are also known as topological indices or molecular descriptors in the field of chemical
graph theory [4–6]. Numerous studies, like [4,7–10], have discussed how useful these
topological indices are in predicting distinct properties of chemical compounds. Graphical
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edge-weight-function indices are particular topological indices that are expressed in the
way described below [11]:

If(G) = ∑
st∈E(G)

f(dG(s), dG(t)), (1)

where f is a real-valued symmetric function defined on the Cartesian square of the set
consisting of all different members of the degree sequence of a graph G. As seen in studies
like [12–14], these indices have also been studied under the terminology “bond incident
degree indices”. The graphical edge-weight-function indices’ class is a subclass of a larger
class of certain indices known as degree-based topological indices [15].

By a unicyclic graph, we mean a connected graph with the same size and order; let G
be such a graph. The goal of this work is to find the best possible bounds on If(G) in terms
of the order of G and a parameter z, under certain restrictions on the function f, where z

is either the number of pendent vertices or the matching number. All graphs achieving
the obtained bounds are also characterized. The restrictions taken into account for f are
satisfied by a number of popular existing indices, including the Sombor index (together
with its reduced version) [16–18], arithmetic–geometric index (for example, see [19]), sigma
index [20,21], and symmetric division deg index [22,23]. Consequently, the obtained general
results yield bounds on several well-known existing indices. In other words, the obtained
results generalize many existing results and provide particular new cases for many existing
indices. As there are a lot of particular graphical edge-weight-function indices and, in many
cases, the extremal results with respect to them, including their proofs, are considerably
similar to one another; it is natural to adopt a unified technique to obtain those results and
hence generalize them. The present paper is a contribution to this research direction.

2. Preliminaries

In this section, the basic concepts and notations that will be used in the next sections
are given.

The n-order cycle graph is represented by Cn. Given a subset S ⊂ V(G), the graph
obtained by deleting all the elements of S and their corresponding incident edges from
G is represented by G − S. In the case when S consists of a single vertex, say S = {x},
the notation can be simplified to G − x for ease of reference. An edge xy in G is said to
be pendent if either dG(x) = 1 or dG(y) = 1. Define NG(x) := {v ∈ V(G) : vx ∈ E(G)};
particularly, the vertices of NG(x) are referred to as neighbors of x.

Table 1 gives some special cases of Equation (1) considered in this study. The topologi-
cal indices given in this table will be used in the subsequent sections.

Let S+
n be the unicyclic graph formed by inserting exactly one edge in the n-order

star graph, where n ≥ 4. Denote by Un,β the graph formed by subdividing β − 2 pendent
edge(s) of S+

n−β+2, where n ≥ 2β ≥ 4. The graph Un,β is depicted in Figure 1. We note that
the matching number of Un,β is β.

For a graph G, a vertex x ∈ V(G) incident with an element of a matching M in G is
termed M-saturated; moreover, if all the vertices of G are M-saturated, then M is called
a perfect matching. A vertex of G that is not M-saturated is known as an M-unsaturated
vertex. One can observe from Figure 1 that for any β ≥ 2, there exists a perfect matching
in U2β,β.
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Table 1. Some special cases of Equation (1) considered in this study.

Function f(q1, q2) If in Equation (1) Corresponds to√
q2

1 + q2
2 Sombor (SO) index [16–18]√

q2
1 + q2

2 + q1q2 Euler–Sombor (ES) index [24]√
(q1 − 1)2 + (q2 − 1)2 reduced Sombor (RSO) index [16]

(2
√

q1q2)
−1(q1 + q2) arithmetic-geometric (AG) index [19]√

(2q1q2)−1(q2
1 + q2

2) modified symmetric division deg (MSDD) index [25]

(q1q2)
−1(q2

1 + q2
2) symmetric division deg (SDD) index [22,23]

(
√

q1 −
√

q2)
2 modified misbalance rodeg (MMR) index [26]

(q1 − q2)
2 sigma index [20,21]

2(q1 + q2)
−1 harmonic index [27,28]

(a1a2)
−1/2 Randić index [29–31]

(a1 + a2)
−1/2 sum-connectivity (SC) index [27,32]

︸ ︷︷ ︸
β−2

n−2β+1︷ ︸︸ ︷

Figure 1. The unicyclic graph Un,β.

Denote by U′
n,p the unicyclic graph shown in Figure 2, where 0 ≤ p ≤ n − 3.

p︷ ︸︸ ︷

Cn−p

Figure 2. The unicyclic graph U′
n,p.

Finally, we define R2
≥1 := {(q1, q2) ∈ R2 : q1 ≥ 1 and q2 ≥ 1}, where R is the set of

real numbers.

3. Results About Matching Number

We give the following known result before demonstrating the very first main result of
the current section:
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Lemma 1 (see Lemma 3.1 in [33]). If G is a unicyclic n-order graph with a matching number β,
such that G ̸∼= Cn and n > 2β ≥ 4, then G has a β-matching M and a pendent vertex x that is not
M-saturated.

Theorem 1. Let f : R2
≥1 → R be a symmetric function, such that

(i) f(q1, 2)− f(q1, 3) + f(q2, 2)− f(q2, 3) + f(2, 2)− f(1, 3) < 0 for q1, q2 ∈ {2, 3},
(ii) q1[f(1, 3) + f(3, 3)]<q1 f(q1 + 1, 2) + (q1 − 2)f(1, 2) + f(q1 + 1, 1) + f(2, 2) for q1 ≥ 3,
(iii) the function g defined as g(q1, q2) = f(q1, q2)− f(q1, q2 − 1), is strictly decreasing in q1

for q2 ≥ 2 and q1 ≥ 1,
(iv) the function h̄ defined as

h̄(q1) = f(q1, 2) + f(q1, 1)− f(q1 − 1, 1) + (q1 − 2)[f(q1, 2)− f(q1 − 1, 2)]

is strictly increasing for q1 ≥ 2,

then the inequality

If(G) ≤ β f(β + 1, 2) + (β − 2)f(1, 2) + f(β + 1, 1) + f(2, 2) (2)

is valid for every 2β-order unicyclic graph G with a matching number β(≥ 2). Inequality (2)
becomes equation iff G ∼= U2β,β (see Figure 1).

Proof. We assume that the right-hand side of (2) is φ(β), and we use induction on β. The
result is valid for β = 2 as G ∈ {U4,2, C4} and because of condition (i) with r = 2 = s,
we have

If(C4) = 4f(2, 2) < f(2, 2) + f(1, 3) + 2f(2, 3) = If(U4,2).

Next, suppose that β > 2 and that the result is valid for all unicyclic graphs with order
2(β − 1) and matching number β − 1. Next, let G be a 2β-order unicyclic graph with
matching number β(> 2).

Case 1. The graph G contains no pendent vertex having a neighbor of degree 2.

As no two pendent edges of G can be adjacent, G has a maximum degree not more than 3;
particularly, G is the graph formed by attaching at most one pendent vertex to every vertex
of its unique cycle, say Ct, where β ≤ t ≤ 2β. Let G⋆ be the graph maximizing If among
all graphs of the present case. Then

If(G) ≤ If(G⋆) (3)

Let M be the maximum matching of G⋆ and C be its unique cycle.
If β + 1 ≤ t ≤ 2β, then there exists w1w2 ∈ M on C, such that dG⋆(w1) = 2 = dG⋆(w2).

Let NG⋆(w1) = {w′, w2} and NG⋆(w2) = {w′′, w1}. Evidently, w′ ̸= w′′ because β > 2.
Form a new graph G⋆⋆ from G⋆ by dropping w1w′ and inserting w2w′. Certainly, G⋆⋆ has
matching number β. As dG⋆(w′), dG⋆(w′′) ∈ {2, 3}, by condition (i), we have

If(G⋆)− If(G⋆⋆) = f(dG⋆(w′′), 2)− f(dG⋆(w′′), 3) + f(dG⋆(w′), 2)− f(dG⋆(w′), 3)

+ f(2, 2)− f(1, 3) < 0,

a contradiction. Hence, t = β; that is, each vertex of C has a degree 3 in G⋆. Therefore, by
condition (ii), we have

If(G⋆) = β[f(3, 3) + f(1, 3)] < β f(2, β + 1) + (β − 2)f(2, 1) + f(β + 1, 1) + f(2, 2). (4)

From (3) and (4), the required inequality follows.

Case 2. The graph G has at least one pendent vertex with a neighbor of a degree 2.
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Let x ∈ V(G) be a pendent vertex having the neighbor y with degree two. Certainly, xy
belongs to every maximum matching of G. Because the unicyclic graph G′ := G − {x, y} is
of order 2(β − 1) and possesses matching number β − 1, we have by inductive hypothesis:

If(G′) ≤ φ(β − 1) (5)

with equality iff G ∼= U2(β−1),β−1. Let NG(y) = {x, z}. Since z cannot have more than one
pendent neighbor and because it can lie on at most one triangle, we have 2 ≤ dG(z) ≤ β+ 1.
Take NG(z) := {z0(= y), z1, · · · , zt−1}, provided that zp+1, zp+2, · · · , zt−1 have degree
at least 2, where p is either 0 or 1, and the degree of z1 is 1 when p = 1. Because of
condition (iii), one has

If(G) = If(G′) + f(1, 2) + f(2, t) + p[f(1, t)− f(1, t − 1)]

+
t−1

∑
i=p+1

[f(dG(zi), t)− f(dG(zi), t − 1)]

≤ If(G′) + f(1, 2) + f(2, t) + p[f(1, t)− f(1, t − 1)]

+ (t − p − 1)[f(2, t)− f(2, t − 1)]. (6)

Since t ≥ 2, again by condition (iii), we have

f(1, t)− f(1, t − 1)− [f(2, t)− f(2, t − 1)] > 0

and hence (6) yields

If(G) ≤ If(G′) + f(1, 2) + f(2, t) + f(1, t)− f(1, t − 1)

+ (t − 2)[f(2, t)− f(2, t − 1)]. (7)

Since 2 ≤ t ≤ β + 1, by condition (iv), one has

f(2, t) + f(1, t)− f(1, t − 1) + (t − 2)[f(2, t)− f(2, t − 1)]

≤ f(β + 1, 2) + f(β + 1, 1)− f(β, 1) + (β − 1)[f(2, β + 1)− f(2, β)]. (8)

From (5), (7) and (8), one has If(G) ≤ φ(β) with equality iff G ∼= U2β,β.

The following theorem’s proof is fully analogous to that of Theorem 1 and, therefore,
we omit it.

Theorem 2. Let f : R2
≥1 → R be a symmetric function such that

(i) f(q1, 2)− f(q1, 3) + f(q2, 2)− f(q2, 3) + f(2, 2)− f(1, 3) > 0 for q1, q2 ∈ {2, 3},
(ii) q1[f(1, 3) + f(3, 3)]>q1 f(q1 + 1, 2) + (q1 − 2)f(1, 2) + f(q1 + 1, 1) + f(2, 2) for q1 ≥ 3,
(iii) the function g defined as g(q1, q2) = f(q1, q2)− f(q1, q2 − 1), is strictly increasing in q1

for q2 ≥ 2 and q1 ≥ 1,
(iv) the function h̄ defined as

h̄(q1) = f(q1, 2) + f(q1, 1)− f(q1 − 1, 1) + (q1 − 2)[f(q1, 2)− f(q1 − 1, 2)]

is strictly decreasing for q1 ≥ 2,

then the inequality

If(G) ≥ β f(β + 1, 2) + (β − 2)f(1, 2) + f(β + 1, 1) + f(2, 2) (9)

is valid for every 2β-order unicyclic graph G with a matching number β(≥ 2). Inequality (9)
becomes equation iff G ∼= U2β,β (see Figure 1).
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Theorem 1 is about the n-order unicyclic graphs with a matching number β (≥ 2) for
n = 2β. In the next result, we extend this theorem to the case when n ≥ 2β.

Theorem 3. Let f : R2
≥1 → R be a symmetric function, such that

(i) f(s1, 2)− f(s1, 3) + f(s2, 2)− f(s2, 3) + f(2, 2)− f(1, 3) < 0 for s1, s2 ∈ {2, 3},
(ii) s1[f(3, 3) + f(1, 3)] < s1 f(s1 + 1, 2) + (s1 − 2)f(1, 2) + f(s1 + 1, 1) + f(2, 2) for s1 ≥ 3,
(iii) the function g defined as g(s1, s2) = f(s1, s2)− f(s1, s2 − 1), is strictly decreasing in s1

for s2 ≥ 2 and s1 ≥ 1,
(iv) the function h̄ defined as

h̄(s1) = f(s1, 2) + f(s1, 1)− f(s1 − 1, 1) + (s1 − 2)[f(s1, 2)− f(s1 − 1, 2)]

is strictly increasing for s1 ≥ 2,
(v) the inequality 2f(s1 + 2, 1) + s1 f(s1 + 2, 2) + (s1 − 2)f(1, 2)− 2s1 f(2, 2) > 0 holds for

s1 ≥ 2, and
(vi) the function Φ defined as

Φ(s1, s2)= f(s1 − 1, 1)+ s2[f(s1, 1)− f(s1 − 1, 1)] + (s1 − s2)[f(s1, 2)− f(s1 − 1, 2)]

is strictly increasing in s1 for s1 ≥ s2 + 1 ≥ 2,

then the inequality

If(G) ≤ (n − 2β + 1) · f(n − β + 1, 1) + β f(n − β + 1, 2) + (β − 2)f(1, 2) + f(2, 2) (10)

holds for every n-order unicyclic graph G having a matching number β(≥ 2). Inequality (10)
becomes equation iff G ∼= Un,β (see Figure 1).

Proof. We set

Ψ(n, β) := (n − 2β + 1) · f(n − β + 1, 1) + β f(n − β + 1, 2) + (β − 2)f(1, 2) + f(2, 2).

We use induction on n. For n = 2β, the required conclusion holds due to Theorem 1.
This starts the induction. Now, suppose that n > 2β and let G be an n-order unicyclic
graph with a matching number β. If G ∼= Cn, then n = 2β + 1 and, hence, we have
If(G) = (2β + 1)f(2, 2) < Ψ(2β + 1, β) because of condition (v). In what follows, suppose
that G ̸∼= Cn. Then, due to Lemma 1, G possesses a pendent vertex x and a β-matching M,
such that x is not M-saturated. Hence, G − x also has a matching number β. Consequently,
we apply the induction hypothesis on G − x:

If(G − x) ≤ Ψ(n − 1, β) (11)

with equality iff G − x ∼= Un−1,β. Let NG(x) = {y}. We note that M has an edge incident
with y because xy ̸∈ M (a maximum matching). This implies that the count of those edges
incident with y that are not the members of M is dG(y)− 1, which further implies that
dG(y)− 1 ≤ |E(G)| − |M|; that is, dG(y) ≤ n − β + 1. Suppose that p is the count of the
pendent neighbors of y. Then, 1 ≤ p ≤ dG(y)− 1. Because at least p − 1 pendent neighbors
of y are M-unsaturated and the count of M-unsaturated vertices of G is n − 2β, it holds
that p − 1 ≤ n − 2β, which means that y has at most n − 2β + 1 pendant neighbors. Set
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NG(y) := {y1(= x), y2, · · · , yp, yp+1, · · · , ys}, where y1, · · · , yp are pendent vertices and
yp+1, · · · , ys are non-pendent vertices. By condition (iii), we have

If(G) = If(G − x) + f(s, 1) + (p − 1)[f(s, 1)− f(s − 1, 1)]

+
s

∑
i=p+1

(
f(s, dG(yi))− f(s − 1, dG(yi))

)
≤ If(G − x) + f(s − 1, 1) + p[f(s, 1)− f(s − 1, 1)]

+ (s − p)
(
f(s, 2)− f(s − 1, 2)

)
. (12)

As 2 ≤ p + 1 ≤ s ≤ n − β + 1, because of condition (vi), the inequality (12) yields

If(G) ≤ If(G − x) + f(n − β, 1) + p
(
f(n − β + 1, 1)− f(n − β, 1)

)
+ (n − β − p + 1)

(
f(n − β + 1, 2)− f(n − β, 2)

)
. (13)

Since p ≤ n − 2β + 1 and n − β ≥ 2, because of condition (iii), the inequality (13) yields

If(G) ≤ If(G − x) + f(n − β, 1) + (n − 2β + 1)
(
f(n − β + 1, 1)− f(n − β, 1)

)
+ β

(
f(n − β + 1, 2)− f(n − β, 2)

)
. (14)

By (11) and (14), we now have If(G) ≤ Ψ(n, β) with equality iff all equalities in
(11), (12), (13) and (14) hold; that is, iff G − x ∼= Un−1,β, dG(yp+1) = · · · = dG(ys) = 2,
s = n− β+ 1 and p = n− 2β+ 1. Consequently, we have If(G) = Ψ(n, β) iff G ∼= Un,β.

As the following theorem’s proof (which utilizes Theorem 2) is completely similar to
that of Theorem 3, we omit it.

Theorem 4. Let f : R2
≥1 → R be a symmetric function such that

(i) f(s1, 2)− f(s1, 3) + f(s2, 2)− f(s2, 3) + f(2, 2)− f(1, 3) > 0 for s1, s2 ∈ {2, 3},
(ii) s1[f(3, 3) + f(1, 3)] > s1 f(s1 + 1, 2) + (s1 − 2)f(1, 2) + f(s1 + 1, 1) + f(2, 2) for s1 ≥ 3,
(iii) the function g defined as g(s1, s2) = f(s1, s2)− f(s1, s2 − 1), is strictly increasing in s1

for s2 ≥ 2 and s1 ≥ 1,
(iv) the function h̄ defined as

h̄(s1) = f(s1, 2) + f(s1, 1)− f(s1 − 1, 1) + (s1 − 2)[f(s1, 2)− f(s1 − 1, 2)]

is strictly decreasing for s1 ≥ 2,
(v) the inequality 2f(s1 + 2, 1) + s1 f(s1 + 2, 2) + (s1 − 2)f(1, 2)− 2s1 f(2, 2) < 0 holds for

s1 ≥ 2, and
(vi) the function Φ defined as

Φ(s1, s2)= f(s1 − 1, 1)+ s2[f(s1, 1)− f(s1 − 1, 1)] + (s1 − s2)[f(s1, 2)− f(s1 − 1, 2)]

is strictly decreasing in s1 for s1 ≥ s2 + 1 ≥ 2,

then the inequality

If(G) ≥ (n − 2β + 1) · f(n − β + 1, 1) + β f(n − β + 1, 2) + (β − 2)f(1, 2) + f(2, 2) (15)

holds for every n-order unicyclic graph G having a matching number β(≥ 2). Inequality (15)
becomes equation iff G ∼= Un,β (see Figure 1).
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Remark 1. As all the conditions of Theorem 3 are satisfied by the functions associated with each of
the following topological indices, the conclusion of this theorem holds for all these indices: SO index,
RSO index, ES index, MMR index, sigma index, SDD index, and AG index (the definitions of these
indices are given in Table 1).

4. Results About Pendent Vertices

In the present section, we derive two optimal bounds on If(G) in terms of G’s order
and its number of pendent vertices, where is G is a unicyclic graph.

Theorem 5. Let f : R2
≥1 → R be a symmetric function. Let s1 ≥ 2 and s2 ≥ 2. If

(i) the function g defined by g(s1, s2) = f(s1, s2)− f(s1 − 1, s2), is strictly decreasing in s2,
(ii) the function ja defined by

ja(s1) = f(1, s1) + (s1 − a − 1)[f(1, s1)− f(1, s1 − 1)] + a[f(2, s1)− f(2, s1 − 1)],

is strictly increasing for s1 ≥ 3, where a ∈ {1, 2}, and
(iii) the strict inequality (2s3 − 1)f(s3 + 1, 1)− (s3 − 1)f(s3, 1) + 3f(s3 + 1, 2)− f(s3, 2)

− 2f(s3 + 2, 2)− s3 f(s3 + 2, 1) < 0 holds for every positive integer s3,

then
If(G) ≤ p f(p + 2, 1) + (n − p − 2)f(2, 2) + 2f(p + 2, 2) (16)

for every n-order unicyclic graph G possessing p pendent vertices, such that 0 ≤ p ≤ n − 3. The
equality in (16) holds iff G ∼= U′

n,p (see Figure 2).

Proof. We use induction on n. For n ∈ {3, 4}, we have the required conclusion, because
for any case, the graph must be U′

n,p. Assume that n ≥ 5 and suppose that the theorem
is valid for every (n − 1)-order unicyclic graph having p′ pendent vertices provided that
0 ≤ p′ ≤ (n − 1)− 3.

Let G be an n-order unicyclic graph possessing p pendent vertices, provided that the
inequality 0 ≤ p ≤ n − 3 holds. If p = 0, then G ∼= U′

n,p and thus we are done. In the
following, we assume 1 ≤ p ≤ n − 3. Let C be the unique cycle of G and let c1, c2, . . . , ck be
all vertices of C. For i ∈ {1, 2, . . . , k}, let P(ci) be the class of all those paths of G whose
one end vertex is ci and the other end vertex is a pendent vertex of G, such that none of
these paths contain any vertex from the set {c1, c2, . . . , ck} \ {ci}. It is possible that P(cj) is
empty for some j. We suppose, without loss of generality, that P(c1) is non-empty. Let w be
the pendent end vertex of a longest path in P(c1). Let v ∈ V(G) be the unique neighbor of
w, and take NG(v) := {w, v1, v2, · · · , vd−1}, such that dG(v1) ≥ dG(v2) ≥ · · · ≥ dG(vd−1).

Case 1. The vertices v and c1 are the same.

In this case, d ≥ 3. We observe that v1 and v2 are the only non-pendent vertices in NG(v).
Because of condition (i), we have

If(G)− If(G − w) = f(1, d) +
d−1

∑
i=1

[f(dG(vi), d)− f(dG(vi), d − 1)]

≤ f(1, d) + (d − 3)[f(1, d)− f(1, d − 1)] + 2[f(2, d)− f(2, d − 1)] (17)

where the equality in (17) holds iff dG(v1) = dG(v2) = 2. As d ≤ p+ 2, because of condition
(ii) with a = 2, the inequality (17) yields

If(G)− If(G − w) ≤ f(1, p + 2) + (p − 1)[f(1, p + 2)− f(1, p + 1)]

+ 2[f(2, p + 2)− f(2, p + 1)] (18)

where the equality in (18) holds iff dG(v1) = dG(v2) = 2 and d = p + 2. In the present
case, the graph G − w has exactly p − 1 pendent vertices. As 1 ≤ p ≤ n − 3, we have
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0 ≤ p − 1 ≤ (n − 1)− 3 and thus we are allowed to apply the induction hypothesis on
G − w, and, therefore,

If(G − w) ≤ (p − 1) f(p + 1, 1) + (n − p − 2)f(2, 2) + 2f(p + 1, 2), (19)

where the equality in (19) holds iff G − w ∼= U′
n−1,p−1. Now, (16) follows from (18) and (19).

Case 2. The vertices v and c1 are not the same.

In the current case, we observe that dG(v1) ≥ 2 and dG(vi) = 1 when 2 ≤ i ≤ d − 1. Also,
2 ≤ d ≤ p + 1.

Subcase 2.1. d = 2.

In the present subcase, the inequality p ≤ n − 4 holds. We also note that, in the current
subcase, the graph G − w has p pendent vertices. As 1 ≤ p ≤ (n − 1)− 3, the induction
hypothesis is applicable on G − w:

If(G − w) ≤ p f(p + 2, 1) + (n − p − 3)f(2, 2) + 2f(p + 2, 2), (20)

where the equality in (20) holds iff G − w ∼= U′
n−1,p. On the other hand, by condition (i),

we have

If(G)− If(G − w) = f(1, 2) + f(2, dG(v1))− f(1, dG(v1)) ≤ f(2, 2) (21)

with the right equality iff dG(v1) = 2. By (20) and (21), we obtain

If(G) ≤ p f(p + 2, 1) + (n − p − 2)f(2, 2) + 2f(p + 2, 2),

with equality iff G − w ∼= U′
n−1,p and dG(v1) = 2; particularly, these two constraints do not

hold simultaneously, and hence in the current subcase, we have

If(G) < p f(p + 2, 1) + (n − p − 2)f(2, 2) + 2f(p + 2, 2).

Subcase 2.2. d > 2.

By condition (i), we have

If(G)− If(G − w) = f(1, d) +
d−1

∑
i=1

[f(dG(vi), d)− f(dG(vi), d − 1)]

≤ f(1, d) + (d − 2)[f(1, d)− f(1, d − 1)] + [f(2, d)− f(2, d − 1)] (22)

where the equality in (22) holds iff dG(v1) = 2. As d ≤ p + 1, by condition (ii) with a = 1,
the inequality (22) yields

If(G)− If(G − w) ≤ f(1, p + 1) + (p − 1) [f(1, p + 1)− f(1, p)]

+ [f(2, p + 1)− f(2, p)]. (23)

In the present case, G − w has exactly p − 1 pendent vertices. As 0 ≤ p − 1 ≤ (n − 1)− 3,
the induction hypothesis is applicable here, and, therefore,

If(G − w) ≤ (p − 1) f(p + 1, 1) + (n − p − 2)f(2, 2) + 2f(p + 1, 2), (24)
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with equality iff G − w ∼= U′
n−1,p−1. Now, because of condition (iii), from (23) and (24)

we obtain

If(G) ≤ (n − p − 2)f(2, 2) + (2p − 1)f(p + 1, 1)− (p − 1)f(p, 1)

+ 3f(p + 1, 2)− f(p, 2)

< p f(p + 2, 1) + (n − p − 2)f(2, 2) + 2f(p + 2, 2),

as required. This completes the induction and, thus, the proof.

Because the proof of the following result is completely similar to that of Theorem 5,
we omit it:

Theorem 6. Let f : R2
≥1 → R be a symmetric function. Let s1 ≥ 2 and s2 ≥ 2. If

(i) the function g defined by g(s1, s2) = f(s1, s2)− f(s1 − 1, s2), is strictly increasing in s2,
(ii) the function ja defined by

ja(s1) = f(1, s1) + (s1 − a − 1)[f(1, s1)− f(1, s1 − 1)] + a[f(2, s1)− f(2, s1 − 1)],

is strictly decreasing for s1 ≥ 3, where a ∈ {1, 2}, and
(iii) the strict inequality (2s3 − 1)f(s3 + 1, 1)− (s3 − 1)f(s3, 1) + 3f(s3 + 1, 2)− f(s3, 2)

− 2f(s3 + 2, 2)− s3 f(s3 + 2, 1) > 0 holds for every positive integer s3,

then
If(G) ≥ p f(p + 2, 1) + (n − p − 2)f(2, 2) + 2f(p + 2, 2) (25)

for every n-order unicyclic graph G possessing p pendent vertices, such that 0 ≤ p ≤ n − 3. The
equality in (25) holds iff G ∼= U′

n,p (see Figure 2).

Remark 2. As all the conditions of Theorem 5 hold for each of the functions corresponding to
the following topological indices, the conclusion of this theorem holds for all these indices: SO
index, RSO index, ES index, MMR index, sigma index, SDD index, MSDD index, AG index (the
definitions of these indices are given in Table 1).

Remark 3. As all the conditions of Theorem 6 are satisfied for each of the functions associated with
the following three topological indices, the conclusion of this theorem holds for these three indices:
harmonic index, SC index, Randić index (the definitions of these indices are given in Table 1).

Remark 4. One of the referees asked to check whether Theorem 5 or Theorem 6 is applicable to the
first Zagreb index Z1 or second Zagreb index Z2, where Equation (1) gives Z1 or Z2 if one takes
f(q1, q2) = q1 + q2 or f(q1, q2) = q1q2, respectively (see the survey [34], for details on these Zagreb
indices). We observe that neither of the aforementioned theorems is applicable to either of these
Zagreb indices. By Theorem 2 of [35], the graph attaining the greatest possible value of Z1 among all
fixed-order unicyclic graphs with a given number of pendent vertices is not generally unique; such
extremal graphs include U′

n,p (see Figure 2) in addition to other graphs. Similarly, by Theorems 1
and 2 of [36], none of the sets of extremal graphs with respect to Z2 over the aforementioned graph
class is equal to {U′

n,p}.

5. Conclusions

In this paper, we have addressed the question of establishing the best possible bounds
on the topological index If of unicyclic graphs in terms of their order and an additional
parameter z, under certain restrictions on the function f, where z is either the number of
pendent vertices or the matching number. All graphs achieving the obtained bounds are
also characterized. The restrictions taken into account for f are satisfied by a number of
popular existing indices, including the Sombor index (together with its reduced version),
arithmetic–geometric index, sigma index, and symmetric division deg index (see Table 1 for
the definitions of these indices). Consequently, the obtained general results yield bounds on
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several well-known existing indices. In other words, the obtained results generalize many
existing results and provide particular new cases for many existing indices. As there are a
lot of particular graphical edge-weight-function indices and, in many cases, the extremal
results with respect to them, including their proofs, are considerably similar to one another;
it is natural to adopt a unified technique to obtain those results and, hence, generalize them.
The present paper is a contribution to this research direction.

There are many existing (particular) graphical edge-weight-function indices for which
our results are not applicable; for instance, the first and second Zagreb indices are not cov-
ered by our results (see Remark 4). Therefore, it is natural to extend the present study to ob-
tain similar results that cover additional (particular) graphical edge-weight-function indices.
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