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Abstract: We open here many new tracks of research in anti-Ramsey Theory, considering edge-
coloring problems inspired by rainbow coloring and further by odd colorings and conflict-free
colorings. Let G be a graph and F any given family of graphs. For every integer n ≥ ∣G∣, let f (n, G∣F)
denote the smallest integer k such that any edge coloring of Kn with at least k colors forces a copy
of G in which each color class induces a member of F . Observe that in anti-Ramsey problems, each
color class is a single edge, i.e., F = {K2}. Among the many results introduced in this paper, we
mention the following. (1) For every graph G, there exists a constant c = c(G) such that in any edge
coloring of Kn with at least cn colors there is a copy of G in which every vertex v is incident with
an edge whose color appears only once among all edges incident with v. (2) In sharp contrast to
the above result we prove that if F is the class of all odd graphs (having vertices with odd degrees
only) then f (n, Kk ∣F) = (1+ o(1)) ex(n, K⌈k/2⌉), which is quadratic for k ≥ 5. (3) We exactly determine
f (n, G∣F) for small graphs when F belongs to several families representing various odd/even
coloring constraints.

Keywords: anti-Ramsey; odd coloring; conflict-free coloring; parity colorings

MSC: 05C15; 05C35; 05C70

1. Introduction

In this extensive work, we introduce a large number of new functions related to the
Anti-Ramsey/Rainbow Theory of graphs and present a first detailed study of them. In
doing, so we continue the approach that we presented in our preceding paper [1]. As a
generalization of rainbow coloring, each monochromatic class is allowed to form a graph
that belongs to a prescribed family F of graphs, rather than required to be just a single edge.

In [1], we mainly considered hereditary families of graphs. Here, we focus on families,
mostly non-hereditary ones, that have parity conditions imposed on the degrees of the
graphs allowed to form the color classes.

1.1. Brief History of Anti-Ramsey Theory

The rainbow coloring or anti-Ramsey theorems date back to the work of Erdős, Si-
monovits and Sós [2]. The main problem is as follows. Given a graph G, at least how many
colors are needed so that every edge coloring of Kn with that many colors forces a copy
of G with all edges of it getting distinct colors? This minimum is denoted by Ar(n, G).
The main result of [2] is as follows. Let χe(G) = min{χ(G − e) ∶ e ∈ E(G)}, where χ de-
notes the chromatic number. If χe(G) = k ≥ 3, then Ar(n, G) = (1+ o(1)) ex(n, Kk), and in
particular, Ar(n, Kk+1) = ex(n, Kk)+ 2 for large n, where ex(n, G) is the famous Turán num-
ber. The proof relies heavily on the Erdős–Stone–Simonovits theorem [3,4] that states
ex(n, G) = (1+ o(1)) ex(n, Kk)whenever χ(G) = k ≥ 3. Decades later, the tight formula for
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Ar(n, Kk+1) was extended to all n ≥ k ≥ 3 [5]; moreover Ar(n, Ck), was determined up to
an additive constant [6]. The subject is still very active today; see the survey [7] and some
recent papers [8–14].

Recently, in [1], the authors initiated the study of the following more general problem.
Let G be a graph, and let F any given family of graphs. For every integer n ≥ ∣G∣, let
f (n, G∣F) denote the smallest integer k such that any edge coloring of Kn with at least k
colors forces a copy of G in which each color class induces a member of F . Observe that in
anti-Ramsey problems, each color class is a single edge; i.e., F = {K2}. A major result in [1]
is as follows. Let F be a hereditary family, and let χ

F
(G) =min{χ(G −D) ∶ D ⊂ G, D ∈ F}.

If χ
F
(G) = k ≥ 3; then, f (n, G∣F) = (1 + o(1)) ex(n, Kk). Again, a heavy use of the Erdős–

Stone–Simonovits theorem is inevitable, together with new tools of interest in their own
right, e.g., the “Independent Transversal Lemma” in directed graphs of bounded outdegree.
Also, it is proved that if G is stable with respect to F , namely χ

F
(G) = χ(G) = k ≥ 3, then

(regardless of whether or not F is hereditary) f (n, G∣F) = (1+ o(1)) ex(n, Kk) is valid. Many
examples of interesting and natural hereditary families and the implied results concerning
f (n, G∣F) or f (n, Kp∣F) are given in [1].

Already in [1], we announced that in parallel, we consider other similar problems
inspired by odd-coloring and conflict-free coloring, cf. [15,16], respectively, with the several
follow-ups and the references therein. This track of research emerged from a conversation
with Riste Škrekovski and is also motivated by the famous theorem of Pyber [17] stating
that every graph has an edge decomposition into at most four odd subgraphs (and every
multigraph without loops into at most six). Anti-Ramsey-type problems related to conflict-
free and odd-colorings constitute the main subject of the current paper.

1.2. Hierarchy of Some Basic Invariants Under Parity Constraints

Beside the classical anti-Ramsey numbers Ar(n, G)we define seven further notions.
Their hierarchic relations are exhibited in Table 1.

Definition 1. Let ψ be an edge coloring of Kn, and let G be a given graph. A subgraph H ≅ G of
Kψ

n , with its edge coloring induced by ψ, is called

• Rainbow if all its edges have mutually distinct colors;
• Proper or local rainbow if it is properly edge-colored;
• Strong-odd-colored, or just strong, if each color class induces an odd graph;
• Odd-colored, or briefly weak (as opposed to “strong”) if at each vertex at least one color occurs

on an odd number of edges;
• Conflict-free-colored—Cf-colored for short—if at each vertex at least one color occurs on exactly

one edge;
• Strong-parity-colored if all color classes induce odd graphs or all color classes induce even graphs;
• Class-parity-colored if the edges of each color c form either an odd graph or an even graph (but

distinct color classes are not required to have the same parity);
• Local-parity-colored if, at each vertex, every incident color class has an odd number of edges or

every incident color class has an even number of edges (but for distinct vertices the parity may
not be the same).

We denote by Ar(n, G)/Lr(n, G)/Sod(n, G)/Od(n, G)/Cf(n, G)/Sp(n, G)/Cp(n, G)/Lp(n, G)
the smallest m such that, for every ψ with at least m colors, Kψ

n contains a rainbow/proper/strong-odd-
colored/odd-colored/Cf-colored/strong-parity-colored/class-parity-colored/local-parity-colored subgraph
isomorphic to G, respectively. Where the corresponding coloring types and requirements are concerned,
we write fully capitalized AR, LR, SOD, OD, CF, SP, CP, LP.

For easier comparison among the definitions, we include two further tables for dif-
ferent aspects. Table 2 summarizes the combinations of local conditions assumed for each
vertex, from which ϕ(n, G) is derived for the four functions ϕ ∈ {Od, Sod, Cf, Lr}. Table 3
exhibits the differences between assumptions posed globally for all vertices or locally at
each vertex, involving the five functions ϕ ∈ {Ar, Lr, Sp, Lp, Cp}.
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Table 1. Hierarchy of eight subclasses of anti-Ramsey colorings; boldface indicates possible quadratic
growth, the other two classes are linearly bounded, as we shall see below.

AR

⇓

LR

⇙ ⇘

SOD CF

⇙ ⇘ ⇙

SP OD

⇓ ⇘

CP LP

Table 2. Conditions for the four local variants of anti-Ramsey functions.

Color Degree Odd 1

some color Od Cf

all colors Sod Lr

Table 3. Global vs. local conditions on anti-Ramsey functions.

Condition Global Local Color Class

rainbow Ar Lr —

same parity Sp Lp Cp

Representation in Terms of f (n, G∣F)
Four of the eight functions above, namely Ar(n, G), Lr(n, G), Sod(n, G), and Cp(n, G),

are easily expressible in the form f (n, G∣F)where F is a suitably chosen family of graphs.
The reason is that in those cases an edge coloring of any graph satisfies the requirements if
and only if each color class has a specified type. In accordance with this principle, two of
the anti-Ramsey functions can be characterized by hereditary families:

Ar(n, G) Ð→ F = {K2} (single edge),
Lr(n, G) Ð→ F = {tK2 ∶ t ≥ 1} (matchings);

and further, two of them can be characterized by non-hereditary families:

Sod(n, G) Ð→ family of all odd graphs,
Cp(n, G) Ð→ all odd graphs and all even graphs.

However, the other four functions, namely Cf(n, G), Od(n, G), Sp(n, G), and Lp(n, G),
are more complicated from this point of view:

• If E(G) = E(F)∪ E(M), where F is an even graph and M is a perfect matching, then
assigning color 1 to M and color 2 to F, the obtained coloring of G is both odd and
conflict-free. Thus, if the complement of an even graph F contains a perfect matching,
then F may occur in a conflict-free (and hence also an odd) coloring as a color class.
But the edge-disjoint union of two even graphs F and F′, one of color 1 and the other
of color 2, is never an odd or conflict-free coloring.

• Any even graph and any odd graph may occur in a strong parity coloring as a color
class. But the edge-disjoint union of an even graph of color 1 and an odd graph of
color 2 is never a strong parity coloring.
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• Every graph can occur as a color class in a local parity coloring. But it is absolutely false
that any edge-disjoint union of any graphs as color classes yields a local parity coloring.

For this reason, it is very unlikely that any of the functions Cf(n, G), Od(n, G),
Sp(n, G), or Lp(n, G) coincides with a function f (n, G∣F) for all graphs G and all inte-
gers n ≥ ∣G∣.

1.3. Summary of Results and Structure of the Paper

At the beginning of this extensive work, we give some information with the intention
of orienting the reader concerning the arrangement of the material. First, we describe the
flavor of the various sections and then give a brief list of a few representative results.

1.3.1. Basic Structure

General definitions are given in the next subsection.
Section 2 mostly deals with types of edge colorings from which one can derive con-

structive lower bounds on the considered anti-Ramsey functions. In further subsections,
inequalities between those functions are given, the effects of some elementary graph opera-
tions are investigated, and it is shown that the functions may perform big jumps when an
edge is inserted or deleted.

Section 3 presents results in which the key role is played by vertex degrees. After some
general inequalities, the section continues with the study of the anti-Ramsey functions on
stars of any degree and on stars supplied with a further pendant edge. Then, a subsection
investigates graphs in which the degrees of all vertices have the same parity. Finally, two
types of vertex orders defined in terms of parity constraints are introduced, and their
influence on the considered functions is analyzed.

Section 4 studies conflict-free colorings and weak odd colorings; the behavior of these
two differs substantially from that of the other six types.

Section 5 begins with general estimates of paths and cycles. After that, the bulk of the
section is a systematic study of all the considered functions on all graphs with at most four
edges or at most four vertices.

Section 6 concludes the paper with a collection of open problems. They are organized
into five thematic subsections, arranged according to the nature of the problems.

1.3.2. Selected Results

We first emphasize the heavy use of the Erdős–Rado canonical coloring theorem
(Theorem 1) in many results in this paper. It seems that this theorem was used only rarely
in anti-Ramsey theory previously (see, e.g., [18]), while in the present paper, introducing
the parity-dependent anti-Ramsey parameters, it has become rather useful.

In Section 2, we choose to state the following theorem, showing that six of the eight
parameters have quadratic growth in n, as indicated in the hierarchy presented in Table 1.
For comparison, we recall the tight formula Ar(n, Kp) = ex(n, Kp−1)+ 2 for p ≥ 4, proved
in [5], that has a leading coefficient substantially larger than the one below.

Theorem 2: for every p ≥ 5, all of Lr(n, Kp), Sod(n, Kp), Sp(n, Kp), Cp(n, Kp), Lp(n, Kp)
are asymptotically equal to (1+ o(1)) ex(n, K⌈p/2⌉).

In Section 3, we choose a theorem that dictates the values for stars whenever n is not
too small.

Theorem 3: For n ≥ 2r we have Sod(n, K1,r) = 1 if r ≡ 1 (mod 2), and Sod(n, K1,r) = 2 if
r ≡ 0 (mod 2). Moreover, the condition n ≥ 2r is tight in both cases.

Another result from Section 3 shows a dichotomy in the behavior of three parameters:
Theorem 6: If all vertices have an odd degree in G, then either all of Sod(n, G),

Sp(n, G), Lp(n, G) tend to infinity with n, or all are equal to 1 for every n sufficiently large.
A major theorem of Section 4, completing the support of Table 1 in the branch of linear

growth, is
Theorem 11: If G is a graph on p non-isolated vertices; then, Od(n, G) ≤ Cf(n, G) ≤

(p − 2)n − ⌊p2/2⌋+ p + 1.
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In Section 5, we mostly deal with small graphs up to four edges, as well as the graphs
P6, K4 − e, and K4. These results are summarized in Table 5 on page 13. For P6 and all
graphs with at most four edges, we have exactly determined the values of all the newly
introduced parameters. However, several cases are left open regarding K4 − e and K4. Yet
we mention here one result concerning K4 where the order of growth is determined.

Theorem 26: We have Lr(n, K4) = Θ(n3/2) as n →∞.
Lastly, it is inevitable that from such a collection of parameters, lots of new problems

will emerge. Section 6 collects many of them for future research.

1.4. Standard Definitions and Notation

Throughout the paper, we consider simple undirected graphs G, without loops and
multiple edges, with vertex set V(G) and edge set E(G). We write ∣G∣ for the order ∣V(G)∣
of G. The degree of vertex v in graph G is denoted by dG(v), abbreviated as d(v)when G is
understood. Also, as usual, δ(G) and ∆(G) denote the minimum and maximum degrees in
G, respectively.

We say that G is an odd graph if the degree of all its vertices is odd and G is an even
graph if all vertex degrees in G are even.

Particular types of graphs are the path Pn, the cycle Cn, and the complete graph Kn,
each of order n, and the complete bipartite graph Kp,q with p and q vertices in its partite
sets. Where a considered edge coloring ψ of Kn has to be emphasized, we write Kψ

n .
Some important graph operations are edge insertion G+ e (with e ⊂ V(G) and e ∉ E(G)),

edge deletion G − e (with e ∈ E(G)), and the vertex-disjoint union G1 ∪G2 of two graphs G1
and G2. The vertex-disjoint union of t copies of G is denoted as tG.

A famous extremal graph-theoretic function of great importance in the current context
is the Turán number ex(n, F) of a “forbidden graph” F. It is defined as the maximum number
of edges in a graph of order n that contains no subgraph isomorphic to F.

2. Basic Coloring Patterns, General Inequalities, and Graph Operations

In this section, we present three kinds of material. The first part describes explicit
constructions of coloring patterns that can be used for lower bounds on anti-Ramsey
numbers. The second part deals with inequalities based on hierarchy among notions and
simple structural observations. The third part discusses the effect of some operations that
simplify the determination of anti-Ramsey parameters, pointing out reducibility relations
among them.

2.1. Coloring Patterns

Let us categorize the edge coloring patterns of Kn below into two major types: homo-
geneous and compound.

Homogeneous ones are fundamental and will be useful in proving upper bounds on
several anti-Ramsey functions under study. On the other hand, the various constructions
of compound patterns are tools for proving lower bounds. Already after the definitions,
we will indicate several ways they can be used in that direction.

2.2. Homogeneous Coloring Patterns

The three fundamental types of homogeneous coloring patterns are as follows.

• Monochromatic—all edges of Kn are assigned with the same color;
• Rainbow—each edge of Kn has its private color, distinct from all the colors of the

other edges;
• LEX coloring—labeling the vertices of Kn as v1, v2, . . . , vn, for all 1 ≤ i < j ≤ n, the edge

vivj is assigned color j − 1.

Hence, the classical LEX coloring of Kn assumes a sequential order on the vertex set,
and partitions the edge set into n − 1 color classes, which are stars. (In some papers LEX is
also termed UMIC as an abbreviation for Universal Majority Index Coloring, but throughout
this work we use the more standard name LEX).
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The following important Ramsey-type result connects the above three coloring patterns.

Theorem 1 (Erdős–Rado Canonical Theorem [19]). For every k ≥ 3, there exists an integer
n0(k) such that, for every n ≥ n0(k), in every edge coloring of Kn, some k vertices induce a copy of
Kk, which is either monochromatic or rainbow or LEX-colored.

2.3. Compound Coloring Patterns

The three basic patterns introduced above can be combined with each other in many
ways; here, we describe some of those possibilities. The ones used below are collected in
Table 4, the others partly provide tools for lower bounds in [1] and can be partly applied
to improve estimates that are asymptotically tight but for which better error terms can
be achieved.

Table 4. Compound coloring patterns where the number of colors grows as a function of n.

Pattern Combination Applied First in

rainbow Kp, monochromatic Kn −Kp Proposition 4

h-LEX, rainbow Kh followed by LEX Theorem 7

h-RS, rainbow Kn −Kn−h, monochromatic Kn−h Theorem 12

LEX with rainbow perfect matching Theorem 23

rainbow spanning graph, monochromatic complement Theorem 26

LEX with rainbow spanning star Theorem 27

2.3.1. Generalizations of LEX Coloring

Recall that LEX assumes a sequential order v1, v2, . . . , vn on the vertices of Kn. We
generalize LEX to a pattern with two parameters.

Let k ≥ 1 and h ≥ k + 1. Compose the coloring (k,h)-LEX as follows.

• For each j = h + 1, . . . , n and all k ≤ l < j, assign the color ψ(vlvj) = j − h. Those colors
range from 1 to n − h.

• For each j = h + 1, . . . , n and each 1 ≤ l < k, assign a private color ψ(vlvj), ranging from
n − h + 1 to (n − h)k. (This step is void if k = 1).

• Take a rainbow Kh on the vertices v1, . . . , vh using the colors (n − h)k + 1, . . . , (n − h)k +
h(h − 1)/2.

Here, LEX is obtained by putting k = 1 and h = 1 or h = 2. Fixing k = 1, the intermediate
one-parameter case with h > 2, termed h-LEX, is also of interest; the number of colors in
that pattern is

Lex(n, h) ∶= Lex(n, 1, h) = n − h + h(h − 1)/2 = n + h(h − 3)/2.

In general, the number of colors is

Lex(n, k, h) = (n − h)k + h(h − 1)/2 .

Application 1. If ∣G∣ = h + 1 and δ(G) = k + 1, then

Lr(n, G) ≥ Lex(n, k, h)+ 1 = (n − h)k + h(h − 1)/2+ 1.

Indeed, taking Kψ
n with the (k,h)-LEX coloring, in any copy of G, the vertex vj with highest index

satisfies j > h; therefore, only k colors occur on the edges from vj to its neighbors (all with smaller
indices), but d(vj) ≥ k + 1; hence, some colors appear at least twice at vj, so the coloring of G cannot
be proper. This coloring sometimes provides a useful lower bound when χ(G) ≤ 4, as Lr(n, G) is
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determined by the hereditary family F = {tK2 ∶ t ≥ 1} and in view of the results presented in the
introduction from [1].

2.3.2. Split Coloring Combined with LEX

We present here two variants. Their common feature is that the vertex set of Kn is split
into two parts, V(Kn) = A ∪ B, where ∣A∣ = k; and ∣B∣ = n − k for a given k ≥ 1, and

• On the edges of the clique on A and all edges from A to B, all colors are distinct.

(i) In the coloring k-RS (k-rainbow split graph coloring)

• One extra color is used on all the other edges, to make the clique on B monochromatic.

The number of colors used is

s(n, k) = k(n − k)+ (k
2
)+ 1 = kn − (k + 1

2
)+ 1.

Application 2. If δ(G) ≥ k + 2, then

Lr(n, G) ≥ s(n, k)+ 1 = kn − (k + 1
2
)+ 2

because any copy of G has a vertex v in B, which is incident with no more than k distinct colors
toward A and just one color in B; hence, at least two edges of v must have the same color inside B.
Consequently, G is not properly colored under k-RS. This coloring is sometimes useful for lower
bounds when χ(G) ≤ 4.

(ii) In the Split-Lex coloring pattern SPLC, we again take the rainbow set of all edges
meeting A, and

• Apply the (t,h)-LEX coloring inside B.

The number of colors used is

s(n, k, t, h) = s(n, k)− 1+Lex(n − k, t, h)

= k(n − k)+ (k
2
)+ (n − k − h)t + (h

2
).

Already, the very particular case k = t = 1, h = 2 (rainbow spanning star and LEX on its
leaves) with s(n, k, t, h) = 2n − 3 is of interest.

Application 3. This pattern provides the currently best known lower bound on the strong odd
anti-Ramsey number of K4; that is, Sod(n, K4) ≥ 2n − 2.

2.3.3. Clique Coloring

Let k ≥ 2 be given. To obtain the k-Clique coloring pattern k-CC, we write n in the form
n = qk + r, and partition the vertex set of Kn as V(Kn) = A0 ∪ A1 ∪⋯∪ Aq, where ∣A0∣ = r < k
(possibly A0 = ∅) and ∣A1∣ = . . . = ∣Aq∣ = k.

• Inside every Ai (i = 0, 1, . . . , q) let the complete subgraph obrtain the rainbow coloring,
with each color appearing in just one Ai.

• Assign a fresh new color to all other edges to make a monochromatic complete
multipartite graph.

The number of colors used is

q(n, k) = (n − r)(k − 1)/2+ (r
2
)+ 1.

Application 4. This coloring is sometimes useful in giving lower bounds when χ(G) ≤ 4, and also
can be applied to derive a lower bound on Lr(n, G) in terms of maximum degree; cf. Proposition 3.
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2.3.4. Rainbow Multipartite Coloring

Let k ≥ 2 be given. We present two versions of a pattern, a simpler and a more involved
one. For both of them, we take a balanced k-partition of the vertex set, V(Kn) = A1 ∪⋯∪ Ak
with ⌊n/k⌋ ≤ ∣Ai∣ ≤ ⌈n/k⌉ for all 1 ≤ i ≤ k.

• Assign mutually distinct colors to all edges between distinct parts Ai, Aj.

(i) In the simpler form, k-RUM coloring,

• Apply LEX inside each Ai no color appearing in more than one part.

The balanced multipartite graph uses ex(n, Kk+1) colors, and inside each part Ai the number
of colors is ∣Ai∣− 1. Hence, the total number of colors is

r(n, k) = n − k + ex(n, Kk+1).

Application 5. This construction yields a quadratic lower bound on all boldface functions as
indicated in Table 1. More explicitly, the following asymptotics can be proved for five of the six
functions; the exception is Ar(n, Kp), whose behavior is substantially different as proved in [2].

Theorem 2. For every p ≥ 5, all of Lp(n, Kp), Cp(n, Kp), Sp(n, Kp), Sod(n, Kp), Lr(n, Kp) are
asymptotically equal to (1+ o(1)) ex(n, K⌈p/2⌉).

Proof. Consider the (⌈p/2⌉–1)-RUM coloring on Kn, which uses ex(n, K⌈p/2⌉)+ n − ⌈p/2⌉+ 1
colors. Then any subgraph K ≅ Kp of Kn contains at least three vertices in some Ai. In
the LEX ordering, the edges from the third vertex to the first and second vertices form a
color class P3; moreover, from the third vertex, there is an edge either to another Aj or a
vertex of a higher index inside Ai. The monochromatic P3 is not allowed in a class parity
coloring, and the presence of degrees 1 and 2 simultaneously at a vertex is not allowed in
a local parity coloring. This yields the lower bound ex(n, K⌈p/2⌉)+ n − ⌈p/2⌉+ 1 for all the
five functions under consideration, because Cp and Lp are lower bounds on all of Sp, Sod,
and Lr.

The matching asymptotic upper bound for Lr(n, Kp) holds by Theorem 5.2 (i) of [1],
and it dominates the other four functions involved in the assertion.

Beyond the present setting, this pattern is among the few standard colorings that are
heavily used in our paper [20] where we consider the problem of determining f (n, G∣F)
in full generality. The families F are not required to be hereditary, nor do they have any
relation to odd-coloring or conflict-free coloring.

(ii) In the more complex form, rainbow coloring is combined with the generalization of
LEX:

• Apply (t,h)-LEX inside each Ai, no color appearing in more than one part.

Disregarding small deviation due to integer parts, the number of colors is approximately

r(n, k, t, h) = ex(n, Kk+1)+ kLex(n/k, t, h) = ex(n, Kk+1)+ k((n/k − h)t + h(h − 1)/2)

which means a somewhat larger linear addition in the number of colors to ex(n, Kk+1).

Application 6. Concerning Lr(n, G) it can be shown that this coloring pattern gives better lower
bounds than the simpler version. A small example is G = K2,2,2,2,2, and in general, one can consider,
e.g., the complete p-partite graphs Kp∗t = Kt,...,t, where p ≥ 5 and t is sufficiently large with respect
to p. Although the asymptotics Lr(n, Kp∗t) = (1 + o(1)) ex(n, K⌈p/2⌉) are well determined, this
improvement may be relevant when exact results are concerned.
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2.4. Inequalities Between Anti-Ramsey Functions

Some basic relations among the five functions not involving “modulo 2” constraints
are collected next.

Observation 1. For any graph G and any n ≥ ∣G∣ we have

1. Od(n, G) ≤ Sod(n, G) ≤ Lr(n, G) ≤ Ar(n, G);
2. Od(n, G) ≤ Cf(n, G) ≤ Lr(n, G) ≤ Ar(n, G);
3. The equalities Od(n, G) = Sod(n, G) = Cf(n, G) = Lr(n, G) are valid whenever G has

maximum degree at most 2.

Concerning anti-Ramsey functions involving parity, the following facts are valid.

Proposition 1. Let G be any graph, and n ≥ ∣G∣.
1. For every G, we have Sod(n, G) ≥ Sp(n, G), Sp(n, G) ≥ Lp(n, G) and Sp(n, G) ≥

Cp(n, G).
2. If there is a vertex of odd degree in G, then Sp(n, G) = Sod(n, G); if G is an odd graph, then

Lp(n, G) = Sp(n, G) = Sod(n, G).
3. If G has a component H with all degrees even, then Sp(n, G) ≥ Cp(n, G) ≥ n is forced by

LEX for H = C3 and Sp(n, G) ≥ Cp(n, G) ≥ n + 1 by 3-LEX for any other H.
4. If ∆(G) ≤ 2, then Lp(n, G) = 1.
5. If G is a linear forest (i.e., contains no cycles and ∆(G) ≤ 2), then Lr(n, G) = Cf(n, G) =

Od(n, G) = Sod(n, G) = Sp(n, G) = Cp(n, G).
6. The Lp condition is satisfied by every monochromatic graph and also by every rainbow graph.

Proof.

1. Strong odd coloring is the restricted version of strong parity coloring where even
degrees are not allowed in any color class. On the other hand, as compared to strong
parity coloring, the color classes in a class parity coloring may mix odd graphs and
even graphs, whereas in local parity coloring, graphs are also allowed to be color
classes that contain vertices with degrees from both parities.

2. At an odd-degree vertex, at least one color occurs an odd number of times, in any
edge coloring. This forces all colors to have odd degrees at all vertices, in every strong
parity coloring. In a general graph, the parity may vary vertex by vertex, but in odd
graphs, all parities must be odd; hence, the difference between local parity and strong
parity disappears.

3. In LEX, using n − 1 colors, the three edges of every triangle have exactly two colors
that do not occur anywhere else in G that is not a class parity coloring.

The pattern 3-LEX uses n colors. If the component H of G is an even graph other than
C3, then necessarily, ∣H∣ > 3. Thus, in any copy of G, the edges at the vertex of the highest
index in H form a monochromatic star of even degree, which is not allowed in a class
parity coloring.

4. The edges at a vertex of degree 2 either are monochromatic or have a color distribution
1+ 1. Both cases are allowed in local parity coloring.

5. All six parameters listed in the assertion require that the color class present at a vertex
of degree 1 be a single edge. Induction yields that every allowed coloring of G is a
proper edge coloring.

6. Either there is only one color class at a vertex—having degree parity d(v)mod 2—or
all colors present at v occur just once, and thus, all are odd.

2.5. Effect of Graph Operations

Based on the principle behind Part 3 of Observation 1, the following further inequalities
can be derived.
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Proposition 2 (Adding Edge Lemma).

(i) Let v, w be nonadjacent vertices of even degrees in a graph G, and let G+ be the graph obtained
from G by inserting the new edge vw. Then Od(n, G+) ≤ Od(n, G).

(ii) If G is a spanning subgraph of a graph H, and for every vertex v either dH(v) = dG(v) or
dH(v) is odd, then Od(n, H) ≤ Od(n, G). In particular, if ∆(H) = 2k+ 1 and δ(H) ≥ 2k− 1,
and each vertex of degree 2k − 1 in G has degree 2k − 1 or 2k + 1 in H, then Od(n, H) ≤
Od(n, G).

(iii) Let v, w be nonadjacent vertices of degree 2 in a graph G, and let G+ be the graph obtained
from G by inserting the new edge vw. Then Cf(n, G+) ≤ Cf(n, G).

Proof. For ϕ = Od in (i)–(ii) and ϕ = Cf in (iii), we consider any edge coloring ψ of Kn with
at least ϕ(n, G) colors.

(i) By assumption, a weak copy of G exists under ψ. No matter what the color of ψ(vw)
is, after the insertion of edge vw, the degrees of v and w become odd, and by parity,
an odd color must occur at each of them in G+.

(ii) Also, here, a weak copy of G exists under ψ. Let ψ be a coloring realizing Od(n, G),
and consider H. A vertex of even degree in H remains with the original coloring
and has at least two odd colors. A vertex of odd degree in H must have an incident
odd-degree color by parity.

(iii) In a Cf-colored graph H ⊂ Kψ
n , H ≅ G, both v and w in H are incident with two

distinct colors. Inserting the edge vw, the color distributions at v and w are modified
from 1 + 1 to 1 + 2 or 1 + 1 + 1, both satisfying the requirements for H+ ≅ G+ to be a
Cf-colored graph.

2.6. Large Jumps When Adding/Deleting Edges

Here, we list some examples illustrating the possible effects of edge insertion, causing
large jumps in most of the parameters, or being non-monotone as in the second variable of
Od(n, G) even on graphs with ∆(G) ≤ 2 (cf. Proposition 2).

1. The sequence P4 Ð→ C4 Ð→ K4 − e Ð→ K4 obtained by inserting edges between
vertices of degree at most 2 has Od(n, P4) = 3, Od(n, C4) = n + 1, Od(n, K4 − e) = 3,
Od(n, K4) = 1. Hence, any large increase and any large decrease can occur, even of
linear order, despite the fact that Od(n, G) is linear for every graph G.
In comparison, the same sequence of graphs yields the following spectacular increase
in the growth orders in n for Ar(n, G), which is clearly monotone in terms of G:

constant→ linear → of order n3/2 → quadratic.

2. For cycles of even length k, we know from Theorem 12 that Od(n, Ck) grows with
⌊(k − 1)/3⌋n at least. However, by inserting a perfect matching M, we obtain an odd
graph (more explicitly 3-regular) that has Od = 1. It follows that by inserting the edges
of M one by one, if k ≡ 4 (mod 6), the average fall of Od per insertion can be estimated
with nearly 2n/3 from below. The worst case of decrease during the insertion of a
single edge (between two vertices of degree 2, and also between any two vertices) is
currently not known.

3. From the results of [1], we know that Lr(n, K5 − P3) = o(n2), caused by the fact that
there is a way to omit 2K2 from K5 − P3 to obtain the bipartite graph K2,3. On the other
hand, Lr(n, K5 − e) = (1+ o(1)) ex(n, K3) because K3 ⊂ (K5 − e)− 2K2, no matter how
the removal of 2K2 is performed. Hence, the insertion of a new edge into K5 − P3
makes Lr jump from subquadratic to quadratic.

4. The parameters ϕ(n, C5) are linear in n for all eight functions ϕ ∈ {Ar, Lr, Sod, Sp, Cp,
Lp, Cf, Od}, and ϕ(n, K5) is quadratic for six of them, except for Cf and Od. Hence,
when inserting edges one by one to reach K5 from C5, interesting jumps occur in
those functions.
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3. Vertex Degrees
3.1. Some General Inequalities

Proposition 3. Let G be a graph with maximum degree ∆ = ∆(G). Suppose n ≡ r (mod ∆ − 1).
Then Lr(n, G) ≥ q(n, ∆ − 1)+ 1 = (n − r)(∆ − 2)/2+ (r

2)+ 2.

Proof. Consider (∆ − 1)-Clique coloring of Kn, with q(n, ∆ − 1) colors. A vertex v of
degree ∆ in any copy of G can obtain only ∆ − 2 distinct colors in a rainbow K∆−1, so at
least two edges of the same extra color must be incident with v, and therefore, no properly
colored G occurs.

Proposition 4. If the number of vertices with positive even degrees is s > 0 in a graph G, then
(s−1

2 )+ 2 is a lower bound on all of Ar(n, G), Lr(n, G), Cf(n, G), Sod(n, G), and Od(n, G).

Proof. Based on Observation 1, we only have to prove Od(n, G) ≥ (s−1
2 )+ 2. Inside Kn, take

a rainbow Ks−1 and make Kn −Ks−1 monochromatic in a new color. At least one of the even-
degree vertices belongs to V(Kn)∖V(Ks−1), and its incident edges form a monochromatic
star. Hence, this coloring with (s−1

2 ) + 1 colors does not admit any odd-colored copy
of G.

It will be shown in Section 3.4 that a substantial improvement can be given if all
vertices have even degrees.

3.2. Stars

For stars we can present tight results under the assumption that the number n of
vertices is not very small. In the next theorem we do not make efforts to optimize the bound
on n.

Theorem 3.

(i) If r ≡ 1 (mod 2) and n ≥ 2r, then Sod(n, K1,r) = 1.
(ii) If r ≡ 0 (mod 2) and n ≥ 2r, then Sod(n, K1,r) = 2.

Moreover, the condition n ≥ 2r is tight in both cases.

Proof. If n = 2r− 1, then we can decompose Kn into r− 1 Hamiltonian cycles as color classes.
Under this coloring, a strong-odd-colored K1,r does not occur because only one edge can be
selected from each color. Hence, it is necessary to assume that n ≥ 2r.

If r is odd, then K1,r is an odd graph, and the monochromatic Kn contains it for any
n ≥ r + 1. If r is even, then K1,r itself is not allowed to be a color class in a strong odd
coloring, so Sod(n, K1,r) > 1. So, from now on, we may restrict ourselves to colorings that
use at least two colors.

If n ≥ 2r, consider any non-monochromatic coloring of Kn. Choose a vertex v whose
incident edges are also non-monochromatic. If some color occurs at least r times at v, then
we find monochromatic k1,r if r is odd, or monochromatic k1,r−1 with a further edge from
another color class if r is even, and the proof is complete.

Otherwise, select a star S with any 2r− 1 edges at v. Assume that color i has di edges in
S, where the degrees d1 ≥ d2 ≥ . . . are in decreasing order (re-indexed if necessary). Denote
by k the number of colors in S; we certainly have k ≥ 2, because d1 < r. We may assume
k < r (otherwise, a rainbow K1,r is present, and we have nothing to prove). This assumption
implies d1 ≥ 3.

If k ≡ r (mod 2), then we select one edge from each of the k color classes, and se-
quentially supplement them with monochromatic pairs of edges, until at most one uns-
elected edge remains in each class. The process stops when di or di − 1 edges of color
i are selected, whichever is odd; in either case, it means at least di/2 edges, and in
fact at least 3

4 di unless di = 2. Thus, the number of selected edges is not smaller than
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⌈(d1 + . . . + dk)/2⌉ = ⌈(2r − 1)/2⌉ = r, and there is an intermediate step with exactly r edges.
In that moment, a strong-odd-colored K1,r is obtained.

If k /≡ r (mod 2), we cannot use all colors; we then perform the above selection in the
first k − 1 colors.

The case k = 2 forces r to be odd. Then, a K1,r in color 1 is present, because d1 ≥
⌈(d1 + d2)/2⌉ = ⌈(2r − 1)/2⌉ = r.

If k ≥ 3, recall that d1 ≥ 3, and at least max (3, di − 1) ≥ max (3, ⌈ 3
4 di⌉) edges can be

selected from each color class i < k of size di ≥ 3 (and one edge if di = 2). If dk ≤ 2, we have
max (3, di − 1) ≥ (d1 + dk)/2, so eventually, at least half of the 2r − 1 edges will be selected.
And if dk ≥ 3, then d1 + d2 ≥ 2

3(d1 + d2 + dk); moreover all di are at least 3. Thus, we can
apply 3

4(d1 + d2) ≥ 1
2(d1 + d2 + dk), completing the proof.

Corollary 1. Od(n, K1,r) = Sod(n, K1,r) for n ≥ 2r.

Proof. Clearly, 1 ≤ Od(n, K1,r) ≤ Sod(n, K1,r). Hence, any coloring satisfies the require-
ments for both parameters if r is odd. If r is even, we also have Od(n, K1,r) ≥ 2, which
matches the upper bound.

Theorem 4. If r ≥ 3 and n ≥ 2r − 2, then Cf(n, K1,r) = 2. Moreover, the condition n ≥ 2r − 2 is the
best possible.

Proof. Clearly, we need at least two colors at the center of the star. Consider any non-
monochromatic coloring of Kn, and let v be a vertex incident with at least two colors. The
degree of v is at least 2r − 3, hence, omitting the smallest color class at v, there remain at
least r − 1 edges. Thus, we can take r − 1 of them together with one edge from the smallest
color class and obtain a Cf-colored K1,r.

For n = 2r − 3, the degree is 2r − 4 and we can color the edges with two colors such that
each color class is an (r − 2)-regular spanning subgraph of Kn. Then, any r edges at any
vertex contain more than one edge from each color; hence, no Cf-colored K1,r occurs.

3.3. Shortest Brooms

We denote by K+1,k the tree obtained from the star K1,k by attaching a pendant edge to
one of its leaves. It is the same as the double star D1,k−1, whose two central vertices have
degrees of 2 and k, respectively; it is a caterpillar and can also be viewed as the broom
graph obtained by identifying the central vertex of K1,k−1 with an end of the path P3.

Before turning to this graph, let us mention that the anti-Ramsey number of stars with
k ≥ 3 edges was determined in [21–23] as

Ar(n, K1,k) = ⌊n(k − 2)/2⌋+ ⌊n/(n − k + 2)⌋+ ε

where ε ∈ {0, 1}. For example, ε = 1 applies if k = n − 1 [24]. Of course, Ar(n, K1,k) =
Lr(n, K1,k) holds because stars do not contain 2K2. Here, we prove that the presence of 2K2
in K+1,k does not change the value of Lr if n is not too small. The particular case of k = 3 will
be reconsidered in Section 5.6, where exact formulas for all n will be proved for further
anti-Ramsey functions.

Theorem 5. For every k ≥ 3, there is a threshold n0 = n0(k) such that Lr(n, K+1,k) = Ar(n, K1,k)
holds for all n ≥ n0(k).

Proof. The lower bound Lr(n, K+1,k) ≥ Ar(n, K1,k) is clear because K1,k ⊂ K+1,k. For the upper
bound Lr(n, K+1,k) ≤ Ar(n, K1,k), let us suppose n ≫ k, and let ψ be an edge coloring of
Kn with at least Ar(n, K1,k) colors. Then a rainbow star S ≅ K1,k occurs, by definition; say
vertex v is its center and u1, . . . , uk are its leaves, and ψ(uiv) = i for i = 1, . . . , k. If S cannot
be extended to a properly colored K+1,k, we must have ψ(uiw) = i for all w ∈ V(Kn)∖V(S)
and all 1 ≤ i ≤ k.
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If ψ(xy) is distinct from 1, . . . , k for some x, y ∉ {u1, . . . , uk} (but x = v or y = v is
allowed), then we find a properly colored K+1,k with center x, 2-length leg xyu1, and pendant

edges uix for i = 2, 3, . . . , k. Otherwise, the number of colors is at most (k2) on the edges uiuj,
plus k on the remaining edges. But (k2)+ k is smaller than Ar(n, K1,k) if n is not too small, so
the theorem follows.

We note that the condition k ≥ 3 in the above theorem is necessary because, for k = 2,
we have K+1,k ≅ P4 with Lr(n, P4) = 3 while K1,2 ≅ P3 with Ar(n, P3) = 2 (see Table 5).

Table 5. Anti-Ramsey numbers (possibly except for very small n ≤ 8), odd and parity versions:
exact values for all graphs with at most four edges and for P6, and currently known best estimates
for the other two graphs with four vertices. LB = lower bound, UB = upper bound, ex(G1, G2) =

ex(n,{G1, G2}); “≡” means that the equalities Sod = Od = Cf = Lr hold, as Observation 1(3) applies
to G; “=” means that the value is equal to the preceding entry of the same row but not necessarily
due to a general structural principle. The eighth function has Lp(n, G) = 1 for all G ≠ K4 (and
Lp(n, K4) = Sp(n, K4) = Sod(n, K4) by Proposition 1(2)), either for all n or for all sufficiently large n.

G Ar(n, G) Lr(n, G) Sod(n, G) Cf(n, G) Od(n, G) Sp(n, G) Cp(n, G)

P2 1 1 ≡ ≡ ≡ = =

P3 2 2 ≡ ≡ ≡ = =

2P2 2 1 ≡ ≡ ≡ = =

P4 3 3 ≡ ≡ ≡ = =

P3 ∪ P2 3 2 ≡ ≡ ≡ = =

K1,3 ⌊ n
2 ⌋+ 2 ⌊ n

2 ⌋+ 2 1 2 1 = =

3P2 n + 1 1 ≡ ≡ ≡ = =

C3 n n ≡ ≡ ≡ = =

K1,3 + leaf ⌊ n
2 ⌋+ 2 ⌊ n

2 ⌋+ 2 2 3 2 = =

K1,3 ∪ P2 ⌊ n
2 ⌋+ 2 ⌊ n

2 ⌋+ 2 1 2 1 = =

K3 + leaf n n 2 3 2 = =

P3 ∪ 2P2 n + 1 2 ≡ ≡ ≡ = =

C3 ∪ P2 n + 1 n ≡ ≡ ≡ = =

P4 ∪ P2 n + 1 3 ≡ ≡ ≡ = =

P5 n + 1 4 ≡ ≡ ≡ = =

2P3 n + 1 n + 1 ≡ ≡ ≡ = =

K1,4 n + 2 n + 2 2 = = = =

C4 ⌊ 4n
3 ⌋ n + 1 ≡ ≡ ≡ = =

4P2 2n − 1 1 ≡ ≡ ≡ = =

P6 n + 2 n + 1 ≡ ≡ ≡ = =

K4 − e LB: ex(C3, C4)+ 2 LB: ⌊ 3n−1
2 ⌋ n + 1 n + 1 3 n + 1 5

UB: ex(C3, C4)+ n + 1 UB: 2n − 3
K4 ⌊ n2

4 ⌋+ 2 LB: ex(C4)+ 2 LB: 2n − 2 n + 1 1 = Sod LB: 2n − 2
UB: n⌈

√
2n ⌉ UB: n⌈

√
2n ⌉ UB: Sod

3.4. Graphs with Degrees All Odd or All Even

Theorem 6 (Odd Graphs). Let G be an odd graph. Then,

(i) Od(n, G) = 1;
(ii) Sod(n, G) = Sp(n, G) = Lp(n, G) either tends to infinity with n or is equal to 1 for all

sufficiently large n ≥ n0(G).
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Proof. The first part is immediately seen, as the sum of any even integers is even, while all
vertices have odd degrees. Concerning the second part, Sod(n, G) ≥ Sp(n, G) ≥ Lp(n, G)
holds by definition, and in fact, the three values are equal whenever G is an odd graph,
as observed in Proposition 1. We are going to prove that Sod(n, G) = 1 holds if n is large,
unless limn→∞ Sod(n, G) =∞.

If Sod(n, G) = 1 for some n ≥ ∣G∣, then Sod(n′, G) = 1 holds for all n′ ≥ n because
a required copy of G is present in every n-vertex subgraph of Kn′ in any edge coloring.
Otherwise, suppose for a contradiction that k ∶= lim inf Sod(n, G) is finite and k > 1. We
choose n with Sod(n0, G) = k and n ≥ max1≤t<k R(G, t), the Ramsey number of G with
t colors. Consider any edge coloring of Kn. If at least k colors are used, then a strong-
odd-colored copy of G occurs, as Sod(n, G) = k. If a smaller number t of colors is used,
then Kn contains a monochromatic—and consequently strong-odd-colored—copy of G,
as n ≥ R(G, t). Thus, Sod(n, G) = 1, contradicting the assumption k > 1.

It follows from Proposition 4 that every even graph G has Od(n, G) ≥ (∣G∣−1
2 )+ 2. We

next show that this constant lower bound can be improved to linear in n. Recall from
Section 2.3.1 that Lex(n, h) = n + h(h − 3)/2 is the number of colors in a h-LEX coloring.

Theorem 7 (Even Graphs/No Leaf). If G with ∣G∣ = k is an even graph, then Sod(n, G) ≥
Od(n, G) ≥ Lex(n, k − 1)+ 1 ≥ n; and if δ(G) ≥ 2, then Cf(n, G) ≥ Lex(n, k − 1)+ 1 ≥ n.

Proof. Let ψ be the (k − 1)-LEX coloring of Kn with vertex order v1, . . . , vn. Consider any
copy of G, and let vj be the vertex of the largest index in G. Since ψ(vivj) = j − k + 1 holds
for all vi ∈ V(G)∖ {vj}, and the degree of vj is even, Gψ does not satisfy the requirement
of odd coloring, nor of conflict-free coloring if δ(G) ≥ 2. Hence Sod(n, G) ≥ Od(n, G) ≥
Lex(n, k − 1) + 1 ≥ n if all degrees are even, as well as Cf(n, G) ≥ Lex(n, k − 1) + 1 ≥ n if
δ(G) ≥ 2.

Theorem 8 (Corona of Even Graphs). Let H be any even graph, and G obtained from H by
adding a leaf to every vertex of H. Then, for n ≥ n0(G), Sod(n, G) = 1.

Proof. We apply Theorem 1 for K = K3m, where m = ∣G∣ = 2∣H∣. If there is a monochromatic
or rainbow copy of K, we are finished, as a copy of G is strong-odd-colored. Hence it
suffices to consider a LEX-colored K, say with vertices v1, . . . , v3m, in this order under
LEX. (In fact, from now on it would be enough to take 3m/2 vertices only.) Embed H in
vm+1, . . . , v2m arbitrarily.

At any vi, the edges going to neighbors of higher indices in H have mutually distinct
colors. A vertex can have either an odd or an even number of neighbors with lower indices,
inducing a monochromatic star of odd or even degree, respectively.

If vi has an even number of lower neighbors in H, embed its leaf as vi−m, and if it
has an odd number of lower neighbors, embed its leaf as vi+m. In this way, a strong odd
coloring of G is obtained. So, no matter how many colors we use, Sod(n, G) = 1 holds for
n ≥ n0(G).

3.5. Odd Majority Orientation and Odd–Even Ordering

Here, we introduce a certain type of permutation on the vertex set and present some
consequences in connection with the anti-Ramsey functions under consideration.

Definition 2. Given a graph G on k vertices v1, . . . , vk and a permutation π (of the k! possible
permutations) of its vertices, π is called odd majority orientation if

1. Each edge e = (vπ(i), vπ(j)), with π(i) < π(j), is oriented from vπ(j) to vπ(i);
2. Each vertex v has either no outgoing edges (i.e., deg+(v) = 0) or has an odd number of

outgoing edges (deg+(v) ≡ 1 (mod 2)).
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We also consider the following related notion.

Definition 3. Given a graph G on k vertices v1, . . . , vk, a permutation π of its vertices is called
odd-even ordering if each vertex vπ(i) satisfies one of the following conditions:

1. vπ(i) has either zero or an odd number of neighbors vπ(j) with π(j) < π(i);
2. vπ(i) has an even number of neighbors vπ(j) with π(j) < π(i), and no neighbors vπ(j′) with

π(i) < π(j′).

By definition, every odd majority orientation π is an odd-even ordering, but not
vice versa. Also, if G is an even graph, then it admits no odd majority orientation because
the vertex of the highest index assigned by any permutation violates the condition. But
many even graphs (the cycles, for instance) admit an odd-even ordering.

Example 1.

(i) For k ≥ 3, the complete graph Kk does not admit an odd majority orientation. Indeed, in any
permutation, the third vertex has exactly two neighbors whose indices are smaller.

(ii) If G is not an odd graph but has an odd majority orientation (e.g., G = K4 − e), then by
inserting a new vertex and joining it to the odd-degree vertices of G, we obtain an even graph
that admits an odd–even ordering. (The highest index can be assigned to the new vertex.)

The role of odd graphs and odd majority orientations is explored in the following result.

Theorem 9.

(i) If G is an odd graph, and G has an odd majority orientation, then Sod(n, G) = Od(n, G) =
Sp(n, G) = Cp(n, G) = Lp(n, G) = 1 for all n ≥ n0(G).

(ii) If a graph G admits an odd-even ordering, then Lp(n, G) = 1 holds for all n ≥ n0(G).
(iii) If G does not admit any odd majority orientation, then, for all n ≥ ∣G∣, Sod(n, G) ≥ Sp(n, G) ≥

Cp(n, G) ≥ n, and if in addition G has no odd-even ordering, then also Lp(n, G) ≥ n.

Proof.

(i) Since Sod(n, G) dominates all the other parameters, it suffices to consider strong odd
colorings. Assume that G has p vertices, and apply Theorem 1 for Kp. Then, for every
sufficiently large n ≥ n0(p), no matter how many colors are used in an edge coloring
of Kn, there is a copy K of Kp whose coloring is monochromatic, rainbow, or LEX. This
coloring pattern is inherited for any embedding of G into K. Since all vertex degrees
are odd, a monochromatic G is strong-odd-colored. Also, every rainbow graph is
strong-odd-colored. Finally, if K is LEX-colored, we choose a permutation π that
generates an odd majority orientation. Embed G into K in accordance with π. Any
color j from the corresponding vertex vj+1 to its smaller-index neighbors in G occurs on
an odd number of vertices, and the edges from vj+1 to its higher-index neighbors have
mutually distinct colors. Thus, a strong odd coloring is obtained, independently of the
number of colors in Kn, whenever n is sufficiently large. Consequently, Sod(n, G) = 1.

(ii) We again apply Theorem 1. If n is sufficiently large, then any edge coloring contains
a monochromatic or rainbow or LEX-colored Kp, p = ∣G∣. The first two patterns
immediately yield local-parity-colored copies of G. If a LEX-colored Kp is found,
we take an odd-even ordering on V(G). The monochromatic star toward the lower-
indexed neighbors of a vertex either has odd degree, which is of the same parity as
the non-repeated colors to the higher-indexed neighbors, or has even degree equal to
the degree of the vertex in G. Both cases are compatible with local parity coloring.

(iii) To show that n − 1 colors do not guarantee a class-parity-colored copy of G, nor a
local-parity-colored copy if G satisfies the extra condition, we apply LEX. Any copy of
G in Kn must have a vertex, say vj+1, with an even number of neighbors with lower
indices; hence, in the corresponding orientation induced by π, it has an even number
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of incident color-j edges dictated by LEX in Kn. This star is not allowed in class parity
coloring. Moreover, if G has no odd-even ordering, then any embedding of G in
the LEX-colored Kn contains a vertex v where a monochromatic star of even degree
occurs toward its lower-indexed neighbors and also it has at least one higher-indexed
neighbor, to which the color of the edge is not repeated at v. This is not allowed in
local-parity-coloring.

This approach is easily applicable to bipartite graphs.

Theorem 10. Let G be a bipartite graph. Then,

(i) G admits an odd-even ordering; hence, Lp(n, G) = 1 for all n ≥ n0(G).
(ii) If G is an odd graph, and also if all even-degree vertices of G belong to the same vertex class,

then G has an odd-majority orientation, and hence, Sod(n, G) = Od(n, G) = Sp(n, G) =
Cp(n, G) = Lp(n, G) = 1 holds for all n ≥ n0(G).

Proof. Let A ∪ B be the bipartition of G. Take a permutation that enumerates first (with
the smallest indices) all the vertices from A and then all the vertices from B. The vertices
of B only have lower-index neighbors, and those of A are adjacent only to higher-index
neighbors. Hence, an odd-even ordering is obtained. And if all vertices of even degree
are in A, then it is also an odd-majority orientation. Thus, the results of Theorem 9 apply
to G.

Cycles,both even and odd, do not admit an odd-majority orientation, as the vertex of
the highest index in any permutation has exactly two lower neighbors. On the other hand,
the exclusion of cycles suffices:

Proposition 5. Every tree and forest admits an odd-majority orientation.

Proof. We apply induction on the number of vertices. Let T be a tree or a forest. The
assertion is trivial if T has no edges. Otherwise, let uv be a pendant edge, where v is a
leaf of T. By the induction hypothesis, T − v admits an odd-majority orientation. Insert
v as the last vertex of T with the highest index, and for the rest of the vertices, keep the
odd-majority orientation of T − v. Then, the number of lower neighbors of u remains odd,
and of course, v has just one lower neighbor (and hence an odd number).

It is important to note that there exist graphs admitting an odd-majority orientation
and still having both Cp(n, G) and Od(n, G) that tend to infinity with n. In this sense,
Lp(n, G) substantially differs from all the seven other anti-Ramsey functions.

4. Conflict-Free Anti-Ramsey Numbers Are Linear

The main result of this section is a general linear upper bound on all Cf(n, G). Since
every conflict-free coloring is also a (weak) odd coloring, the theorem implies the linearity
of Od(n, G) as well.

We begin with a simple observation.

Proposition 6. For every p ≥ 2, we have Cf(p, Kp) = (p
2)− ⌊

p
2 ⌋+ 1 = ⌈ p2

2 ⌉− p + 1.

Proof. To obtain a non-conflict-free coloring of Kp, it is necessary and sufficient that at least
one vertex v has all its incident colors occur at least twice. If the vertex degree p − 1 is even,
then the loss compared to the number (p

2) of colors in a rainbow Kp is (p − 1)/2, and if the
degree is odd, then the loss is p/2. Hence, (p

2)− ⌊
p
2 ⌋ colors do not guarantee conflict-free

coloring, but more colors do.

On general graphs, a universal upper bound can be guaranteed as follows.
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Theorem 11. Let G = (V, E) be a graph with p non-isolated vertices. Then,

Cf(n, G) ≤ (p − 2)(n − p)+ ⌈ p2

2
⌉− p + 1 = (p − 2)n − ⌊ p2

2
⌋+ p + 1 .

Proof. We apply induction to n. The anchor with n = p is settled in Proposition 6.
In the induction step, we prove Cf(n + 1, G) ≤ Cf(n, G) + p − 2. To do this, consider

K = Kn+1 and any of its edge colorings ψ with at least Cf(n, G)+ p − 2 colors. If there is a
vertex v ∈ V(K) such that ψ uses at least Cf(n, G) colors in K − v, then we have finished by
the induction hypothesis. Otherwise, each v is the center of at least p − 1 color classes that
are stars. Let Qv ⊂ N(v) be a set composed by selecting one vertex from each star color
class centered at v. (If an edge e = vw is a singleton color class, then w ∈ Qv and v ∈ Qw are
unique choices representing that color at the two ends of e.)

Before designing a procedure for how a conflict-free copy of G is found in Kψ, we make
some preparations in G. Let S be any non-extendable independent set in G, and denote Z ∶=
V ∖ S. Then, every z ∈ Z has at least one neighbor in S. Assume that X = {x1, . . . , xk} ⊂ S is a
minimal set dominating Z. If the set W ∶= S ∖X is nonempty, further let Y = {y1, . . . , yl} ⊂ Z
be a minimal set dominating W. The definition of Y is meaningful because S is maximal
and G has no isolates, so every w ∈ W has a neighbor that must belong to Z as S is an
independent set. Observe that, by the minimality of X and Y, each xi has a neighbor in Z
whose unique neighbor in X is xi, and each yi has a neighbor in W whose unique neighbor
in Y is yi.

For convenience, we label the vertices in X and Y in a way that the degrees of the xi
are non-increasing, dG(x1) ≥ dG(x2) ≥ ⋯ ≥ dG(xk) and the degrees of the yi towards W are
non-increasing, dW(y1) ≥ dW(y2) ≥ ⋯ ≥ dW(yl).

Next, still in G, we specify vertex subsets Xi ⊂ Z (i = 1, . . . , k) and Yi ⊂W (i = 1, . . . , l)
sequentially in the order of increasing subscript as follows. Artificially setting X0 = Y0 = ∅,
let Xi be the set of all those vertices of Z that have no neighbors in ⋃i−1

j=0 Xj, and let Yi be the

set of all those vertices of W that have no neighbors in ⋃i−1
j=0 Yj.

Now, we are in a position to design an injective mapping η ∶ V → V(K) that embeds
G into K and yields a conflict-free-colored subgraph H ≅ G. First, let v1 = η(x1) be any
vertex of K, and let η(X1) be an arbitrarily chosen subset of Qv1 (with a size ∣Qv1 ∣ = ∣X1∣
of course). After that, for i = 2, . . . , k in this order, we select η(Xi) as an ∣Xi∣-element subset
of Qvi∖⋃i−1

j=1 η(Xj). At this point, each z ∈ η(Xi) is incident with a single edge of color
ψ(zη(xi)), and this color occurs only once at η(xi) as well. Note further that these colors do
not appear inside V(K)∖ η(X), so the corresponding edges remain single representatives
of their colors even when we add any further vertices to η(X ∪ Z).

We complete the construction by applying a similar procedure for the vertices of η(Y).
To simplify notation, let us denote U ∶= V(K)∖ η(X ∪Z). Let η(Y1) be any ∣η(Y1)∣-element
subset of U ∩Qη(y1); then, for i = 2, . . . , l in that order, select η(Yi) as a ∣Yi∣-element subset
of (U ∩Qη(yi)) ∖⋃

i−1
j=1 η(Yj). Now, each w ∈ η(Yi) is incident with a single edge of color

ψ(wη(yi)), ensuring that the conflict-free requirement is satisfied at w.
Since ∣Qv∣ ≥ p − 1 holds for every v ∈ V(K), all the above selections are possible, and a

conflict-free coloring of a subgraph isomorphic to G is found in K.

Since Od(n, G) ≤ Cf(n, G) holds for all graphs G and all n ≥ ∣G∣, we also obtain the
following corollary:

Corollary 2. We have Od(n, G) = O(n) for every graph G.

5. Paths, Cycles and Small Graphs

In this section, we mostly deal with the exhaustive list of all graphs of at most four
vertices or edges, with P6 as a slight extension, complementing the work carried out
in [25,26] concerning Ar(n, G)where G is either a small graph or has only small components.
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Our results are then summarized in Table 5 for the convenience of the reader. Moreover,
some general estimates for paths and cycles of any length will also be presented.

Before turning to particular types of graphs, let us introduce a general concept that
will be useful in several proofs, notably in Sections 5.5 and 5.8.

5.1. Locally Critical Colors

Let ψ be any edge coloring of Kn with any number of colors k. Call a color i critical
at a vertex v if all edges of color i are incident with v. There are two kinds of critical color
classes: a single edge with its private color, and a star with at least two edges. Denote the
number of the former and the latter by s and t, respectively. A single edge is critical at
both ends, and a star is critical at its center but not at its ends. Hence the total number of
incidences is equal to

#(vertex, incident critical color) = 2s + t. (5.1)

The relevance of critical colors becomes apparent in proofs by induction:

Observation 2. In an inductive proof of ϕ(n, G∣F) ≤ an+ b for an anti-Ramsey-related function ϕ
under consideration, assuming that ϕ(n − 1, G∣F) ≤ a(n − 1)+ b has been proved, one may restrict
attention to edge colorings ψ of Kn such that every vertex is incident with at least a + 1 critical
colors. Due to equality (5.1), in this case, we have

2s + t ≥ (a + 1)n .

5.2. Local Parity Coloring

Let us recall that Lp(n, G) = 1 if ∆(G) ≤ 2 (Proposition 1(4)) and Lp(n, G) = 1 holds for
large enough n whenever G is bipartite or, more generally, admits an odd-even ordering
(Theorems 9(ii) and 10(i)), respectively). Of the graphs considered in this section, K4 is the
only one to which none of these principles can be applied. In fact, K4 is an odd graph and
its Lp has a substantially different behavior, satisfying Lp(n, K4) = Sod(n, K4) = Sp(n, K4)
by Proposition 1(2). For these reasons, we will not discuss Lp(n, G) separately for the
various graphs G below.

5.3. Lower Bound for Paths and Cycles

Let us recall first that the anti-Ramsey numbers of cycles have been asymptotically
determined as Ar(n, Ck) = ((k − 2)/2+ 1/(k − 1))n +O(1), by Montellano–Ballesteros and
Neumann–Lara [6]; the problem of Ar(n, Pk) for paths has been solved recently by
Yuan [14]. We note, however, that the coloring suggested by Erdős, Simonovits and
Sós as a lower bound for anti-Ramsey Ck is not applicable for Lr(n, Ck). This fact is worth
mentioning because most of the considered functions defined in terms of local conditions
are equal on any graph of maximum degree 2, but Ar(n, G) and Lp(n, G) usually have a
different behavior.

For the local versions concerning these graphs, we have the following general lower bounds.

Theorem 12. Recalling that s(n, h) = hn − (h+1
2 )+ 1,

(i) For k ≥ 4, we have Lr(n, Ck) = Sod(n, Ck) = Od(n, Ck) = Cf(n, Ck) ≥ s(n, ⌊(k − 1)/3)⌋)+ 1;
(ii) For k ≥ 6, we have Lr(n, Pk) = Sod(n, Pk) = Od(n, Pk) = Cf(n, Pk) ≥ Sp(n, Pk) ≥

Cp(n, Pk) ≥ s(n, ⌊(k − 3)/3⌋)+ 1.

Proof. Recall that for any graph G with a maximum degree of at most 2, the four functions
Lr, Sod, Od, and Cf are equal. Moreover, the inequalities Sod(n, G) ≥ Sp(n, G) ≥ Cp(n, G)
are valid for every graph G. Therefore, we only have to prove lower bounds on Lr(n, Ck)
and Cp(n, Pk). The constructions for the two cases are quite similar, but there are some
differences in the details. However, in either case, the idea is that the constructed edge
coloring does not contain any paths and cycles above a certain length, so it suffices to
restrict our attention to the smallest length relevant for a formula.
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(i) Let k ≥ 4, k ≡ 1 (mod 3), and consider the (k-1)/3-RS-coloring of Kn. In any properly
colored cycle C of length ℓ, at most two consecutive vertices can occur in the monochro-
matic part B; otherwise, there would be a vertex of the cycle with two incident edges
in B having the same color. Hence, if ℓ ≥ 3∣A∣+ 1, then C is not properly colored.

(ii) Let k ≥ 6, k ≡ 0 (mod 3), and consider the (k-3)/3-RS-coloring of Kn. Also here, in any
properly colored path P of length ℓ, at most two consecutive vertices can occur in
the monochromatic part B; otherwise, there would be a vertex of the path with two
incident edges in B having the same color. Hence, if ℓ ≥ 3∣A∣+ 3, then the edges of P
inside B form a linear forest with at least one component of length exceeding 1. This
is not allowed in class parity coloring.

The inequalities proved for ℓ verify the lower bounds in both parts of the theorem.

5.4. The Cycle C4

Theorem 13. We have Lr(n, C4) = Sod(n, C4) =Od(n, C4) =Cf(n, C4) = Sp(n, C4) =Cp(n, C4)
= n + 1 .

Proof. Due to Observation 1, i.e., the observation that the first four values are equal on any
cycle, they also provide an upper bound on the last two values for any graph.

The lower bound on Lr(n, C4) is the particular case k = 4 of Theorem 12, using the
1-RS coloring. Although it does not work for the functions involving parity conditions,
here, an alternative coloring can be defined. In fact, the same number of colors is achieved
with the substantially different 3-LEX as well. In 3-LEX, the vertex of the highest index
determines a color class P3 with exactly two edges of the same color in any copy of C4, so
no class-parity-colored C4 occurs.

For the upper bound, let ψ be any edge coloring of Kn with more than n colors.
Selecting one edge from each of the first n + 1 color classes, we obtain a rainbow graph
with more edges than vertices. The same inequality also holds in at least one connected
component of this selection. Such a component contains more than one cycle, so we can
select a connected rainbow subgraph whose structure is one of the following:

(a) Two vertices connected by three paths P, P′, P′′, any two of which are internally
vertex-disjoint;

(b) Two vertex-disjoint cycles C′, C′′ connected by a path P;
(c) Two cycles C′, C′′ sharing precisely one vertex.

As a matter of fact, we can reduce (a) to the following favorable case:

(d) Some rainbow cycle C of even length contains no repeated color.

It is clear that (a) reduces to (d) because any two of P, P′, P′′ form a rainbow cycle
and the lengths of (at least) two of those paths have the same parity.

If (d) holds, we assume that C is a shortest rainbow cycle of an even length. If C is a
4-cycle, then we are done. Otherwise, let u, v be two vertices at distance 3 along C. They are
connected by two paths along C, say P′ = uxyv and P′′ = C ∖ {x, y}. Now, consider the edge
e = uv of Kn. If ψ(uv) ≠ ψ(ux) and also ψ(uv) ≠ ψ(yv), then an odd-colored C4 is found on
{u, x, y, v}. Otherwise, ψ(uv) is absent from P′′, so P′′ ∪ e is a rainbow even cycle shorter
than C, a contradiction.

In case (b), we assume that P is as short as possible. Let P have its ends u ∈ V(C′)
and v ∈ V(C′′). Consider the path uxyv where ux is an edge of C′ and yv is an edge of
C′′. If ψ(xy) does not occur in P, then omitting the (at most one) edge of color ψ(xy) from
P ∪C′ ∪C′′ and inserting the edge xy, we see that a rainbow subgraph of type (a) can be
found, and the proof is complete. Otherwise, if ψ(xy) occurs in P, the minimality condition
on P implies that P is the single edge uv (as xy alone would also connect C′ with C′′), and
since ψ(xy) = ψ(uv) does not occur in C′ ∪C′′, we obtain an odd-colored C4 on {u, x, y, v}.

It remains to analyze (c) where both C′ and C′′ are odd rainbow cycles. Now, we
assume that ∣C′∣+ ∣C′′∣ is as small as possible. If ∣C′∣ > 3 (i.e., at least 5), let uxyv be a subpath
of C′ disjoint from V(C′′). As in the proof of (d), we can consider the color ψ(uv) of edge
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e = uv and either find that there is a rainbow C4 on {u, x, y, v} or obtain the contradiction
that C′ can be shortened to C′ ∖ {x, y} by the insertion of e. The same argument applies to
C′′ as well. As a consequence, C′ ∪C′′ is the bow-tie graph K1 + 2K2. Let its two 3-cycles
be wux and wvy; by assumption, all six of their edges have mutually distinct colors. To
complete the proof, we consider the edge uv of Kn. If ψ(uv) ∉ {ψ(uw), ψ(yv)}, then there
is an odd-colored C4 on {u, w, y, v}. Likewise, if ψ(uv) ∉ {ψ(ux), ψ(wv)}, then there is an
odd-colored C4 on {u, x, w, v}. But at least one of these two cases must hold because C′ ∪C′′

is a rainbow graph, implying {ψ(uw), ψ(yv)}∩ {ψ(ux), ψ(wv)} = ∅.
Thus, an odd-colored C4 is found in every ψ.

5.5. Short Paths

For n ≥ 5, we have Ar(n, P4) = 3, as proven in [25]. Three colors are not sufficient for
n = 4, as shown by the proper edge 3-coloring of K4. However, three colors suffice for all
the other parameters considered in this paper.

Proposition 7. We have Sod(n, P4) =Od(n, P4) =Cf(n, P4) = Lr(n, P4) = Sp(n, P4) =Cp(n, P4)
= 3 for all n ≥ 4.

Proof. A monochromatic spanning star in color 1 with a monochromatic Kn−1 in color 2
shows for all but Lp(n, P4) that two colors are not sufficient. Due to Ar(n, P4) = 3 for n ≥ 5,
we only have to verify the tightness of the lower bound 3 for n = 4. If at least three colors
are used in K4, consider the two edges v1v2 and v3v4. They are connected by an edge whose
color is distinct from both ψ(v1v2) and ψ(v3v4), so a properly colored P4 is found.

We also have tight results for paths of length four and five, as follows.

Theorem 14. We have Lr(n, P5) = Od(n, P5) = Sod(n, P5) = Cf(n, P5) = Sp(n, P5) = Cp(n, P5)
= 4 for every n ≥ 5.

Proof. We have already seen that Lr(n, P5) = Od(n, P5) = Sod(n, P5) = Cf(n, P5) and
Lr(n, P5) ≥ Sp(n, P5) ≥ Cp(n, P5). So, it will suffice to prove Cp(n, P5) > 3 and Lr(n, P5) ≤ 4.

For the lower bound, let ψ be the edge 3-coloring of Kn where all edges incident with v1
have color 1, all edges incident with v2 except v1v2 have color 2, and all edges not meeting
{v1, v2} have color 3. Consider any copy P of P5. One end of P should be v1; otherwise, P
contains a monochromatic P3 (with v1 in its middle), not allowed in class parity coloring,
and the proof is complete. If v2 is not the other end of P, then a monochromatic P3 with
middle v2 occurs. If the two ends of P are v1 and v2, then the internal three vertices induce
a monochromatic P3 in Kψ

n − v1 − v2. Hence, Kψ
n does not contain any class-parity-colored P5.

For the upper bound, let n ≥ 5, and assume that ψ is an edge coloring of Kn without
any proper P5. We begin with two simple observations.

(a) If P is a proper P4 with an end vertex u whose incident edge in P has color i, then all
vertices w ∉ V(P) have ψ(uw) = i.

(b) Kψ
n does not contain any proper C4.

Here, (a) simply expresses that P has no extension to a proper P5. To see (b), let
C = pqru be a proper C4, and consider any vertex w ∉ V(C). Since both P′ = pqru and
P′′ = rqpu are proper P4, by (a), we should have ψ(pu) = ψ(uw) = ψ(ru), contradicting the
assumption that C is properly colored at u.

Assume now that ψ uses at least four colors. Since Ar(P4) = 3, we know that a rainbow
P4 occurs; say, the path P ∶= vxyz has color pattern (1, 2, 3) (meaning ψ(vx) = 1, ψ(xy) = 2,
ψ(yz) = 3). Below we write w (sometimes with a subscript) for vertices not contained in P.

Due to (b), we can assume ψ(vz) = 1. (More precisely (b) implies color 1 or 3 on vz,
but 1 can be taken for symmetry reasons.) Then, applying (a) for the proper paths zyxv,
vzyx, and vxyz, we obtain

• ψ(vw) = 1, ψ(xw) = 2, ψ(zw) for all w ∉ V(P).
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We consider the possible positions of an edge of color 4.

• If ψ(vy) = 4, then wxvyz is a proper P5 with color pattern (2, 1, 4, 3) for any w.
• If ψ(xz) = 4, then (a) implies ψ(yw) = 3 for all w by the path vxzy, and then wyxzv is

a proper P5 with color pattern (3, 2, 4, 1) for any w.
• If ψ(yw) = 4 for some w, then vxywz is a proper P5 with color pattern (1, 2, 4, 3).
• If n ≥ 6 and ψ(w1w2) = 4, then vxw1w2z is a proper P5 with color pattern (1, 2, 4, 3).

Hence, in all possible cases, a proper (in fact, rainbow) P5 has been found.

Remark 1. There is a substantial difference between the behaviors of P4 and P5, as Ar(n, P4) = 3
is a constant, while Ar(n, P5) = n + 1 is linear in n, despite the fact that the other three functions
for P5 remain constant 4. Although in the analyzed four positions of an edge of color 4, we always
found a rainbow P5; this seeming contradiction arises because (a) has been applied, which is not
valid under the requirements of Ar.

Also, a substantial difference occurs between P5 and P6, demonstrated by Theorem 15 below,
as the values are constant for the former and grow linearly for the latter.

Theorem 15. For every n ≥ 6, we have Od(n, P6) = Sod(n, P6) = Cf(n, P6) = Lr(n, P6) =
Sp(n, P6) = Cp(n, P6) = n + 1.

Proof. We know that all the first four functions are equal and that they provide an upper
bound on the last two. The lower bound n + 1 is verified by the 1-RS coloring, namely a
rainbow-spanning star with monochromatic Kn−1 on its leaf set. Any copy of P6 contains a
subpath with more than one edge from the monochromatic Kn−1, hence not class-parity-colored.

The upper bound is more complicated to prove.

To start, n = 6, Lr(6, P6) = 7.

Let ψ be a coloring of K6 with at least seven colors. Since Ar(6, P4 ∪ P2) = 7 by
Proposition 6.3 of [25], we can label the vertices in such a way that P = vxyz is a P4 with
color pattern (1, 2, 3) and uw is an edge of color 4 that joins the other two vertices. Trying
to avoid a proper P6 under ψ, step by step, we obtain restrictions on the colors of edges in
K6, which eventually will force the presence of a proper P6 anyway.

First, we show that

• ψ(vz) = 1

can be assumed (or 3, but the two cases are symmetric). Indeed, if ψ(vz) ∉ {1, 3}, then
vxyz is a proper C4, so, e.g., viewing the two 4-cycles yzvx and vzyx, we would obtain
ψ(xu) ∈ {1, 4}∩ {2, 4}, so it should be color 4. By repeating this for all vertices of the 4-cycle,
it would follow that all edges incident with u and w should have color 4, but then uvxyzw
would be a proper P6.

Next, in a similar way, the three paths zyxv, vzyx, vxyz imply

• ψ(vu), ψ(vw) ∈ {1, 4},
• ψ(xu), ψ(xw) ∈ {2, 4},
• ψ(zu), ψ(zw) ∈ {3, 4}.

So far, only four colors have been used, so three new colors must occur, but only four
edges are uncolored, namely xz, yv, yu, yw; only one of the four can have an old color from
{1, 2, 3, 4}. There must be an old color in both wuyxzv and uwyxzv, so the edge of the old
color is {uy, xz} ∩ {wy, xz} = xz with color ψ(xz) ∈ {1, 2}. The other three colors are new
and mutually distinct:

• ψ(yv) = 5,
• ψ(yu) = 6,
• ψ(yw) = 7.

Now, the path vwyzxu takes its color pattern from the alternatives of ({1, 4}, 7, 3, {1, 2},
{2, 4}), which is a non-proper P6 only if

• ψ(xu) = ψ(xz) = 2.
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But then, vxuwyz is a rainbow P6 with a color pattern (1, 2, 4, 7, 3).

The induction step: n > 6.

Consider now n ≥ 7, assuming that Lr(n−1, P6) = n has been proved. Let ψ be any edge
coloring of Kn with some k > n colors, and assume that no properly colored P6 is present.
Denoting by s and t the number of critical edge- and critical star-classes, respectively, based
on Observation 2, we may assume 2s + t ≥ 2n, or s + t/2 ≥ n.

If s + t ≥ n + 2, then we build a rainbow subgraph F of Kn using one edge from each
of the first n + 2 critical color classes. The sum of degrees in F is equal to 2(n + 2), so the
average degree is 2(n + 2)/n < 3 as n ≥ 7 > 4. Consequently, there is a vertex in F with
degree at most 2, and deleting it from Kn, we obtain Kn−1 with at least n colors, hence
containing a properly colored P6.

From now on we can assume s + t ≤ n + 1. Together with s + t/2 ≥ n, this yields s ≥ n or
s = n − 1, the latter also implying t = 2.

Assume first that s ≥ n. We then consider a rainbow F with n critical edges. If there is
a P4 in F, then both ends of this P4 can be extended to obtain a properly colored P6. If there
is no P4 in F, then we apply the fact that ex(n, P4) ≤ n, and equality holds if and only if 3 ∣ n
and F ≅ n

3 K3. So, for n ≡ 1, 2 (mod 3), we are done. For n ≡ 0 (mod 3) and n ≥ 6, there are
two vertex-disjoint triangles formed by critical edges. Take an edge connecting them. It
must be of a distinct color, and a rainbow P6 is obtained.

Finally, it remains to settle s = n− 1 and t = 2. We concentrate on the graph F formed by
the n− 1 critical edges. If P4 ⊂ F, and also if 2K3 ⊂ F, the proof is completed as shown above.
Similarly, if 3P2 ⊂ F, then the three disjoint critical edges can be joined by two further edges
to form a properly colored P6. In particular, it follows that if no proper P6 is found, then F
either is connected or has exactly two components.

If F is connected but contains no P4, then F ≅ K1,n−1, say, with center v, and Kn − v is
colored with at least two colors, all distinct from the star centered at v. Inside Kn − v, we
take a two-colored P3 = xyz and any two further vertices u, w. Then, xyzvuw is a properly
colored P6.

If F has two components, then one of them is K3 (two trees would have only n − 2
edges), and the other one is K1,n−4. Then, any edge connecting the triangle with a leaf of
the star creates a properly colored P6.

5.6. Claw with Leaf

Let us introduce the notation K+1,3 for the graph obtained by attaching a pendant edge
to one leaf of K1,3.

Proposition 8. Lr(n, K+1,3) = Ar(n, K+1,3) = ⌊n/2⌋+ 2 for all n ≥ 6.

Proof. It is proved in [25] that ⌊n/2⌋+ 2 is an upper bound on Ar(n, K+1,3)whenever n ≥ 6,
and hence also for Lr(n, K+1,3). To see that Lr(n, K+1,3) is not smaller, we take a rainbow
matching of size ⌊n/2⌋ and assign a new color c to all the other edges of Kn. Then, in any
copy of K+1,3, the vertex of degree 2 is incident with at least two edges of color c, so ⌊n/2⌋+ 1
colors are not enough to guarantee a properly colored K+1,3.

Theorem 16. Sod(n, K+1,3) = Od(n, K+1,3) = Sp(n, K+1,3) = Cp(n, K+1,3) = 2 for n ≥ 7.

Proof. Clearly, the monochromatic Kn does not satisfy the conditions on K+1,3 for any of the
four functions, so 2 is a valid lower bound.

Since Sod(n, K+1,3) dominates the other three functions, the proof will be complete
if we show the upper bound Sod(n, K+1,3) ≤ 2. Let the vertices of Kn be v1, . . . , vn, where
n ≥ 7. Suppose for a contradiction that ψ is a non-monochromatic edge coloring without
strong K+1,3.

Suppose first that there is a vertex with at least three edges of the same color at a
vertex, say, ψ(v1v2) = ψ(v1v3) = ψ(v1v4) = 1. Then, by the exclusion of a strong K+1,3, all
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edges between {v2, v3, v4} and {v5, . . . , vn} have color 1. But then, v2, v3, v4 have a degree
of at least n − 3 ≥ 4 in color 1, so they also are adjacent to each other in color 1. Hence, they
have a degree of n − 1 in this color, which implies for a similar reason that the entire Kn
is monochromatic.

Otherwise, every color occurs on at most two edges at each vertex. Then, since n ≥ 7,
at least three colors occur at vn. Say ψ(v1vn) = 1, ψ(v2vn) = 2, ψ(v3vn) = 3. Viewing vn as
the possible center of a K+1,3, we obtain that ψ(v1vi) = 1 must hold for all 4 ≤ i ≤ n. Hence the
degree of v1 in color 1 is high, and we are back to the case that has already been settled.

Remark 2. Let us note that for Sod(n, K+1,3) < 3, the condition n ≥ 7 is necessary. This is shown
by the edge coloring of K6 where color 1 induces K3,3 and color 2 induces 2K3. On the other hand,
e.g., Sod(n, K+1,3) < 3 is easy to prove for all n ≥ 5. A good start is to take a two-colored P3, say
v4v1v5, and then reduce the problem to n = 5 by picking any v2, v3; observe that the triangle v1v2v3
should be monochromatic unless a strong-odd-colored K+1,3 occurs, and we obtain a further 2-colored
P3, then another monochromatic triangle, and so on, until a required copy of K+1,3 is found.

Theorem 17. Cf(n, K+1,3) = 3.

Proof. Assign color 1 to all edges incident with a selected vertex v of Kn and color 2 to all
edges of Kn − v. Then, no Cf-colored K+1,3 occurs, proving Cf(n, K+1,3) ≥ 3.

On the other hand, if an edge coloring of Kn uses at least three colors, we can find
a Cf-colored P4 = wxyz. Supplementing it with an edge vx, where v is a fifth vertex, we
obtain a Cf-colored K+1,3.

5.7. Triangle with Leaf, K1 + (K2 ∪K1)
In order to simplify the notation, let us introduce K+3 for the graph, often called “paw”

or “pan” in the literature, obtained from K3 by attaching a pendant edge. We begin with a
formula that can easily be deduced from known earlier results.

Theorem 18. Lr(n, K+3 ) = n.

Proof. Since every triangle has to be rainbow not only under the Ar(n, G) scenario but also
under Lr(n, G), we obtain

n = Ar(n, K3) ≤ Lr(n, K+3 ) ≤ Ar(n, K+3 ) = n ,

so equality holds throughout.

Theorem 19. We have Sod(n, K+3 ) = Od(n, K+3 ) = Sp(n, K+3 ) = Cp(n, K+3 ) = 2 for all n ≥ 6. For
smaller n, we have Sod(4, K+3 ) = Sod(5, K+3 ) = 4 and Od(4, K+3 ) = Od(5, K+3 ) = 2.

Proof. One color is not enough, since K+3 contains vertices of degree 2 (against Od and Sod)
and also vertices of opposite parity (against Cp and Sp). Also, if n = 5, assigning color 1
and color 2 equally to the four edges incident with a selected vertex and color 3 to the other
six edges shows that three colors are not enough to guarantee a strong-odd-colored K+3 . If
n = 4, we omit one vertex incident with color 3 from the 5-vertex construction. Hence, the
values of Sod(n, K+3 ) and Od(n, K+3 ) cannot be smaller than claimed.

For upper bounds, note that Sod dominates all three other functions, so it will suffice
to find a strong-odd-colored copy of K+3 . We first settle the cases where some vertex is
incident with at least three edges of the same color. Let v be a vertex where the number
of monochromatic edges is largest. Say v0 has d ≥ 3 neighbors v1, . . . , vd adjacent to v0
in color 1. Then, ψ(vivj) = 1 must hold for all 1 ≤ i < j ≤ d; otherwise, the triangle v0vivj
supplemented with any further edge v0vk is a strong-odd-colored K+3 . This yields a K ≅ Kd+1
in color 1. For n = 4, no more colors would be possible. Note further that, for any large n,
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there are no edges of color 1 between V(K) and V(Kn)∖V(K), since d has been chosen to
be the largest degree among all color classes.

Consider a vertex x ∉ V(K), and let ψ(v0x) = 2. If two further vertices vi, vj have
ψ(vix) = ψ(vjx) = 2, then the triangle vivjx with the pendant edge v0x forms a desired K+3 .
The same conclusion holds if two vertices vi, vj have ψ(vix) = 3 and ψ(vjx) = 4. Thus, it
follows that d + 1 = 4, and we have ψ(v0x) = ψ(v1x) = 2 and ψ(v2x) = ψ(v3x) = 3.

In particular, if n = 5, then the assumption d ≥ 3 restricts the number of colors to 3. If
n ≥ 6, we take a sixth vertex y ∉ V(K) ∪ {x}. If ψ(xy) is 2 or 3, then the triangle v0v1x or
v2v3x with the pendant edge xy forms a desired K+3 ; and if xy has another color (1 or 4),
then we can take the triangle v1v2x for the same.

Hence, from now on, we can assume that each color has a degree of at most 2 at every
vertex. For n ≥ 6, this yields at least ⌈(n − 1)/2⌉ ≥ 3 colors at each vertex. If a three-colored
K3 occurs, we supplement it with a pendant edge whose color is distinct from the colors of
the two incident edges of that triangle at the attaching vertex. If none of the triangles has
three colors, but some color occurs twice at some vertex, we consider a monochromatic P3.
Say, ψ(wx) = ψ(wy) = 1, and a further edge yz has color 2. Repeatedly applying the “degree
at most two” and “no rainbow triangle” conditions, we obtain ψ(wz) = 2 (for w and wyz),
ψ(x, z) = 1 (for z and wxz), and choosing a fifth vertex u such that ψ(ux) = 3, we derive
ψ(ux) = 3 (for x and uwx). And then the color of uz cannot be defined, because it should be
2 or 3 for the triangle uwz, but color 2 already occurs twice at z and color 3 occurs twice at
u. Thus, a three-colored triangle is unavoidable, and the proof is complete for n ≥ 6.

To see Sod(4, K+3 ) ≤ 4, consider any coloring of K4 with four or more colors, and select
one edge from each of the first four colors. If the missing two edges form P3, then a rainbow
K+3 has been obtained. If they form 2K2, then we have a rainbow C4. Insert one of its
diagonals, and omit the edge of the same color from C4 if it is present there, or otherwise
omit any edge of C4. Then, again, a rainbow K+3 is obtained.

Finally, to see Sod(5, K+3 ) ≤ 4, consider any coloring of K5 with four colors 1, 2, 3, 4
or more. If the removal of a vertex v does not destroy any of 1, 2, 3, 4, then K5 − v ≅ K4 is
colored with at least four colors, and a rainbow K+3 can be found as above. Otherwise two
of the five vertices destroy the same color, say 4, which is then a single edge. Moreover,
we know that each color has a degree of at most 2 at each vertex. So, if the removal of
v1, v2, v3 destroys color 1, 2, 3, respectively, then colors 1, 2, 3, 4 occur on at most seven edges
altogether. Hence there are at least five colors, and a three-colored triangle C3 occurs. From
the union of the two color classes that do not appear in this C3, at least one edge meets C3,
thus yielding a rainbow K+3 and completing the proof.

Theorem 20. Cf(n, K+3 ) = 3.

Proof. To show that two colors do not suffice, assign all but one edge of Kn with color 1
and one edge colored 2. Then, at least one vertex of K3 in any copy of K+3 will be incident
with a monochromatic star, not conflict-free-colored.

Assume that an edge coloring ψ of Kn uses at least three colors. If n ≥ 5, we apply the
fact that Ar(n, P4) = 3 holds for all n ≥ 5. Consider a rainbow P4 = wxyz where ψ(wx) = a,
ψ(xy) = b, ψ(yz) = c. A Cf-colored K+3 is immediately found unless ψ(wy) = a and ψ(xz) = c.
Otherwise, if ψ(wy) = a and ψ(xz) = c, the color ψ(wz) differs from at least one of a and c;
say, it is not a. Then, the edges wx, wy, wz, xy induce a Cf-colored K+3 .

Finally, let n = 4. If ψ uses more than three colors, we find a rainbow triangle (on
applying the fact Ar(n, C3) = n) and supplement it with any pendant edge. If just three
colors are used, pick one edge from each color class. If they form a triangle or a P4, we are
finished, as above. If they form the star K1,3 with center w and leaves x, y, z, then consider
ψ(xy). If it is c, we have found a Cf-colored (in fact Lr-colored) K+3 . And if it is a (or b), then
xywz (or yxwz) is a rainbow P4, and we are finished, as above.
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5.8. The Diamond K4 − e

Theorem 21. Od(n, K4 − e) = 3.

Proof. An edge coloring of Kn with all but one edges colored 1 and one edge colored 2
shows that at least three colors are needed.

Suppose an edge coloring ψ uses at least three colors.
First, we show that if a rainbow triangle C3 = xyz with colors ψ(xy) = a, ψ(yz) = b,

ψ(zx) = c occurs, then an odd-colored K4 − e can be found. Consider a fourth vertex w
outside C3. If it is adjacent to x, y with distinct colors, we are finished. So we may assume
ψ(wx) = ψ(wy) = d, and also ψ(wx) = ψ(wz) = d for the same reason. If d is not one of
a, b, c, then delete any edge from the rainbow C3, and we are finished. Otherwise, assume
without loss of generality that d = a. Delete the edge colored a from the rainbow C3, and
we are finished.

Next, if n ≥ 5, similarly to the proof of Theorem 20, we consider a rainbow P4 = wxyz
where ψ(wx) = a, ψ(xy) = b, ψ(yz) = c. Based on the above, we may assume that there is no
rainbow C3 under ψ. Then, ψ(wy) is a or b, and ψ(xz) is b or c. But then, independently of
ψ(wz), omitting the edge xy, we obtain an odd-colored K4 − e on {w, x, y, z}.

Hence, we are left with the smallest case n = 4. We next observe that a three-colored
K1,3 also yields an odd-colored K4 − e. Indeed, assume ψ(wx) = a, ψ(wy) = b, ψ(wz) = c.
Excluding a rainbow C3, we may assume ψ(xy) = a. Then, an odd-colored K4 − e is found
unless ψ(xz) = c. But then, inserting the edge yz and omitting wx yields an odd-colored
K4 − e, independently of ψ(yz).

Consider now any ψ on the edges of K4 with at least three colors. Assume ψ(wx) = a,
ψ(wy) = b, and consider a third color c. There are three possible positions of a color-c edge:
xy or wz or an edge from z to {x, y}. This yields a rainbow C3, K1,3, or P4, respectively. The
proof is complete.

Theorem 22. For every n ≥ 4, we have Sod(n, K4 − e) = Sp(n, K4 − e) = n + 1.

Proof. Since Sod ≥ Sp is universally valid, we need to prove Sp(n, K4 − e) > n and
Sod(n, K4 − e) ≤ n + 1. The lower bound is provided by the 1-RS coloring: a rainbow
spanning star and monochromatic Kn−1 in a new color. Then, every copy of K4 − e has at
least three vertices in the monochromatic part, and any induced subgraph of K4 − e with
more than two vertices contains a vertex of degree 2. But a 2-regular color class is not
allowed in a strong parity coloring of K4 − e because at the degree-3 vertices, some color
class must have an odd degree.

The proof of the upper bound is by induction on n. The basic case of Sod(4, K4 − e) = 5
is obvious because, by using five colors on the edges of K4, only one repetition occurs,
and by removing one edge from the duplicated color, we obtain a rainbow K4 − e.

Consider now n ≥ 5, assuming that Sod(n−1, K4 − e) = n has been proved. Let ψ be any
edge coloring of K = Kn with some k > n colors, and assume that no strong K4 − e is present.
Denoting by s and t the number of critical edge- and critical-star-classes, respectively, based
on Observation 2, we may assume 2s + t ≥ 2n.

We are going to prove that the number of single-edge color classes is at most 2n/3.
More explicitly, each connected component in the graph formed by the single-edge colors
is K2 or P3. For this purpose, we need to exclude P4 and K3 from the graph of critical single
edges. The exclusion of a P4 = vxyz is immediate because, by the single-edge criticality
of the edges in P4, we have ψ(vy), ψ(xz) ∉ {ψ(vx), ψ(xy), ψ(yz)}, so P4 would yield a
strong K4 − e. In the case of a K3 = xyz with three critical edges, if ψ(xw) ≠ ψ(yw) for a
w ∉ {x, y, z}, then a strong K4 − e would occur on {w, x, y, z}. Consequently, we should have
ψ(xw) = ψ(yw) = ψ(zw), but then K3 − e, together with w, would form a strong K4 − e.

As a consequence, we have s ≤ ⌊2n/3⌋, implying s + t ≥ ⌈4n/3⌉ ∶= n∗. This also implies
n ≥ 6, because for n = 5, we would have at most 3 critical edges and then the number of
edges should be at least s + 2t = 2(s + t)− s ≥ 4n − 3s ≥ 11, while K5 has just 10 edges.
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For n ≥ 6, we consider n∗ color classes of ψ (any choice) and select one edge from
each of them. In this way, a rainbow graph, say F, with a degree sum 2n∗ < 3n is obtained.
Consequently, δ(F) ≤ 2. Let v be a vertex of minimum degree in F. Then, F − v is a rainbow
graph with at least n∗ − 2 ≥ n edges. Thus, ψ has more colors in K − v = Kn−1 than the
number of vertices, and a proper K4 − e must occur by the induction hypothesis. This final
contradiction completes the proof of the theorem.

Theorem 23. For every n ≥ 4, we have

⌊(3n − 3)/2⌋+ 1 ≤ Lr(n, K4 − e) ≤ 2n − 3.

Proof. Lower bound. The construction is a slight modification of the LEX or the 3-LEX
coloring, depending on the parity of n.

We can artificially say that Lr(2, K4 − e) = 2 and Lr(3, K4 − e) = 4, because the trivial
1-coloring of K2 and the rainbow K3 exhibit the largest possible numbers of colors that we
can use for n = 2 and n = 3 without a proper K4 − e.

Having a coloring of Kn−2 at hand, say on the vertex set Z, we adjoin two new vertices
x, y and construct a coloring for Kn on {x, y}∪Z. We use three new colors: one for the edge
xy, one for the star of x–Z edges, and one for the star of y–Z edges.

A proper subgraph H ≅ K4 − e should contain at least one vertex outside Z and at least
two vertices inside Z. But all H’s in such a position contain at least two x–Z edges or at
least two y–Z edges and hence are not properly colored.

Upper bound. We proceed by induction on n. The basic case of Lr(4, K4 − e) = 5 is obvious
because, using five colors on the edges of K4, only one repetition occurs, and by removing
one edge from the duplicated color, we obtain a rainbow K4 − e. (This is the same as the
basic case for strong odd coloring.)

Let ψ be any edge coloring of K = Kn with some k ≥ 2n − 3 colors, and assume that no
strong K4 − e is present. Recall that a color i is critical at a vertex v if all edges of color i are
incident with v. As discussed at the beginning of this section, a critical color class is either
a single edge or a star.

If a vertex v is incident with at most two critical colors, then ψ uses at least 2n − 5
colors in K − v = Kn−1, so a strong K4 − e occurs by the induction hypothesis, contradicting
the assumptions. It follows that each vertex is incident with at least three critical colors.

Construct a mixed graph H = (V, E, A) as follows.

• V = V(K).
• vw ∈ E if vw is a single-edge class in ψ.
• Ð→vw ∈ A if ψ(vw) is a critical color at v, and the color class is a star centered at v with

more than one edge.

For each vertex v, we denote by Ni(v) the set of vertices x such that vx ∈ E orÐ→vx ∈ A,
the neighbors for which v is critical in color i, and set N∗(v) ∶= {v} ∪⋃

i
Ni(v) for their

union together with v itself.
Consider any v. Say the critical colors at v are 1, . . . , k. The edges of the complete

k-partite graph ⟨N1(v), . . . , Nk(v)⟩ are monochromatic; otherwise, it would contain two
incident edges whose other ends are in distinct classes Ni(v), so a two-colored P3 = xyz
would occur, and with v, it would form a rainbow K4 − e, contradicting the assumptions.
This one “crossing” color is not critical because k > 2. We denote this color by c(v).

As a consequence, there can be three types of critical colors at a vertex x ∈ Ni(v),
namely

(a) vx is an edge critical for both v and x;
(b) x is the end or center of a critical edge or star entirely inside Ni(v);
(c) There is a color p > k and a vertex y ∈ Np(x) such that p ≠ c(v) and y ∉ Ni(v) for any

1 ≤ i ≤ k.
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Suppose that case (c) holds for some v, x, y. We then select a vertex z ∈ N2(v). Observe
that c(v) ∉ {1, 2, p} and ψ(vy) ∉ {1, p}. We have arrived at the contradiction that {v, x, y, z}
contains a proper K4 − e. Hence, the proof will be complete if we show that case (c) is
unavoidable.

Consider the sets N∗ for all vertices of Kψ
n , and let v be a vertex such that ∣N∗(v)∣ is

as small as possible. Assume that N∗(v) ⊃ N1(v) ∪ N2(v) ∪ N3(v). Select now a vertex
x ∈ N1(v). The color c(v) is not critical, so N2(v)∪N3(v) ⊂ N∗(v) is a nonempty set disjoint
from N∗(x). However, ∣N∗(x)∣ ≥ ∣N∗(v)∣ holds by assumption, implying the presence of a
vertex y ∈ N∗(x)∖N∗(v). This completes the proof.

The next result dealing with class parity coloring demonstrates a less expected appli-
cation of the Erdős–Rado Canonical Theorem.

Theorem 24. Cp(n, K4 − e) = 5 if n is large.

Proof. The following 4-coloring shows that Cp(n, K4 − e) ≥ 5 holds for every n. Select two
vertices v1, v2 in Kn, and denote K′ = Kn − v1 − v2. Assign color 1 to all edges from v1 to
K′ and color 2 to all edges from v2 to K′. Let K′ be monochromatic in color 3, and assign
color 4 to the edge v1v2.

Consider any copy G of K4 − e. If G ⊂ K′ is monochromatic, then it contains vertices
of degree 2 and 3 in the same color class, not allowed in class parity coloring. If both
v1, v2 ∈ V(G), then at least one of colors 1 and 2 induces a P3 color class, and neither is
allowed. Finally, if exactly one of v1, v2 is in G, say v1, it can have a degree 2 or 3 in G.
A degree of 2 yields a monochromatic P3 color class as above. A degree of 3 yields the
odd graph K1,3 in color 1. But then, G − v1 ≅ P3 is monochromatic in color 3, which is
not allowed.

The proof of the opposite inequality Cp(n, K4 − e) ≤ 5 requires more work. Let ψ be
any edge coloring of Kn with at least five colors. We assume that n is sufficiently large to
guarantee a K4 with rainbow or LEX-colored or monochromatic coloring via Theorem 1. If
this K4 is a rainbow, it contains a rainbow K4 − e and we are finished. If it is LEX-colored, we
take a vertex order of K4 − e where the two vertices of degree 2 are in the middle, and the
two degree-3 vertices have the lowest and highest indices. Then LEX generates a color
class K1,3 at the highest vertex, and two single-edge color classes, and hence a strong odd
coloring, and we are also finished in this case.

From now on, we may assume that there is no rainbow K4 and no LEX-colored K4
under ψ. Let K be a largest monochromatic complete subgraph in Kn, say in the highest
color k ≥ 5. The choice of n guarantees ∣K∣ ≥ 4.

We next analyze the colors from the external vertices vi ∈ V(Kn)∖V(K) to K. There
must be at least one edge of some color ci ≠ k from vi to K, because K is not extendable
to a larger monochromatic complete graph. If there are two such edges of distinct colors
ci ≠ c′i ≠ k, then we complete them as a copy of K4 − e with a further vertex in K. Indeed,
this K4 − e has a monochromatic K3 (an even graph) and two single edges as color classes,
so a class parity coloring is obtained. So we may assume that each vi is adjacent to K with
edges either colored k or colored with the same color ci other than k. This also implies that
at least three vertices v1, v2, v3 exist outside K, because ψ uses at least five colors.

Next, we observe that there is at most one edge of color k from vi to K. Otherwise, we
find a C4 of color k with a diagonal of color ci and hence a class-parity-colored K4 − e. So,
we may assume that each vi is adjacent to K with at least ∣K∣− 1 edges in color ci.

If ci = cj for some i ≠ j, then the neighborhoods of vi and vj in color ci share at least
∣K∣− 2 vertices, that is, at least two. In this case, we find a C4 of color ci with a diagonal of
color k; hence, a class-parity-colored K4 − e occurs again. So, we may assume without loss
of generality that ci = i for i = 1, 2, 3.

If ψ(v1v2) = 1 (or likewise an edge of color 2 or 3 is assigned to an edge incident with
v2 or v3, respectively, inside {v1, v2, v3}), then we pick two vertices w1, w2 from K such that
ψ(viwj) = i for all i, j ∈ {1, 2}. Then, the sequence (w1, w2, v2, v1) generates a LEX-colored
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K4, a contradiction. And if none of the above occurs but color 1 is present as ψ(v2v3) = 1,
then we pick a w from K such that ψ(viw) = i for i = 1, 2, 3. (There are at least ∣K∣ − 3 ≥ 1
possible choices for w.) Then, {w, v1, v2, v3} produces a properly colored K4 − e, as only v1v2
and v1v3 may possibly have the same color among incident edges.

We are left with the case where none of the three edges inside {v1, v2, v3} obtain any
colors from 1, 2, 3. If at least two colors are used there, then suitably omitting an edge, we
obtain a rainbow K4 − e. If the triangle is monochromatic, then we supplement it with two
edges incident with w and obtain a parity-class-colored copy of K4 − e.

5.9. The Complete Graph K4

Our last result on conflict-free colorings is valid for both K4 − e and K4, and the two
can be handled together.

Theorem 25. We have Cf(n, K4 − e) = Cf(n, K4) = n + 1.

Proof. The lower bound is provided by 3-LEX using n colors. It begins with a rainbow
triangle, and each later vertex has a monochromatic star backward. Hence, the last vertex
of any K4 − e or K4 does not have a local singleton color.

The upper bound follows by finding a properly colored C4 in any edge coloring that
uses more than n colors in Kn via Theorem 13 and extending it to a conflict-free-colored
K4 − e or K4, on applying Proposition 2(iii).

Now, we turn to the other functions on K4. Since K4 is an odd graph, we have
Od(n, K4) = Lp(n, K4) = Sp(n, K4) = 1 for all n, and Cf(n, K4) has been determined together
with Cf(n, K4 − e). Below, we determine the growth order of Lr(n, K4), and give a lower
bound on Sod(n, K4).

Theorem 26. We have Lr(n, K4) = Θ(n3/2) as n →∞. More explicitly, for every n ≥ 4,

(1/2− o(1))n3/2 = ex(n, C4)+ 2 ≤ Lr(n, K4) ≤ n⌈
√

2n ⌉

Proof. For the lower bound, let G be any C4-free graph of order n. Assign mutually distinct
colors to the edges of G, and extend this to Kn by assigning a fresh new color to all edges
of G. A K4 ⊂ Kn cannot be proper, because, from the new edges, it may only contain a
matching (either just one edge or a 2K2), but then a C4 would be composed from edges of
the rainbow G, which cannot be the case.

The upper bound is obvious if n = 4, because then, six colors make K4 rainbow, and 6
is much smaller than 4 ⋅ ⌈

√
2 ⋅ 4 ⌉. For larger n we apply induction, assuming that the upper

bound is valid for n − 1.
Let ψ be any coloring of Kn with f (n) ∶= n⌈

√
2n ⌉ colors. Then,

f (n)/n = ⌈
√

2n ⌉ ≤ ⌈
√

2n ⌉+ (n − 1)(⌈
√

2n ⌉− ⌈
√

2n − 2 ⌉) = f (n)− f (n − 1)

holds for every n. Consequently, we can assume that there are at least
√

2n+ 1 critical colors
each vertex, because otherwise, an obvious induction applies.

We now define a digraph D = (V, A)with a vertex set V = V(Kn) and arc set A in the
following way. First, select one edge from each critical color. Those edges form a rainbow
undirected graph G = (V, E). Second, if an edge e = uv ∈ E is a color class itself, take two
arcsÐ→uv,Ð→vu ∈ A for e. Third, if an edge e = uv ∈ E represents a star color class, orient e toward
the center of the star as an arc in A. In this way, D has at least n

√
2n + n arcs. The in-degree

of each vertex is at least
√

2n + 1; but we now concentrate on the out-degrees d1, . . . , dn.
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We say that an unordered vertex pair {u, v} is assigned to a vertex w if bothÐ→wu,Ð→wv ∈ A.
The number of vertex pairs assigned to the ith vertex is equal to (di

2). Since ∑n
i=1 di = ∣A∣ ≥

n
√

2n + n, applying Jensen’s inequality, we obtain

n
∑
i=1
(di

2
) ≥ n ⋅ (∣A∣/n

2
) ≥ n ⋅ (

√
2n + 1)

√
2n

2
> n2 > 2(n

2
).

Thus, there exists a pair {u, v} assigned to at least three vertices, say x, y, z.
The six edges between {u, v} and {x, y, z} have mutually distinct colors as they orig-

inate from the rainbow graph G, and each of their color classes has its center in {u, v},
so none of them occur on the three edges inside {x, y, z}. The color ψ(uv) may occur as
one of those six colors connecting {u, v}with {x, y, z}, so its one end is z. Then, {u, v, x, y}
induces K4, which is either rainbow or 5-colored, where the only one-color coincidence is
ψ(uv) = ψ(xy). In either case, a proper K4 is found.

Currently, we do not have a strong upper bound on Sod(n, K4); the lower bound is
linear in n, while the upper bound grows with n3/2.

Theorem 27. For every n ≥ 4, we have Lr(n, K4) ≥ Sod(n, K4) = Sp(n, K4) = Lp(n, K4) ≥ 2n−2,
and also Sp(n, K4) ≥ Cp(n, K4) ≥ 2n − 2.

Proof. We have seen that the upper bound Lr(n, K4) and also the inequalities are valid
by the hierarchy of criteria defining the corresponding anti-Ramsey functions. Moreover,
the claimed equalities follow from Proposition 1(2), as K4 is an odd graph.

For the lower bound 2n−2, consider a coloring of Kn with a rainbow star at vn, and take
a LEX coloring of K ∶= Kn − vn. The total number of colors used is 2n − 3. If a copy of K4
contains the center of the rainbow star, then the vertex of the largest index under LEX in
K has exactly two edges of the same color (forming a monochromatic P3) and an edge
of another color to vn, so this K4 is neither local-parity-colored nor class-parity-colored.
Otherwise, the copy is a K4 under LEX on n−1 vertices, and the vertex of the second-highest
index violates the condition.

6. Concluding Remarks and Open Problems

In this concluding section, we collect many representative problems concerning the
functions considered in this paper. Evidently, our choice is subjective, yet we hope that the
enclosed list below opens a wide area of research with many more interesting results and
problems to follow.

Table 5 summarizes the main results of Section 5 and can serve as the benchmark for
further research and also as the start of induction steps in the case of generalizing some
graphs into wider families of graphs.

Our list of problems is organized into subsections concentrating on

1. The completion of results concerning specific graphs and small graphs;
2. A further understanding of the hierarchy of the parameters;
3. Algorithmic complexity problems concerning Odd Majority Ordering;
4. Problems concerning the effect of graph operations;
5. General host graphs, instead of complete graphs, and hypergraph versions.

6.1. Problems with Specific Graphs

Problem 1. Determine tight asymptotics for Lr, Sod, Od, Cf, Sp, and Cp for paths and cycles. In
particular, find reasonable lower and upper bounds on Sp(n, Ck) and Cp(n, Ck). (See Theorem 12).

Problem 2. Improve the linear lower bound Cf(n, Kk) ≥ n + ck, provided by the (k − 1)-LEX
coloring of Kn.
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Problem 3. Determine all the parameters for K4 − e and K4 to complete the table of small graphs
(Table 5).

Problem 4. Find sharper—or even exact—bounds for Sod(n, Kk) and Lr(n, Kk), whose order is
asymptotically determined.

Problem 5. Determine ϕ(∣G∣, G) for arbitrary graphs G and for any ϕ ∈ {Ar, Lr, Sod, Od, Cf,
Sp, Cp, Lp}.

Problem 6. Compute the missing parameters of small graphs for small n.

Concerning Theorem 5, we raise the following problem.

Problem 7. Is it true that for every q, the spider S = Sq∗2,r∗1 with q legs P3 and r legs P2 (pendant
edges) satisfies Lr(n, S) = Ar(n, K1,q+r) whenever r is sufficiently large with respect to q ?

6.2. Problems on the Hierarchy of Constraints

Table 1 presents the hierarchy between the eight coloring requirements as implied by
the definitions and proveb in Observation 1 and Proposition 1. For instance, a rainbow
coloring (AR) satisfies all the other conditions as well, whereas an odd coloring (OD) or a
local parity coloring (LP) is not guaranteed to fulfill any of the other seven. In particular,
(OD, LP) is a simple example of an incomparable pair. Interesting questions arise both
concerning comparable and concerning incomparable pairs.

6.2.1. Comparable Classes

Being positioned higher in the hierarchy implies that the corresponding parameter is
not smaller. For two types of coloring constraints F1,F2 and a graph G, let us write

f (n, G∣F1)⇒ f (n, G∣F2) if f (n, G∣F1) ≥ f (n, G∣F2) holds for all n ≥ n0 = n0(G).

Problem 8. If f (n, G∣F1) ≥ f (n, G∣F2) for all graphs G, then does there exist a G′ and n0 = n0(G′)
such that f (n, G′∣F1) > f (n, G′∣F2) holds for all n ≥ n0?

Some positive cases are immediately read out from Table 5, but not all. Concerning
Sod(n, G) ≥ Sp(n, G) we know of no graphs for which Sod(n, G) > Sp(n, G), at least for
all large n. Such a strict inequality can hold only if G is an even graph, as otherwise,
by Proposition 1 (2), Sod(n, G) = Sp(n, G). Furthermore if Sp(n, G) is realized by odd color
classes, then equality still holds. This fact leads to the following problem.

Problem 9. Does there exist an even graph G and an edge coloring ψ = ψ(n) of Kn with Sp(n, G)
or more colors for every large n in which a copy of G occurs with even color classes but not with odd
color classes?

For such a graph, Sod(n, G) > Sp(n, G)would hold. With reference to Observation 1(3),
let us note that even the following more restricted case remains open.

Problem 10. Prove or disprove the following. If G has maximum degree at most 2, then Sp(n, G) =
Sod(n, G), or even Cp(n, G) = Sod(n, G).

We mention that for G = K4− e, the values satisfy the inequalities Sod(n, G) = Sp(n, G) =
n + 1 > Cp(n, G) = 5 > Lp(n, G) = 1; these resolve the other relations.

We also have Sod(n, K4 − e) = n + 1 > Od(n, K4 − e) = 3 > Lp(n.K4 − e) = 1 while
Od(n, K4) = 1 and Lp(n, K4) ≥ 2n − 2, showing that OD and LP are incomparable.
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6.2.2. Incomparable Classes

The diagram in Table 1 indicates that the defining properties of the pairs (CF, SOD),
(CF, SP), (CF,CP), (CF, LP), (OD, SP), (OD,CP), (OD, LP), and (CP, LP) are incomparable.
Numerically, we also know that SOD, SP, CP, and LP can have a quadratic growth, while
CF and OD have a linear upper bound, so a quadratic gap occurs, established, e.g., by K5.

In the other direction, the table contains several graphs with Cf(n, G) > Sod(n, G). So
it remains to settle the status of (CP, LP) and of the pairs involving OD. Concerning the
former, there are lots of examples satisfying Cp(n, G) > Lp(n, G) and Od(n, G) > Lp(n, G),
since ∆(G) ≤ 2 implies Lp(n, G) = 1 by Proposition 1 (4). In fact, Cp(n, G)−Lp(n, G) > cn
and Od(n, G)−Lp(n, G) > cn can hold for arbitrarily large c, establishing any large linear
gap, as proven for long paths in Theorem 12(ii). However, the following three cases
remain open.

Problem 11. Prove or disprove the following. There exist graphs G1, G2, G3 such that

(i) Od(n, G1) > Sp(n, G1),
(ii) Od(n, G2) > Cp(n, G2),
(iii) Lp(n, G3) > Cp(n, G3).

We do not even have a single example of such G1, G2, G3, nor a proof that such graphs
do not exist. (Certainly, a G1, if exists, would also serve as G2.) Clarification of these three
cases would settle whether the hierarchy exhibited in Table 1 coincides with the Hasse
diagram of the partial order among the eight parameter classes under study.

6.3. Problems on Parity-Driven Vertex Orders

Problem 12. Determine the complexity of the following decision problem:

ODD-MAJORITY ORIENTATION (OMO):
Input: AN UNDIRECTED GRAPH G = (V, E).
Question: DOES G ADMIT AN ODD-MAJORITY ORIENTATION?

Also, if the answer is affirmative on G, how much time does it take to find an odd-majority
orientation? How many permutations of V and how many orientations of E correspond to odd-
majority orientations of G ?

Membership of OMO inNP is clear. The problem is of interest not only in general but
also for special classes of graphs. According to Theorem 10(ii), the answer is affirmative
whenever G is a bipartite odd graph. Such graphs can be recongnized in O(∣V∣ + ∣E∣)
time, which is linear in the input size. The proof of the proposition shows that a suitable
permutation can also be found in linear time, as it only needs to obtain the bipartition of G.

Problem 13. Solve the analogous questions of algorithmic and enumerative nature on odd-even
orderings:

ODD–EVEN ORDERING (OEO).
Input: An undirected graph G = (V, E).
Question: Does G admit an odd-even ordering?

In Theorem 10 we observed that in a bipartite graph, it is sufficient for the existence of
an odd-majority orientation that all vertices of even degree belong to the same vertex class.
The following question arises as a possible natural extension.

Problem 14. Let G be a bipartite graph, in which the set of even-degree vertices is independent.
Does G admit an odd-majority orientation?
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6.4. Problems with the Effect of Graph Operations

Motivated by the Adding Edge Lemma (Proposition 2) and the observations in
Section 2.6, we raise the following problem.

Problem 15. Concerning all eight parameters ϕ(n, G), where ϕ ∈ {Ar, Lr, Sod, Od, Cf, Sp, Cp,
Lp}, taken over all graphs G with ∣G∣ ≤ n, determine

(i) The maximum of ϕ(G + e)− ϕ(G) where e ∉ E(G) is any new edge, if ϕ allows this difference
to be positive;

(ii) The maximum of ϕ(G)− ϕ(G + e) where e ∉ E(G) is any new edge, if ϕ allows this difference
to be positive;

(iii) The above two values under the restriction that e joins two vertices of degree 2 in G,

as a function of n.

As we have seen in Proposition 2, in some cases, the considered parameters cannot
increase, and Ar(n, G) is an obvious example where it cannot decrease by edge insertion.
A large jump can also occur in Cp(n, G) by joining two vertices of degree 2, as shown by
Cp(n, K4 − e) = 5 and Cp(n, K4) ≥ 2n − 2.

More generally, we ask

Problem 16. Study the effect of further graph operations on the functions ϕ(n, G).

6.5. Other Host Graphs and Hypergraphs

One branch of anti-Ramsey theory deals with the so-called rainbow number. Given two
graphs, G and H, where H serves as a host graph, the goal is to determine the smallest
number k = k(G, H) of colors such that every edge k-coloring of H contains a rainbow
subgraph isomorphic to G. Analogous problems can be raised concerning the seven
functions introduced here.

Problem 17. Given two graphs G and H and a coloring type Φ ∈ {LR, SOD, OD, CF, SP, CP,
LP}, determine the smallest integer k = k(G, H; Φ) such that every edge coloring of H with at least
k colors contains a copy of G whose induced coloring is of type Φ.

Moreover, it is very natural to seek hypergraph analogs of interesting graph problems.
Recall that a hypergraph (finite set system) is r-uniform if all its edges have exactly r
elements. Beyond the edge colorings of Kn, one may consider edge colorings of the
complete r-uniform hypergraph K(r)n , whose edge set consists of all r-element subsets of
an n-element vertex set. Given a fixed r-uniform hypergraphH and a property P of edge
colorings, one can ask for the minimum number ϕP(n,H) of colors such that every edge
coloring of K(r)n with at least ϕP(n,H) colors contains a copy ofH that satisfies property P .
Similarly, ifH0 is an r-uniform host hypergraph that contains at least one copy ofH, one
can define ϕP(H0,H) as the smallest integer such that every edge coloring ofH0 with at
least ϕP(H0,H) colors contains a copy ofH that satisfies property P .

Problem 18. Study the problems analogous to those investigated above on the more general class of
uniform hypergraphs.
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