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Abstract: The strong convergence of numerical solutions is studied in this paper for stochastic Volterra
integral differential equations (SVIDEs) with a Hölder diffusion coefficient using the truncated
Euler–Maruyama method. Firstly, the numerical solutions of SVIDEs are obtained based on the
Euler–Maruyama method. Then, the pth moment boundedness and strong convergence of truncated
the Euler–Maruyama numerical solutions are proven under the local Lipschitz condition and the
Khasminskii-type condition. Finally, the convergence rate of the truncated Euler–Maruyama method
of the numerical solutions is also discussed under some suitable assumptions.
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1. Introduction

There are many fields in which Volterra integral differential equations (VIDEs) are used,
including control theory, economics, engineering, physical chemistry, and their theoretical
and numerical analysis research, which have also received widespread attention from
researchers; see [1–6] and the references therein. However, integral equations are affected
by noise and uncertain factors in practical applications. Therefore, stochastic Volterra
integral differential equations (SVIDEs) have been applied to describe the phenomena
of these uncertain factors, which actuates that more and more researchers are paying
attention to the study of SVIDEs [7]. For example, Zhang [8] noted Euler schemes and
large deviations for stochastic Volterra equations with singular kernels, Amir Haghighi [9]
noted the convergence of a partially truncated Euler–Maruyama method for SDEs with
superlinear piecewise continuous drift and Hölder diffusion coefficients, and Mao [10]
studied the stability of the following stochastic Volterra integral differential equations:

dz(t) = F(z(t), t) + G
(∫ t

0
g(t, s)z(s)ds, t

)
dw(t),

where w is a Brownian motion. Mao and Riedle [11] examined the mean square stability of
nonlinear SVIDEs as follows:

dz(t) =
[

F(z(t), t) + G
(∫ t

0
k1(t, s)z(s)ds, t

)]
dt + H

(∫ t

0
k2(t, s)z(s)ds, t

)
dw(t),
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where G : R × R → R, and F : R × R → R. The kernel functions k1 : D → R and
k2 : D → R belong to C1(D), in which D := {(t, s) : 0 ≤ s ≤ t ≤ T}. When i = 1, 2,
we have

∥ki∥∞ = max
(t,s)∈D

|ki(t, s)|.

Due to the inability to obtain the exact solutions for most nonlinear SVIDEs, the numerical
solutions are often solved to approximate the exact solutions of the equations. Mao [12]
constructed a convergent specific numerical method to study the stochastic differential
equations, i.e., the truncated Euler–Maruyama (EM) method, in which the equations satisfy
local Lipschitz- and Khasminskii-type conditions. Due to the low computational cost and
acceptable convergence order, the truncation method has received increasing attention.
Thus, Zhang [13] proposed a truncation EM method under non-global Lipschitz conditions
for SVIDEs and considered its moment’s boundedness and Lq-convergence. Compared
with the implicit EM method, the explicit EM method is more attractive to researchers
because of its simple algebraic structure, low computational cost, and ideal convergence
order. Meanwhile, Mao [12] noted that truncated EM methods are strongly convergent
if the coefficients of stochastic differential equations meet local Lipschitz conditions and
Khasminskii-type conditions. Reference [13] pointed out that for generalized stochastic
differential Equation (1), the classical Euler numerical methods are divergent in the sense
of moment, while Wei et al. [14] showed that the shortened EM techniques are strongly
convergent for generalized SVIDEs, and David [15] noted that for stochastic Volterra
equations with Hölder diffusion coefffcients, it was found that the diffusion coefficients of
many important SVIDs satisfy the Hölder continuity condition. Therefore, in this paper,
SVIDEs with Hölder diffusion coefficients will be studied.

dz(t) = F
(

z(t),
∫ t

0
k1(t, s)z(s)ds

)
dt + G(z(t))dB(t). (1)

Notation: (Ω,F , {Ft}t≥0,P) denotes the complete probability space with a filtration
{Ft}t≥0 that meets the usual conditions, i.e., Ft is right continuous and F0 contains all
P-null sets. E denotes the mathematical expectation associated with the probability P.
B(t) is a standard Brown motion defined on the above probability space. C2(R2 ×R+;R)
represents the set of function V(z, t) : R2 ×R+ → R that has first-order and second-order
continuous derivatives with respect to t and x, respectively. Lp(R+;Rd) consists of all
measurable, Ft-compatible stochastic processes ψ(t, ω) that satisfy

∫ T
0 |ψ(t)|pdt < ∞ a.s.

for all T > 0. It is said that τ(ω) is a stopping time of Ft if a stochastic process τ(ω) taking
a value on [0,+∞]) satisfies {ω : τ(ω) < t}.

2. Preliminaries

Integrating differential Equation (1) with respect to time t, where t belongs to [0, T]
and z(0) = z0, we can refer to reference [16] and obtain

z(t) = z0 +
∫ t

0
F
(

z(s),
∫ s

0
k1(t, s)z(s)ds

)
ds +

∫ t

0
G(z(s))dB(s), (2)

In the following, we present some assumptions for the drift coefficient F(z, u) and
diffusion coefficient G(u).

The drift coefficient F(z, u) is a Borel-measurable function on the interval [0, T] that
satisfies the following conditions:

A.1. The drift coefficient F(z, u) meets the local Lipschitz condition, which implies that for
every R > 0, there exists a positive constant CR such that for every z, z̄, u, ū ∈ R and
|z| ∨ |z̄| ∨ |u| ∨ |ū| ≤ R, we have

|F(z, u)− F(z̄, ū)| ≤ CR(|z − z̄|+ |u − ū|).
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A.2. The drift coefficient F(z, u) meets the one-sided Lipschitz condition with respect to z,
i.e., there is a positive constant L1 such that

(z − z̄)(F(z, u)− F(z̄, u)) ≤ L1|z − z̄|2, z, z̄, u ∈ R.

A.3. The drift coefficient F(z, u) meets the Khasminskii-type requirement, i.e., there exists
a positive constant L1 > 0 such that

zT F(z, u) ≤ L1(1 + |z|2 + |u|2), z, u ∈ R.

A.4. There exist constants L1 > 0 and u > 0 such that

|F(z, u)− F(z̄, ū)| ≤ L1(1 + |z|r + |z̄|r + |u|r + |ū|r)(|z − z̄|+ |u − ū|), ∀z, z̄, u, ū ∈ R.

Remark 1. It is concluded from A.4 that

|F(z, u)− F(z, ū)| ≤ L1(1 + |z|r + |u|r + |ū|r)|u − ū|, ∀z, u, ū ∈ R.

A.5. Diffusion coefficient G(u) is Borel sigma-algebra on the interval [0, T] and satisfies
the Hölder continuity requirement, i.e., there are constants 0 < α < 1

2 and L2 > 0
such that

|G(z)− G(u)| ≤ L2|z − u|
1
2+α, z, u ∈ R.

Under assumptions A.1–A.4, it is easy to obtain the well-posed solution in the process
of reference [17]’s similarity proof.

Lemma 1. SVIDE (1) satisfies the Khasmiskii-type condition for the drift coefficient F(z, u) and
diffusion coefficient G(z), under assumption A.3 and assumption A.5, i.e., there exist q > 2 and
L1 = L1(q) > 0 such that

zT F(z, u) +
q − 1

2
|G(z)|2 ≤ L1(1 + |z|2 + |u|2).

Proof. By assumption A.5, we obtain that

|G(z)− G(u)| ≤ |G(z)− G(0)| ≤ L2|z|
1
2+α, z, u ∈ R,

which means that

|g(z)|2 ≤ (L2|z|
1
2+α + |G(0)|)2 ≤ 2(L2

2|z|
1
2+α + |G(0)|2) ≤ L3(1 + |z|2).

According to hypothesis A.3, we have

zT F(z, u) +
q − 1

2
|G(z)|2 ≤ L1

(
1 + |z|2 + |u|2

)
+

L3(q − 1)
2

(
1 + |z|2

)
≤ L1

(
1 + |z|2 + |u|2

)
.

The proof is complete.

3. Numerical Analysis

In this section, the truncated Euler–Maruyama method and its boundedness in the
sense of moment will be analyzed.

3.1. Truncated Euler–Maruyama Method

Because of the classical Euler method’s divergence with superlinear growth coefficients
(see [18]), the EM technique is utilized to calculate the numerical solutions of SVIDEs. More
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specifically, the EM method does not directly find the analytical solution z(t) but finds a
series of points zn(n = 1, 2, 3, · · · ) to approximate the analytical solution on the interval
where the solution exists. Here, to obtain the truncated EM solution, let ϕ : R+ → R+ be a
continuous and strictly monotonically increasing function with ϕ(r) → ∞ (r → ∞) and

sup
|z|∨|u|≤r

|F(z, u)| ≤ ϕ(r), ∀r ≥ 1.

Let ϕ−1 be the inverse function of ϕ. Then, ϕ−1 : [ϕ(0), ∞] → R+ is a continuous and
strictly increasing function. In addition, for given ∆∗ ∈ (0, 1], let ψ : (0, ∆∗] → (0, ∞) be a
strictly increasing function with

ψ(∆∗) ≥ ϕ(2), lim
∆→0

ψ(∆) = 0 ∆∗ψ(∆) ≤ 1, ∆ ∈ (0, ∆∗).

For given step size ∆ ∈ (0, ∆∗), the discretization scheme of the equation is as follows:

Zk+1 = Zk + F∆(Zk)∆z + G∆(Zk)∆Bk, Z0 = z0,

where

F∆(z, u) = F
(
|z| ∧ ϕ−1(ψ(∆))

z
|z| , u ∧ ϕ−1(ψ(∆))

u
|u|

)
, z, u ∈ R. (3)

When z = 0, let z
|z| = 0. Then,

|F∆(z, u)| ≤ ϕ(ϕ−1ψ(∆)) = ψ(∆), ∀z, u ∈ R (4)

It is evident that the truncation functions F(z, u) are bounded, whether F∆(z, u) is bounded
or not. Furthermore, it has been demonstrated that these shortened functions maintain the
Khasminskii-type condition.

Remark 2. The truncation technique employed here guarantees that the moments of the numerical
solution are bounded. Since the diffusion coefficient G(·) satisfies the linear growth condition, it is
unnecessary to truncate G(·).

From references [12,13], we can easily obtain the following result.

Lemma 2. Under the conditions of Lemma 1, for every ∆ ∈ (0, ∆∗], we have

zT F(z, u) +
q − 1

2
|G(z)|2 ≤ L1(1 + |z|2 + |u|2), z, u ∈ R. (5)

Proof. Let z△(0) = z0 be the initial value. Then, the truncated EM numerical scheme of
(1) is

Z∆(tk+1) = Z∆(tk) + F∆

(
Z∆(tk),

k−1

∑
i=1

∫ ti+1

ti

k1(tk, s)Z∆(ti)ds

)
∆ + G(Z∆(tk))∆Bk

= Z∆(tk) + F∆(Z∆(tk), U∆(tk))∆ + G(Z∆(tk))∆Bk, (6)

from which we know that Z∆(tk) ≈ z(tk) when tk = k∆, where ∆ = T
M , ∆Bk = B(tk+1)−

B(tk), and

U∆(tk) =
k−1

∑
i=1

∫ ti+1

ti

k1(tk, s)Z∆(ti)ds,

with k = 0, 1, · · · , M − 1, and M ∈ N. Further, according to {zk}k≥0, we introduce the
following steps
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z̄∆(t) =
∞

∑
k=0

Z∆(tk)I[tk ,tk+1)
(t), t ≥ 0.

Then, the continuous truncated EM solution can be defined as follows:

z∆(t) = z0 +
∫ t

0
F∆(z̄∆(s), ū∆(s))ds +

∫ t

0
G(ū∆(s))dB(s), (7)

where
ū∆(s) =

∫ s

0
k(s, v)z̄∆(v)dv, t ≥ 0. (8)

Remark 3. Specifically, under the continuous time and continuous sample conditions defined above,
for all k = 1, 2, · · · , M − 1, truncating the EM solution satisfies

z∆(tk) = z̄∆(tk) = z∆(tk),

where z∆(t) is an Itô process with Itô differentiation:

dz∆(t) = F
(

z̄∆(t),
∫ t

0
k1(t, s)z̄∆(s)ds

)
dt + G(z̄∆(t))dB(t).

3.2. Moment Boundedness of Numerical Solutions for Truncated EM Method

This subsection demonstrates the boundedness of truncated EM solutions in the sense
of moment by the following lemma.

Lemma 3. For any ∆ ∈ (0, ∆∗], q̂ > 0, it holds that

E|z∆(t)− z̄∆(t)|q̂ ≤ Cq̂∆
q̂
2 (ψ(∆))q̂, ∀ 0 ≤ t ≤ T. (9)

Proof. We first consider the case of q̂ ≥ 2. For equation

dz∆(s) = F
(

z̄∆(s),
∫ t

0
k1(t, v)z̄∆(v)dv

)
ds + G(z̄∆(s))dB(s),

through integrating both sides, it can be obtained that

z∆(t)− z∆(tk) =
∫ t

tk

F∆(z̄∆(s), ū∆(s))ds +
∫ t

tk

G∆(z̄∆(s))dB(s).

Thus, we can obtain that

E|z∆(t)− z∆(tk)|q̂ = E
∣∣∣∣∫ t

tk

F∆(z̄∆(s), ū∆(s))ds +
∫ t

tk

G∆(z̄∆(s))dB(s)
∣∣∣∣q̂,

It can be derived from basic inequalities that

E|z∆(t)− z∆(tk)|q̂ ≤ 2q̂−1

[
E
∣∣∣∣∫ t

tk

F∆(z̄∆(s), ū∆(s))ds
∣∣∣∣q̂ +E

∣∣∣∣∫ t

tk

G∆(z̄∆(s))dB(s)
∣∣∣∣q̂
]

.

Let

j1 = E
∣∣∣∣∫ t

tt
F∆(z̄∆(s), ū∆(s))ds

∣∣∣∣q̂, j2 = E
∣∣∣∣∫ t

tt
G∆(z̄∆(s))dB(s)

∣∣∣∣q̂.

Therefore,
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j1 ≤ E
[ ∫ t

tk

|F∆(z̄∆(s), ū∆(s))|ds
]q̂

.

It is derived from the Hölder inequality [19] that

j1 ≤ E
[( ∫ t

tk

| f∆(z̄∆(s), ū∆(s))|q̂ds
) 1

q̂
( ∫ t

tk

11− 1
q̂ ds
)1− 1

q̂
]q̂

= (t − tk)
q̂−1E

∫ t

tk

| f∆(z̄∆(s), ū∆(s))|q̂ds,

j2 ≤
( q̂(q̂ − 1)

2

) q̂
2
(t − tk)

q̂−2
2 E

∫ t

tk

|G∆(x̄∆(s))|q̂ds.

Thus,

E|z∆(t)− z∆(tk)|q̂ ≤ Cq̂

[
∆q̂−1E

∫ t

tk

|F∆(z̄∆(s), ū∆(s))|q̂ds + ∆
q̂−2

2 E
∫ t

tk

|G∆(z̄∆(s))|q̂ds
]

.

Let

j3 = ∆q̂−1E
∣∣∣∣∫ t

tk

F∆(z̄∆(s), ū∆(s))
∣∣∣∣q̂ds, j4 = ∆

q̂−2
2 E
∣∣∣∣∫ t

tk

G∆(z̄∆(s))ds
∣∣∣∣q̂.

Therefore,

j3 ≤ ∆q̂−1E
∫ t

tk

ψq̂(∆)ds = ∆q̂−1ψq̂(∆)(t − tk) = ∆q̂ψq̂(∆),

and

j4 ≤ C∆
q̂−2

2 E
∫ t

tk

(1 + |z̄∆(s)|q̂)ds ≤ C∆
q̂−2

2

∫ t

tk

E(1 + |z̄∆(s)|q̂)ds

≤ C∆
q̂
2 + C∆

q̂−2
2

∫ t

tk

E|z̄∆(s)|q̂ds.

Due to

sup
0≤r≤t

E|z̄∆(s)|q̂ ≤ sup
0≤r≤t

E|z∆(s)|q̂,

and

z∆(t) = z0 +
∫ t

tk

F∆(z̄∆(s), ū∆(s))ds +
∫ t

tk

G∆(z̄∆(s))dB(s),

we have

E|z∆(s)|q̂ ≤ 3q̂−1
(
|z0|q̂ +E|

∫ t

0
F∆(z̄∆(s), ū∆(s))ds|q̂ +E|

∫ t

0
G∆(z̄∆(s))dB(s)|q̂

)
≤ 3q̂−1

(
|z0|q̂ + Tq̂(ψ(∆)q̂) +

( q̂(q̂ − 1)
2

) q̂
2
T

q̂−2
2 E

∫ t

0
|G∆(z̄∆(s))|q̂ds

)
≤ Cq̂

(
1 + ψ(∆)q̂ +

∫ t

0
E|(z̄∆(s))|q̂ds

)
,

which means that

sup
0≤r≤t

E|z∆(s)|q̂ ≤ Cq̂

(
1 + ψ(∆)q̂ +

∫ t

0
sup

0≤r≤t
E|z̄∆(s)|q̂ds

)
.

It then follows from the Gronwall formula [19] that

sup
0≤r≤T

E|z̄∆(s)|q̂ ≤ 1 + (ψ(∆))q̂.
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It can be concluded that

j4 ≤ C∆
q̂
2 + C∆

q̂−2
2 ∆
(

1 + (ψ(∆))q̂
)
= C∆

q̂
2 + C∆

q̂−2
2 (ψ(∆))q̂.

Therefore, we have

E|z∆(t)− z̄∆(t)|q̂ ≤ Cq̂(∆q̂(ψ(∆))q̂ + ∆
q̂
2 + ∆

q̂
2 (ψ(∆))q̂) ≤ Cq̂∆

p̂
2 (ψ(∆))q̂.

When 0 < q̂ < 2, according to the Hölder inequality, it can be concluded that

E|z∆(t)− z̄∆(t)|q̂ ≤
(
E|z∆(t)− z̄∆(t)|

q̂· 2
q̂
) q̂

2
=
(
E|z∆(t)− z̄∆(t)|2

) q̂
2
,

It follows from E|z∆(t)− z̄∆(t)|2 ≤ C∆ψ2(∆) that

E|z∆(t)− z̄∆(t)|2 ≤ Cq̂∆
q̂
2 (ψ(∆))q̂.

In summary, for every q̂ > 0, we have

E|z∆(t)− z̄∆(t)|q̂ ≤ Cq̂∆
q̂
2 (ψ(∆))q̂.

Lemma 4. If Assumption A.3 and the conditions of Lemma 1 hold, then

sup
0≤∆≤∆∗

sup
0≤t≤T

E|z∆(t)|q ≤ C, ∀T > 0.

Proof. Using Itô’s formula with (7), one has

E|z∆(t)|q ≤|z0|q +E
∫ t

0
q|z∆(s)|q−2zT

∆(s)F∆(z̄∆(s), ū∆(s))ds

+E
∫ t

0

q(q − 1)
2

|z∆(s)|q−2|G∆(z̄∆(s))|2ds (10)

=M1 + M2,

where

M1 =|z0|q +E
∫ t

0
q|z∆(s)|q−2zT

∆(s)F∆(z̄∆(s), ū∆(s)ds,

M2 =E
∫ t

0

q(q − 1)
2

|z∆(s)|q−2|G∆(z̄∆(s))|2ds.

It follows from Lemma 1 that

M1 ≤KqE
∫ t

0
|z∆(s)|q−2(1 + |z̄∆(s)|2 + |ū∆(s)|2)ds

≤KT + KqE
∫ t

0
|z∆(s)|q−2ds + KqE

∫ t

0
|z∆(s)|q−2|z̄∆(s)|2ds

+E
∫ t

0
|z∆(s)|q−2|ū∆(s)|2ds.

According to Young’s inequality [19],

aq−2b ≤ q − 2
2

aq +
2
q

b
q
2 , ∀a, b ≥ 0,



Mathematics 2024, 12, 3662 8 of 13

It can then be concluded that

M1 ≤KT + K(q − 2)E
∫ t

0
|z∆(s)|qds + 2T + K(q − 2)E

∫ t

0
|z∆(s)|qds

+ 2E
∫ t

0
|z̄∆(s)|qds + KqE

∫ t

0
|z∆(s)|q−2|ū∆(s)|2ds.

Then, by combining

E|ū∆(s)|q ≤ ∥k∥q
∞sq−1

∫ s

0
E|z̄∆(v)|qdv,

we have

M1 ≤ KT + K(q − 2)E
∫ t

0
|z∆(s)|qds + 2T + K(q − 2)E

∫ t

0
|z∆(s)|qds + 2

∫ t

0
E|z̄∆(s)|qds

+ K(q − 2)E
∫ t

0
|z∆(s)|qds + 2E

∫ t

0
|ū∆(s)|qds

≤ KT + K(q − 2)E
∫ t

0
|z∆(s)|qds + 2T + K(q − 2)E

∫ t

0
|z∆(s)|qds + 2

∫ t

0
E|z̄∆(s)|qds

+ K(q − 2)E
∫ t

0
|z∆(s)|qds + 2

∫ t

0
E
∣∣∣ ∫ s

0
k(s, v)z̄∆(v)dv

∣∣∣qds,

and

M2 ≤ (q − 2)E
∫ t

0
|z∆(s)|qds + 2E

∫ t

0
|z∆(s)− z̄∆(s)|

q
2 |F∆(z̄∆(s), ū∆(s))|

q
2 ds

≤ (q − 2)E
∫ t

0
|z∆(s)|qds + 2ψ

q
2 (∆)E

∫ T

0
|z∆(s)− z̄∆(s)|

q
2 ds

≤ (q − 2)E
∫ t

0
|z∆(s)|qds + 2ψ

q
2 (∆)

∫ T

0

(
E|z∆(s)− z̄∆(s)|q

) 1
2
ds

≤ (q − 2)E
∫ t

0
|z∆(s)|qds + 2

q
2 Tψq(∆)∆

q
4

≤ (q − 2)E
∫ t

0
|z∆(s)|qds + 2

q
2 T.

Substituting the estimations of M1 and M2 into (10) yields that

E|z∆(t)|q ≤3KT + 4K(q − 2)E
∫ t

0
|z∆(s)|qds + 2K

∫ t

0
E|z∆(s)|qds

+ 2K
∫ t

0

∣∣∣ ∫ s

0
k(s, v)z∆(v)dv

∣∣∣qds + 2T2
q
2

≤C1 + 8K
∫ t

0
sup

0≤v≤s
E|z∆(s)|qdv,

Therefore, one can obtain that

sup
0≤u≤t

E|z∆(t)|q ≤ C1 + 8K
∫ t

0
sup

0≤v≤s
E|z∆(v)|qdv.

It then follows from Gronwall’s formula that

sup
0≤t≤T

E|z∆(t)|q ≤ C1 + 8K
∫ t

0
C1e

∫ t
v 1dτds = C, ∀∆ ∈ (0, ∆∗],

where C is not dependent on the ∆. Therefore,

sup
0≤∆≤∆∗

sup
0≤t≤T

E|z∆(t)|q ≤ C, ∀T > 0.

The proof is complete.



Mathematics 2024, 12, 3662 9 of 13

When assumption A.1 and the conditions of Lemma 1 hold, we define the stopping
time for any real number R > |z0| as follows:

σR = inf{t ≥ 0 : |z(t) ≥ R|},

And when inf∅ = ∞,

P(σR ≤ T) =
C
R2 . (11)

3.3. Convergence at Time T

To demonstrate that the truncated EM numerical solution z∆(t) converges to the exact
solution z(t) at a specific time T, we present the following theorem.

Theorem 1. If assumptions A.1–A.4 hold, choose a real number R > |z0| and a small positive value
∆ ∈ (0, ∆∗] such that ϕ−1(ψ(∆)) ≥ R. σR and ρ∆,R are identical to the definitions in Lemma 4
and Equation (11), respectively. For any constant T > 0, let

θ∆,R = σR ∧ ρ∆,R, e∆,R(t) = z(t)− z∆(t), 0 < t < T,

Then,

E|e∆,R(t ∧ θ∆,R)| ≤

 C
(

1
ln ∆−1 + ∆

1
4 (ψ(∆)

1
2 )
)

, α = 0,

C
(

∆
1
2 (ψ(∆))

)2α
, 0 < α < 1

2 .
(12)

Proof. Let δ > 1, ε > 0. Since ∫ ε

ε
δ

1
z

dz = ln δ,

there exists a non-negative continuous function ψδε(z) ∈ [0,+∞) that satisfies ψδε(z) = 0
when z < ε

δ or z > ε, and ∫ ε

ε
δ

ψδε(z)dz = 1, ψδε(z) ≤
2

z ln δ
.

It should be noted that the function ψδε(z) was first proposed in [16] to deal with pathwise
uniqueness for stochastic differential equations with Hölder continuous diffusion coeffi-
cients, and then it was generalized in [20] to study the convergence of the Euler–Maruyama
method. Define

ϕδε(z) =
∫ |z|

0

∫ u

0
ψδε(s)dsdv, z ∈ R.

Then, for any z ∈ R, we have

|z| ≤ ϕδε(z) + ε, 0 ≤ |ϕ′
δε(z)| ≤ 1, ϕ′′

δε(z) = ψδε(|z|) ≤
2

|z| ln δ
I[ ε

δ ≤|z|≤ε].

By the condition

|z| ≤ ϕδε(z) + ε,

we have

dϕδε(e∆(s)) = [F(z(t), u(t))− F∆(z̄∆(t), ū∆(t))]dt + [G(z(t))− G∆(z̄(t))]dB(t).

Applying Itô’s formula, we derive that
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|e∆(t ∧ θ∆,R)| ≤ε +
∫ t∧θ∆,R

0
ϕ′′

δε(e∆(s))F∆(z̄∆(s), ū∆(s))ds

+
1
2

∫ t∧θ∆,R

0
ϕ′′

δε(e∆(s))[G(z(s))− G(z̄∆(s))]2ds

+
∫ t∧θ∆,R

0
ϕ′

δε(e∆(s))[G(z(t))− G∆(z̄(t))]dB(t) (13)

=ε + I1 + I2 + I3.

According to |ϕ′
δε(z)| ≤ 1, Assumption A.1, and Remark 1, we obtain

ϕ′
δε(z − z̄)[F(z, u)− F(z̄, ū)]

=

{
ϕ′

δε(z−z̄)
(z−z̄) (z − z̄)[F(z, u)− F(z̄, u)] + ϕ′

δε(z − z̄)[F(z̄, u)− F(z̄, ū)], z ̸= z̄
0, z = z̄

≤
{

ϕ′
δε(z−z̄)
(z−z̄) |z − z̄|2 + ϕ′

δε|(z − z̄)||F(z̄, u)− F(z̄, ū)|, z ̸= z̄
0, z = z̄

≤ L1|z − z̄|+ L1(1 + |z̄|γ + |u|γ + |ū|γ)|u − ū|.

It thus follows from |z| ∨ |z̄| ∨ |u| ∨ |ū| ≤ R that

ϕ′
δε(z − z̄)[F(z̄, u)− F(z̄, ū)] ≤ K(|z − z̄|+ |u − ū|).

Therefore, one has

I1 =
∫ t∧θ∆,R

0
ϕ′

δε(e∆(s))[F(z(s), u(s))− F∆(z̄∆(s), ū∆(s))]ds

≤
∫ t∧θ∆,R

0
ϕ′

δε(e∆(s))[F(z(s), u(s))− F∆(z∆(s), u∆(s))]ds

+
∫ t∧θ∆,R

0
ϕ′

δε(e∆(s))[F(z∆(s), u∆(s))− F∆(z̄∆(s), ū∆(s))]ds

≤L1

∫ t∧θ∆,R

0
|e∆(s)|ds +

∫ t∧θ∆,R

0
| F(z∆(s), u∆(s))− F∆(z̄∆(s), ū∆(s)) | ds. (14)

For

I2 =
1
2

∫ t∧θ∆,R

0
ϕ′′

δε(e∆(s))[G(z(s))− G(z̄∆(s))]2ds,

and according to Lemma 3, we have

I2 ≤L2
2

∫ t∧θ∆,R

0

1
|e∆(z)| ln δ

I[ ε
δ ≤|e∆(s)|≤ε]

∣∣∣z(s)− z̄∆(s)
∣∣∣1+2α

ds

≤L2
2

∫ t∧θ∆,R

0

1
|e∆(z)| ln δ

I[ ε
δ ≤|e∆(s)|≤ε]

(
|z(s)− z∆(s)|1+2α + |z∆(s)− z̄∆(s)|1+2α

)
ds

≤
22αL2

2
ln δ

∫ t∧θ∆,R

0
e2α

∆ (s)I[ ε
δ ≤|e∆(s)|≤ε]ds

+
22αL2

2
ln δ

∫ t

0

1
e∆(s)

|z∆(s)− z̄∆(s)|1+2α I[ ε
δ ≤|e∆(s)|≤ε]ds

≤
22αL2

2ε2α

ln δ
+

22αL2
2δ

ln δ

∫ t

0
|z∆(s)− z̄∆(s)|1+2αds. (15)
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According to Equations (11) and (13)–(15), Assumption A.1, Lemma 4, and the Hölder
inequality, we derive that

E|e∆(t ∧ θ∆,R)|

≤ε + L1

∫ t

0
Ee∆,R(t ∧ θ∆,R)ds +

√
HE

∫ t∧θ∆,R

0
|z∆(s)− z̄∆(s)|(1 + |z∆(s)|γ + |z̄∆(s)|γ)

1
2 ds

+ 22αL2
2

( ε2αT
ln δ

+
δ

ε ln δ
TC1+2α

(
∆

1
2 ψ(∆)

)1+2α)
≤ε + L1

∫ t

0
E|e∆,R(t ∧ θ∆,R)|ds + C

(
∆

1
2 ψ(∆)

)
+ C

( ε2αT
ln δ

+
ε

ln δ

(
∆

1
2 ψ(∆)

))
.

By the Gronwall inequality, it can be concluded that

E|e∆(t ∧ θ∆,R)| ≤ C
(

ε + ∆
1
2 H(∆) +

ε2α

ln δ
+

δ

ε ln δ
(∆

1
2 (H(∆))1+2α)

)
.

If α = 0, let δ = ∆− 1
8 and ε = − 1

ln ∆ . Then,

E|e∆(t ∧ θ∆,R)| ≤ C
(
− 9

ln ∆
+ ∆

1
4

(
ψ(∆)

1
2

(
∆

1
4 (ψ(∆))

1
2 + 8∆

1
8 (ψ(∆))

1
2

))
.

Noting that ∆
1
8 (ψ(∆))

1
2 ≤ 1, ∆

1
4 (ψ(∆))

1
2 ≤ 1, one has

E|e∆(t ∧ θ∆,R)| ≤ C
( 1

ln ∆−1 + ∆
1
4 (ψ(∆)

1
2 )
)

.

If 0 < α < 1
2 , let δ = 2 and ε = ∆

1
2 ψ(∆). We can then conclude that

E|e∆(t ∧ θ∆,R)| ≤ C
(

∆
1
2 (ψ(∆))

)2α
.

This completes the proof.

Theorem 2. If Assumptions A.1–A.4 and the conditions of Lemma 3 hold, and q > 1,

ψ(∆) ≥ ϕ(∆
1
2 (ψ(∆))

−1
p−1 ),

Then, for any small ∆ ∈ (0, ∆∗], T > 0, we have

E|z(T)− z∆(T)| ≤

 C
(

1
ln ∆−1 + ∆

1
4 (ψ(∆)

1
2 )
)

, α = 0,

C
(

∆
1
2 (ψ(∆))

)2α
, 0 < α < 1

2 ,

Proof. When δ > 0, by Young’s inequality, Theorem 1, and (11), we can obtain that for any
q > 1,

E
[

sup
0≤t≤T

|z(t)|q
]
≤ ∞, (16)
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Then,

E|e∆(T)| = E|e∆(T)Iθ∆,R>T |+E|e∆(T)Iθ∆,R≤T |

≤ E|e∆(T)Iθ∆,R>T |+
δ

p
E|e∆(T)|q +

q − 1

qδ
1

q−1
q(θ∆,R ≤ T)

≤ E|e∆(T)Iθ∆,R>T |+
Cδ

q
+

C(q − 1)

qδ
1

q−1 Rq
.

Since ψ(∆) ≥ ϕ(∆
1
4 (ψ(∆))

−1
q−1 ), we obtain that

ϕ−1(ψ(∆)) ≥
(

∆
1
4 (ψ(∆))

) −1
q−1

,

Let

δ = ∆
1
2 ψ(∆), R =

(
∆

1
4 (ψ(∆))

) −1
q−1

.

Therefore, it can be concluded that

E|e∆(T)| = E|e∆(T)Iθ∆,R>T |+ C∆
1
2 ψ(∆),

which, together with (11), can derive the results of the theorem.

4. Conclusions

Based on the truncated Euler–Maruyama method, this paper studied SVIDEs with
Hölder diffusion coefficients, in which the drift coefficient satisfies the local Lipschitz
condition and Khasminskii condition. With the help of the truncated Euler–Maruyama
method, the numerical soulutions of the SVIDEs were obtained. In addition, we revealed
that the truncated Euler–Maruyama solutions are bounded in the sense of the pth moment
and converge to the exact solutions at any fixed time T.
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