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Abstract: In survival analysis, interval-censored data and panel count data represent two prevalent
types of incomplete data. Given that, within certain research contexts, the events of interest may
simultaneously involve both data types, it is imperative to perform a joint analysis of these data
to fully comprehend the occurrence process of the events being studied. In this paper, a novel
semiparametric joint regression analysis framework is proposed for the analysis of interval-censored
data and panel count data. It is hypothesized that the failure time follows an additive–multiplicative
hazards model, while the recurrent events follow a nonhomogeneous Poisson process. Additionally,
a gamma-distributed frailty is introduced to describe the correlation between the failure time and the
count process of recurrent events. To estimate the model parameters, a sieve maximum likelihood
estimation method based on Bernstein polynomials is proposed. The performance of this estimation
method under finite sample conditions is evaluated through a series of simulation studies, and an
empirical study is illustrated.

Keywords: interval-censoring; frailty model; additive–multiplicative hazards model; sieve maximum
likelihood estimation

MSC: 62N02

1. Introduction

In survival analysis, researchers typically focus on the occurrence time of events of
interest. However, in certain situations, due to various factors, it is not possible to precisely
observe the time at which failure events occur, and it can only be determined that they
occur within some time interval. The survival data obtained under such circumstances
are referred to as interval-censored data. On the other hand, when the focus of study
is on recurrent events, the research is concerned not only with the time points of the
event occurrence but also with the counting process of these events. Since the continuous
monitoring of subjects is usually not feasible and observations can only be made at specific
discrete time points, the resulting data type is panel count data. Interval-censored data
and panel count data are two common types of incomplete data, and a variety of models
and methods have been established for the analysis of these data types. Zhu et al. [1], Sun
and Ding [2] and Bouaziz et al. [3] engage in modeling research on interval-censored data
utilizing a variety of models. For the panel count data, relevant developments include the
works of Sun and Kalbfleisch [4], Wellner and Zhang [5], Hu et al. [6], Hua and Zhang [7],
Hua et al. [8] and Yao et al. [9]. In particular, in the study conducted by Wellner and
Zhang [10], a semiparametric regression model based on the nonhomogeneous Poisson
process was investigated, with a detailed analysis of the mean of the panel count process.
Subsequently, the Poisson process has emerged as a significant tool for analyzing such data.

However, in multiple disciplines, including medical research and social sciences, the
coexistence of interval-censored data and panel count data is a prevalent phenomenon.
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For instance, in clinical research, multiple follow-up time points are typically established.
Between these time points, researchers aim to observe the occurrence of specific events and
their potential recurrence. Due to this observational approach, the resulting data inherently
encompass both interval-censored and panel count data. Consequently, conducting a
joint modeling analysis of these two types of data is particularly crucial. Wen and Chen
have proposed various methodologies for analyzing current count and current status data.
Specifically, they initially introduced a full likelihood approach in reference [11], which
conducts a joint analysis of these data with a gamma-distributed frailty. Subsequently, in
reference [12], they relaxed the assumptions regarding the frailty and proposed a pseudo-
sufficient likelihood method. To more extensively analyze general interval-censored data
that include recurrent and nonrecurrent events, they proposed a novel modeling framework
in reference [13], which no longer relies on the assumption of a frailty distribution.

In another study, Xu et al. [14] introduced a full likelihood method for the integrated
analysis of panel count and interval-censored data, which is characterized by a shared
gamma frailty influencing both events. It should be noted that Xu et al. [14] applied the
Cox proportional hazards model to analyze the nonrecurrent event. And the proportional
hazards assumption is not always met in practical scenarios. An alternative and widely
applied model is the additive hazards model, where the covariate effects are additive.
However, in real-world problems, the impact of covariates on the failure time may not be
limited to multiplicative or additive effects. Lin and Ying [15] also proposed the additive–
multiplicative hazards model, which allows some covariates to have multiplicative effects,
other covariates to have additive effects, or allows covariates to have additive and multi-
plicative effects simultaneously. The proportional hazards model and the additive hazards
model are both special cases of this model, thereby endowing the additive–multiplicative
hazards model with a more robust modeling capability.

In this article, we concentrate on a joint approach to analyzing interval-censored and
panel count data, employing a frailty variable to characterize the linkage between the failure
time process and recurrent event process. Additionally, we apply an additive–multiplicative
hazards model, inclusive of a shared frailty, to model the failure times. Furthermore,
since the additive–multiplicative hazards model is a semiparametric model, it contains an
infinite-dimensional nonparametric part of the unknown baseline function and a finite-
dimensional parametric part of interest, both of which need to be estimated simultaneously.
Therefore, we use the sieve maximum likelihood estimation (SMLE) method. SMLE
approximates the infinite-dimensional parameter space with a finite-dimensional parameter
space, simplifying the estimation problem, and the number of unknown parameters used
to define the approximation space increases slowly with the sample size. It is this feature
that makes the sieve method surpass the classical parametric methods that use a fixed finite-
dimensional parameter space, offering better flexibility and robustness [16]. Additionally,
we use Bernstein polynomials to approximate the unknown baseline function; the Bernstein
polynomial possesses an optimal shape-preserving attribute when compared to other
approximating polynomials [17], and it offers a simpler application process compared to
spline approximations, as it eliminates the need to define interior knots. Thus, we suggest
employing a sieve maximum likelihood method, which is based on Bernstein polynomials,
for the estimation of the model parameters.

The subsequent content of this paper is structured as follows: Section 2 provides a
detailed exposition of the data and models employed in this research. Section 3 details
the derivation of the likelihood function and introduces the sieve maximum likelihood
estimation procedure that is proposed within this work. Section 4 encompasses a series
of simulation studies designed to evaluate the performance of the proposed estimation
method with finite samples. Section 5 showcases the application of the proposed ap-
proach to a dataset from a skin cancer chemoprevention trial. Finally, Section 6 provides a
concluding discussion.
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2. Data and Model

Focusing on the study of a historical event, there are n independent subjects involved
who are subject to two types of events: a nonrecurrent failure event and occurrences of a
recurrent event. Suppose that there exists p-dimensional and q-dimensional vectors of
covariates denoted by Zi and Xi for subject i, i = 1, 2, · · · , n ; let Ti represent the timing
of the failure event; and let Ni(t) represent the cumulative number of recurrence events
that have occurred by time t . Suppose that for subject i , a sequence of observation times
si1 < si2 < · · · < simi is established, where mi denotes the count of observations made on
subject i . Accordingly, the information observed for each subject is limited to

O =
{

Oi =
(
mi, sij, Ni(sij), Zi, Xi, δik = I(si,k−1 < Ti ≤ sik),

j = 1, 2, · · · , mi, k = 1, 2, · · · , mi + 1
)
; i = 1, 2, · · · , n

}
,

where si0 = 0 and si,mi+1 = ∞ . In other words, the available data consist solely of case
K interval-censored data regarding the Ti and panel count data regarding the Ni(t) .

We introduce a latent variable ηi to model the effects of the covariates on both
the time-to-event Ti and the cumulative number of recurrent events Ni(t) , as well as
the possible correlation between Ti and Ni(t) , and ηi possesses a mean of 1 and a
variance σ2 that is both unknown and positive, and suppose that ηi is independent of
{mi, Ti, Ni(t)} , and given {Zi, Xi, ηi} , Ti and Ni(t) are also independent. Suppose that
given {Zi, Xi, ηi} , the hazard function of Ti has the form of

λi(t | Zi, Xi, ηi) = ηi
(
α⊤Zi + λ1(t) exp(β⊤Xi)

)
, (1)

where λ1(t) denotes an unknown baseline hazard function, and let Λ1(t) =
∫ t

0 λ1(u)du de-
note the baseline cumulative hazard function, α and β are vectors of unknown regression
parameters. That is, Ti follows the additive–multiplicative hazards frailty model.

For the process Ni(t) , we consider it to be a nonhomogeneous Poisson process, with
its proportional mean function being

E
{

Ni(t) | Xi, ηi
}
= ηiΛ2(t) exp(γ⊤Xi), (2)

where Λ2(t) represents a baseline mean function that is unknown and nondecreasing,
γ is a regression coefficient, which is a vector of dimension q. It should be noted that
ηi measures the degree of association between Ti and Ni(t) , and it suggests that
Ti and Ni(t) are independent given covariates when ηi = 1 . Then, we will assume that
{mi, sij; j = 1, 2, · · · , mi} and {ηi, Ti, Ni(t)} are independent given covariates Zi, Xi , and
the conditional distribution of {mi, sij; j = 1, 2, · · · , mi} is independent of the parameters
within models (1) and (2).

3. Sieve Maximum Likelihood Approach

Define θ =
(
θ∗⊤, Λ⊤(·)

)⊤
with θ∗ =

(
α⊤, β⊤, γ⊤, σ2)⊤ and Λ(·) = (Λ1(·), Λ2(·))⊤ .

Subsequently, the likelihood function for θ is formulated as follows:

Ln(θ; O) =
n

∏
i=1

L(θ; Oi),
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where

L(θ; Oi) = Eηi

{
mi+1

∏
k=1

[
exp

(
− ηi

(
Λ1(si,k−1)eβ⊤Xi + α⊤Zisi,k−1

))
− exp

(
− ηi

(
Λ1(sik)eβ⊤Xi + α⊤Zisik

))]δik

·
mi

∏
j=1

[(
ηi∆Λ2(sij) exp(γ⊤Xi)

)∆Ni(sij)
· exp(−ηi∆Λ2(sij) exp(γ⊤Xi))

]}
,

and
∆Ni(sij) = Ni(sij)− Ni(si,j−1), ∆Ni(si1) = Ni(si1),

∆Λ2(sij) = Λ2(sij)− Λ2(si,j−1), ∆Λ2(si1) = Λ2(si1).

Given the assumption that ηi follows a gamma distribution, the likelihood contribu-
tion for θ , denoted as L(θ; Oi) , can be expressed in a simplified form:

L(θ; Oi) = Qi

mi+1

∏
k=1

(Ai,k−1 − Aik)
δik ,

where

Qi =

(
σ2 exp(γ⊤Xi)

)Ni Γ(σ−2 + Ni)

Γ(σ−2)
·

mi

∏
j=1

[
∆Λ2(sij)

∆Ni(sij)
]
,

Ai,0 =
[
1 + σ2Λ2(si,mi ) exp(γ⊤Xi)

]−σ−2−Ni ,

Ai,k =
[
1 + σ2Λ2(si,mi ) exp(γ⊤Xi) + σ2Λ1(sik) exp(β⊤Xi) + σ2αZisik

]−σ−2−Ni ,

Ai,mi+1 = 0

with Ni = ∑mi
j=1 ∆Ni(sij) = Ni(si,mi ). In the subsequent discussion, we will consider the

scenario where ηi are distributed according to the gamma distribution. However, it
should be noted that the method we develop is not limited to this specific case and can
be generalized.

In the discussion to follow, we turn our attention to the estimation of the parameters
θ . It becomes evident that the conventional approach would be the maximization of
the likelihood function Ln(θ; O) . However, this approach presents challenges, as the
complexity arises from the necessity to estimate both the unspecified baseline hazard
function Λ(·) and the unknown parameters θ∗ concurrently within the model.

Thus, instead, consistent with Huang and Rossini’s approach [18], we advocate for
the use of sieve maximum likelihood estimation. In this method, the unknown function
within the likelihood is approximated through a linear superposition of certain known
basis functions, thereby constructing a sieve likelihood. Consequently, the challenge of
maximizing the likelihood for the unknown function is repurposed to focus on maximizing
the sieve likelihood for the coefficients within this linear superposition. This approach
considerably simplifies the optimization challenge by requiring fewer basis functions to
approximate the unknown function effectively; the necessary quantity of basis functions
for a reasonable approximation of the unknown function increases at a considerably slower
pace than the growth in the function’s complexity.

More specifically, we first employ Bernstein polynomials to approximate Λ1(·) and
Λ2(·) across the interval [a, b] , where a and b represent the observation time’s lower
and upper limits, respectively. In greater detail, define

Θ =
{

θ =
(

α⊤, β⊤, γ⊤, σ2, Λ1(·), Λ2(·)
)}

= B ⊗M1 ⊗M2,
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denote the parameter space of θ and define the Sieve space

Θn =
{

θn =
(

α⊤, β⊤, γ⊤, σ2, Λ1n(·), Λ2n(·)
)}

= B ⊗M1
n ⊗M2

n,

where

B =
{(

α⊤, β⊤, γ⊤, σ2
)
∈ Rp+2q+1, ∥α∥+ ∥β∥+ ∥γ∥+ |σ2| ≤ M

}
,

M1
n =

{
Λ1n(t) =

m

∑
l=0

ϕl Bl(t, m, a, b), ∑
0≤l≤m

|ϕl | ≤ Mn, 0 ≤ ϕ0 ≤ ϕ1 ≤ · · · ≤ ϕm

}
,

M2
n =

{
Λ2n(t) =

m

∑
l=0

ξl Bl(t, m, a, b), ∑
0≤l≤m

|ξl | ≤ Mn, 0 ≤ ξ0 ≤ ξ1 ≤ · · · ≤ ξm

}
,

in which ϕl and ξl are unknown parameters to be estimated and

Bl(t, m, a, b) = Cl
m

(
t − a
b − a

)l(
1 − t − a

b − a

)m−l
,

and m denotes the degree of the Bernstein polynomials, which is usually taken to be m =
o(nν) for some 0 < ν < 1/2 . According to Lorentz [19], Θn = B⊗M1

n ⊗M2
n can be used

as the sieve space of Θ , so it is natural to define the sieve maximum likelihood estimate

as θ̂n =
(
α̂⊤n , β̂⊤

n , γ̂⊤
n , σ̂2

n , Λ̂1n(·), Λ̂2n(·)
)⊤

, obtained by maximizing the log-likelihood
function ln(θ) = log Ln(θ) on the sieve space as the estimate for parameter θ .

Employing Bernstein polynomials transforms the estimation issue, which encompasses
both finite- and infinite-dimensional parameters, into a more tractable problem that pertains
solely to finite-dimensional parameters. Naturally, alternatives like splines and piecewise
linear functions could be deployed for approximations. An advantage of utilizing Bernstein
polynomials is their inherent capacity to model the non-negativity and monotonicity
of Λ1(·) and Λ2(·) . This can be achieved with straightforward constraints that are
effortlessly addressed via reparameterization during computational processes. It has been
demonstrated that the size of the sieve space described can be controlled through the
expression Mn = O(nc) , with c being a positive constant, as referenced in [17,20].

In the above estimation procedure, two issues need to be noted. One is that due to
the non-negative and monotonic properties of functions Λ1(·) and Λ2(·) , there are some
restrictions on the parameters, which can be solved by reparameterization. In detail, a
conventional method is to redefine the frailty variance parameter σ2 in terms of its expo-
nential form exp(σ2∗) . Furthermore, the parameters {ϕ0, ϕ1, · · · , ϕm} and {ξ0, ξ1, · · · , ξm}
are reparameterized by the cumulative sums of

{
exp(ϕ∗

0 ), exp(ϕ∗
1 ), · · · , exp(ϕ∗

m)
}

and{
exp(ξ∗0), exp(ξ∗1), · · · , exp(ξ∗m)

}
, respectively. Another issue is the selection of the Bern-

stein polynomial’s degree for the parameter space Θn , as it directly affects the approxima-
tion’s accuracy and level of smoothness. Apparently, a straightforward solution for this
issue is to employ various values of m and subsequently compare the outcomes.

For the estimation of the covariance matrix of θ̂∗n , a natural method involves utilizing
the inverse of the information matrix derived from the log-likelihood function ln(θ) . Given
that the likelihood of the observed data is available in a closed form, a natural estimator for
the variance–covariance matrix is I−1(θ̂) , where I(θ) represents the observed information
matrix, also known as the Hessian matrix, defined as I(θ) = −∂2ln(θ)/∂θ∂θ⊤ . Calculating
the mixed partial derivatives within I(θ) analytically can be quite complex. An alternative
approach is to employ Louis’s method to assess I(θ) , although this method also faces
similar complexities.

Therefore, we provide another simple and feasible method, namely, the profile likeli-
hood method proposed by Murphy and Vaart [21], which is also used by Zeng et al. [22]
to approximate the covariance matrix. Specifically, let ei denote a q-dimensional vector
that has the value 1 at the ith position and 0 in all other positions, and let hn represent a
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positive constant with a magnitude in the order of n−1/2 . Then, the covariance of θ̂∗ can
be approximated by taking the inverse of a matrix where the (i, j)th element is given by

−
pln(θ̂∗n + hnei + hnej)− pln(θ̂∗n + hnei)− pln(θ̂∗n + hnej) + pln(θ̂∗n)

h2
n

,

where pln(θ∗) = maxΛ ln(θ) is the profile likelihood function of θ∗ , which can be obtained
by maximizing Λ(·) at fixed θ∗ .

4. Simulation Study

We performed a comprehensive simulation study, focusing on the estimation of regres-
sion parameters, in order to evaluate the performance of the proposed estimation method
with finite samples. First, the generation of latent variables ηi was based on a gamma
distribution with a specified mean of 1 and a positive variance of σ2 . Subsequently, the
count of observation times mi was distributed uniformly across the options {1, 2, 3, 4, 5} .
With mi determined, the sequence of observation times si1 < si2 < · · · < si,mi was taken
to be the order statistics of the mi random variables sampled from the uniform distribution
ranging from 0.02 to 3. Moreover, we evaluated two situations involving covariates:
(i) Zi and Xi are one-dimensional cases and (ii) Zi and Xi are two-dimensional cases.
In these cases, Zi was generated from a Bernoulli distribution with a probability of success
of 0.5, while Xi was generated from the standard normal distribution. Then, given the Zi ,
Xi and ηi , the failure times Ti were generated under model (1) and the panel count data
Ni(sij) under model (2). The results given below are based on 1000 replications.

Table 1 presents the estimation results of parameters with their actual values from the
population, specified as α = 0.5 or 0, β = 0.5,−0.5 or 0, and σ2 = 0.5 , for the case of the
one-dimensional covariates. Here, Λ1 = 0.1 · t and Λ2 = 0.5 · t , and the degree of the
Bernstein polynomial is determined by m = [n1/4] = 3 when the sample size n = 200 and
m = [n1/4] = 4 when the sample size n = 400 . The presented results encompass the
estimated bias (Bias), defined as the mean of the point estimates minus the actual value,
the sample standard errors (SSEs), the average of the estimated standard errors (ESEs), and
the 95% empirical coverage probability (CP).

Table 1. Parameter estimation results under one-dimensional covariates.

Para Bias SSE ESE CP Bias SSE ESE CP

n = 200 n = 400

α = 0.5 0.0216 0.1291 0.1278 0.956 0.0041 0.0891 0.0863 0.949
β = −0.5 −0.0151 0.2056 0.2073 0.955 −0.0067 0.1361 0.1402 0.959
γ = −0.5 −0.0034 0.0854 0.0923 0.953 −0.0021 0.0612 0.0630 0.958
σ2 = 0.5 −0.0019 0.1336 0.1310 0.939 −0.0087 0.0865 0.0900 0.946
α = 0.5 0.0104 0.1217 0.1258 0.952 0.0055 0.0828 0.0862 0.964
β = 0 −0.0045 0.1944 0.1992 0.956 −0.0093 0.1356 0.1366 0.949

γ = −0.5 −0.0019 0.0860 0.0923 0.954 −0.0010 0.0596 0.0626 0.955
σ2 = 0.5 −0.0064 0.1267 0.1314 0.945 −0.0016 0.0880 0.0913 0.959

α = 0 0.0059 0.0526 0.0565 0.972 0.0047 0.0363 0.0379 0.965
β = 0.5 0.0221 0.1624 0.1670 0.960 0.0167 0.1134 0.1143 0.950
γ = 0.5 0.0004 0.0950 0.0948 0.941 0.0033 0.0604 0.0642 0.957
σ2 = 0.5 −0.0029 0.1368 0.1399 0.933 0.0013 0.0985 0.0968 0.943
α = 0.5 0.0113 0.1168 0.1267 0.959 0.0072 0.0856 0.0871 0.955
β = 0.5 0.0130 0.2056 0.2068 0.955 −0.0073 0.1375 0.1397 0.960
γ = 0 −0.0011 0.0894 0.0939 0.961 −0.0028 0.0601 0.0638 0.959

σ2 = 0.5 −0.0041 0.1359 0.1361 0.943 −0.0020 0.0924 0.0940 0.941

As evidenced in Table 1, the proposed estimators appear to be unbiased, with the
estimated standard errors closely aligning with the sample standard errors. Additionally,



Mathematics 2024, 12, 3667 7 of 14

the results on the 95% coverage probabilities imply that the estimators’ distribution can be
adequately approximated by a normal distribution. As expected, there is an improvement
in performance with larger sample sizes, and the CPs are nearly close to the nominal level.
Furthermore, Figures 1 and 2 display the estimated results of the cumulative baseline
hazard functions with Λ1(t) = 0.1t, Λ2(t) = t for sample sizes of 200 and 400, respectively.
From the figures, it can be observed that for sample sizes of 200 and 400, the estimated
curves of the cumulative baseline hazard functions are quite close to the true curves,
indicating that the estimators are unbiased. Furthermore, as the sample size increases, the
distance between the estimated curves and the true curves decreases.

Figure 1. The simulated results of the baseline functions with a sample size of 200. (The dashed lines
represent the estimated curves of the functions and the solid lines represent the true curves of the
functions.)

Figure 2. The simulated results of the baseline functions with a sample size of 400. (The dashed lines
represent the estimated curves of the functions and the solid lines represent the true curves of the
functions.)

Table 2 presents the estimation results for the two-dimensional covariate situation,
and the true values of α1 and α2 are 0.4 or −0.4, the true values of β1 and β2 are 0.4,
−0.4 or 0, the true values of γ are 0.4 or −0.4, and the true value of σ2 is 0.4. The rest
of the simulated settings are the same as before. The results in Table 2 and Table 1 show a
consistent trend, indicating that the proposed inference method also performs well in the
case of two-dimensional covariates.

Table 3 presents the parameter estimation results for the case where σ2 = 0.3, 0.4, 0.5, or
0.6, and the true values of α, β, γ are 0.5. From Table 3, it can be observed that the proposed
method performs well under different variance values of the latent variables.
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Table 2. Parameter estimation results under two-dimensional covariates.

Para Bias SSE ESE CP Bias SSE ESE CP

n = 200 n = 400

α1 = 0.4 0.0164 0.1295 0.1309 0.961 −0.0002 0.0929 0.0893 0.948
α2 = 0.4 0.0097 0.1307 0.1298 0.954 0.0049 0.0907 0.0897 0.956
β1 = 0 0.0077 0.2623 0.2570 0.952 0.0021 0.1732 0.1697 0.946
β2 = 0 0.0047 0.2666 0.2594 0.951 0.0009 0.1715 0.1703 0.946

γ1 = −0.4 −0.0019 0.0834 0.0895 0.961 0.0010 0.0581 0.0604 0.952
γ2 = −0.4 −0.0033 0.0851 0.0900 0.955 −0.0019 0.0631 0.0603 0.941
σ2 = 0.4 −0.0052 0.1119 0.1150 0.936 −0.0008 0.0792 0.0787 0.940
α1 = 0.4 0.0136 0.1303 0.1307 0.955 0.0019 0.0934 0.0898 0.939
α2 = 0.4 0.0149 0.1353 0.1310 0.941 0.0056 0.0884 0.0900 0.957

β1 = −0.4 −0.0109 0.2468 0.2614 0.963 −0.0029 0.1739 0.1709 0.942
β2 = −0.4 −0.0064 0.2552 0.2621 0.959 −0.0031 0.1679 0.1719 0.949
γ1 = −0.4 0.0028 0.0874 0.0899 0.956 0.0012 0.0585 0.0608 0.955
γ2 = −0.4 0.0026 0.0868 0.0900 0.943 −0.0018 0.0631 0.0606 0.941
σ2 = 0.4 −0.0082 0.1185 0.1144 0.931 −0.0015 0.0779 0.0786 0.944
α1 = 0 0.0047 0.0589 0.0549 0.948 0.0055 0.0387 0.0366 0.940
α2 = 0 0.0084 0.0570 0.0546 0.948 0.0055 0.0373 0.0366 0.945

β1 = 0.4 0.0377 0.1842 0.1702 0.939 0.0214 0.1204 0.1141 0.937
β2 = 0.4 0.0416 0.1793 0.1710 0.953 0.0282 0.1246 0.1142 0.925
γ1 = 0.4 0.0019 0.0864 0.0910 0.956 0.0037 0.0598 0.0612 0.957
γ2 = 0.4 −0.0024 0.0873 0.0915 0.950 0.0015 0.0626 0.0615 0.936
σ2 = 0.4 −0.0095 0.1224 0.1244 0.929 −0.0004 0.0859 0.0853 0.941
α1 = 0.4 0.0122 0.1385 0.1311 0.947 0.0037 0.0914 0.0898 0.945
α2 = 0.4 0.0093 0.1323 0.1303 0.951 0.0051 0.0885 0.0897 0.960
β1 = 0.4 0.0136 0.2609 0.2569 0.945 0.0056 0.1707 0.1688 0.950
β2 = 0.4 0.0056 0.2573 0.2555 0.944 0.0023 0.1706 0.1699 0.956
γ1 = 0.4 0.0008 0.0866 0.0909 0.959 −0.0026 0.0597 0.0612 0.957
γ2 = 0.4 0.0016 0.0834 0.0910 0.962 0.0011 0.0582 0.0613 0.969
σ2 = 0.4 −0.0074 0.1163 0.1145 0.930 −0.0026 0.0806 0.0783 0.936

Table 3. Parameter estimation results under different variance values of the latent variables.

Para Bias SSE ESE CP Bias SSE ESE CP

n = 200 n = 400

α = 0.5 0.0065 0.1134 0.1166 0.955 0.0052 0.0804 0.0808 0.957
β = 0.5 0.0290 0.1888 0.1941 0.955 0.0091 0.1241 0.1317 0.953
γ = 0.5 0.0034 0.0800 0.0848 0.954 0.0014 0.0580 0.0576 0.947
σ2 = 0.3 −0.0072 0.0999 0.1019 0.937 −0.0015 0.0690 0.0706 0.950
α = 0.5 0.0071 0.1241 0.1218 0.945 0.0005 0.0835 0.0832 0.953
β = 0.5 0.0210 0.1970 0.2006 0.971 0.0083 0.1352 0.1356 0.948
γ = 0.5 −0.0032 0.0841 0.0897 0.957 −0.0029 0.0585 0.0607 0.958
σ2 = 0.4 0.0013 0.1153 0.1177 0.946 −0.0054 0.0792 0.0803 0.945
α = 0.5 0.0147 0.1274 0.1264 0.963 −0.0017 0.0849 0.0858 0.958
β = 0.5 0.0166 0.2013 0.2045 0.961 0.0078 0.1370 0.1389 0.953
γ = 0.5 0.0043 0.0867 0.0932 0.951 0.0011 0.0629 0.0638 0.955
σ2 = 0.5 −0.0069 0.1214 0.1308 0.952 −0.0037 0.0889 0.0904 0.949
α = 0.5 0.0101 0.1313 0.1291 0.950 0.0084 0.0874 0.0892 0.950
β = 0.5 0.0123 0.2128 0.2112 0.959 0.0115 0.1400 0.1425 0.955
γ = 0.5 0.0041 0.0924 0.0977 0.963 0.0012 0.0651 0.0664 0.941
σ2 = 0.6 −0.0075 0.1390 0.1450 0.953 −0.0044 0.0960 0.1000 0.955
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Table 4 presents the parameter estimation results for sample sizes of n = 200 or 400
under different cumulative baseline hazards functions, which include the cases where the
cumulative hazards function is a quadratic function Λ1(t) = 0.1t2, Λ2(t) = 0.2t2 , and
where the cumulative hazards function is a cubic function Λ1(t) = 0.05t3, Λ2(t) = 0.07t3 .
The other setup is the same as in Table 1. From Table 4, it can be observed that the proposed
parameter estimation method performs well under different forms of cumulative hazards
functions. Further investigation with different m values confirmed similar results. As
evidenced in Table 5, the estimator exhibits robustness across various m selections.

Table 4. Parameter estimation results under different baseline hazards functions.

Para Bias SSE ESE CP Bias SSE ESE CP

n = 200 n = 400

Λ1(t) = 0.1 · t2, Λ2(t) = 0.2 · t2

α = 0.4 −0.0078 0.0952 0.1031 0.950 −0.0052 0.0652 0.0701 0.958
β = 0.4 0.0051 0.1842 0.1911 0.955 0.0006 0.1350 0.1304 0.950
γ = 0.4 0.0018 0.0877 0.0939 0.960 0.0003 0.0611 0.0631 0.954
σ2 = 0.4 0.0006 0.1250 0.1226 0.934 −0.0042 0.0828 0.0838 0.948
α = 0.4 −0.0123 0.0954 0.1025 0.956 −0.0074 0.0708 0.0705 0.946

β = −0.4 0.0141 0.1872 0.1933 0.953 0.0122 0.1309 0.1313 0.947
γ = −0.4 0.0006 0.0859 0.0924 0.962 0.0036 0.0611 0.0630 0.960
σ2 = 0.4 −0.0139 0.1154 0.1213 0.933 0.0030 0.0872 0.0847 0.937

Λ1(t) = 0.05 · t3, Λ2(t) = 0.07 · t3

α = 0.4 −0.0206 0.1026 0.1050 0.944 −0.0133 0.0694 0.0715 0.949
β = 0.4 −0.0071 0.1712 0.1879 0.964 −0.0038 0.1259 0.1278 0.957
γ = 0.4 0.0068 0.0926 0.0999 0.952 0.0010 0.0667 0.0679 0.954
σ2 = 0.4 0.0054 0.1339 0.1301 0.940 0.0052 0.0896 0.0896 0.948
α = 0.4 −0.0229 0.0987 0.1058 0.945 −0.0183 0.0722 0.0717 0.943

β = −0.4 0.0492 0.1664 0.1884 0.957 0.0248 0.1240 0.1285 0.954
γ = −0.4 0.0123 0.0923 0.0986 0.959 0.0064 0.0654 0.0672 0.943
σ2 = 0.4 0.0016 0.1311 0.1304 0.941 0.0039 0.0946 0.0894 0.932

Table 5. Parameter estimation results under different Bernstein polynomial degrees.

Para Bias SSE ESE CP Bias SSE ESE CP

n = 200 n = 400

m = 4 α = 0.5 0.0107 0.1306 0.1256 0.942 0.0099 0.0898 0.0872 0.945
β = 0.5 0.0283 0.1995 0.2031 0.950 0.0106 0.1403 0.1394 0.951
γ = 0.5 0.0030 0.0902 0.0933 0.959 0.0001 0.0608 0.0641 0.959
σ2 = 0.5 0.0073 0.1276 0.1307 0.943 −0.0012 0.0905 0.0914 0.959

m = 5 α = 0.5 0.0081 0.1249 0.1261 0.950 0.0027 0.0845 0.0854 0.952
β = 0.5 0.0267 0.1997 0.2052 0.954 0.0187 0.1381 0.1388 0.952
γ = 0.5 0.0021 0.0889 0.0943 0.968 0.0004 0.0633 0.0631 0.951
σ2 = 0.5 −0.0021 0.1280 0.1318 0.949 −0.0007 0.0918 0.0903 0.942

m = 6 α = 0.5 0.0071 0.1339 0.1272 0.944 0.0052 0.0898 0.0863 0.937
β = 0.5 0.0072 0.2005 0.2042 0.958 0.0076 0.1409 0.1390 0.957
γ = 0.5 0.0023 0.0887 0.0944 0.961 0.0002 0.0660 0.0637 0.945
σ2 = 0.5 −0.0088 0.1240 0.1321 0.953 −0.0057 0.0883 0.0900 0.949

5. An Application

In this section, we have applied the proposed procedure to analyze authentic data
from a skin cancer chemoprevention study, which was undertaken by the University of
Wisconsin Comprehensive Cancer Center Madison, Wisconsin, as reported in [23]. This
was a five-year, double-blind, placebo-controlled, randomized Phase III clinical trial. The
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main goal of this trial was to assess the efficacy of a daily oral dose of 0.5 g/m2 PO
difluoromethylornithine (DFMO) in reducing the incidence of new skin cancers among
patients with a past history of non-melanoma skin cancers, specifically basal cell carcinoma
and squamous cell carcinoma. The participants were scheduled for biannual evaluations to
monitor the emergence of new skin cancers. The trial involved 291 participants, with 147
assigned to the placebo group and 144 to the DFMO group. The collected data encompassed
the incidence rates of both basal cell carcinoma and squamous cell carcinoma at different
observation points. For the timing of the first recurrence of squamous cell carcinoma and
the overall recurrence pattern of basal cell carcinoma, only interval-censored data and
panel count data were recorded, respectively. It should be noted that these two variables
are crucial for understanding the recurrence process of carcinomas. Consequently, for a
comprehensive evaluation of the treatment’s impact on carcinoma recurrence, it is advisable
to consider both variables simultaneously.

In this research, apart from the treatment indicator, we possess data on three additional
baseline covariates for the following subjects: gender, age at diagnosis, and the count of
previous skin cancers from the initial diagnosis to the time of randomization. In the
following analysis, we focus on 290 patients, 147 in the placebo group and 143 in the DFMO
group, who recorded at least one observation. In order to utilize the estimation procedure
previously outlined, we define specific variables for each patient i (where i ranges from
1 to 290). Specifically, Ti represents the time to the first recurrence of squamous cell
carcinoma, while Ni(t) is the total count of basal cell carcinomas diagnosed by time t .
Furthermore, we define the covariates as follows: Xi1 denotes the patient’s age, Xi2 is
an indicator variable equal to 1 if the patient is female and 0 if male, Xi3 is an indicator
variable equal to 1 if the patient is in the DFMO group and 0 if in the placebo group, and
Xi4 denotes the number of previous skin cancer occurrences.

We consider the eight possible combinations where the effects of the four covariates
are either additive or multiplicative. The effect of Xi1 is multiplicative in models AMM1,
AMM3, AMM5, AMM6, and AMM8, and additive in the remaining models; the effect of
Xi2 is additive in models AMM1, AMM4, and AMM5, and multiplicative in the remaining
models; the effect of Xi3 is additive in models AMM1, AMM3, AMM5, and AMM6, and
multiplicative in the remaining models; the number of previous skin cancers Xi4 has a
multiplicative effect in models AMM1, AMM6, and AMM7, and an additive effect in the
remaining models. The analysis results are summarized in Table 6.

The results presented in Table 6 reveal that neither the gender at diagnosis nor the
treatment method exerts a substantial effect on the time to the first squamous cell carcinoma
recurrence, irrespective of whether their effects are multiplicative or additive. Moreover,
there is a positive correlation between the time to the first squamous cell carcinoma recur-
rence and the number of prior skin cancers. However, the effect of the age at diagnosis on
the time to the first squamous cell carcinoma recurrence seems to be multiplicative rather
than additive and is positively correlated with the time to the first recurrence of squamous
cell carcinoma. Moreover, the variances estimated for the latent variables across all the
models are significantly non-zero, with p-values below the 0.05 threshold, which supports
the reliability of the assumption that there is a dependency between the timing of the first
squamous cell carcinoma recurrence and the recurrence process of basal cell carcinoma.

Additionally, we have also considered the use of the Cox proportional hazards model
for modeling the failure time by Xu et al. [14], and analyzed the example data to obtain the
coefficient estimates for covariates. The coefficient estimates for X2 and X3 are 0.3607 and
−0.1213, respectively, with p-values of 0.12 and 0.60. The estimate for X4 is 3.2025, with a
p-value below the 0.05, which is similar to our results, whereas the coefficient estimate for
X1 is 1.5562, with a p-value of 0.01. Although the result that covariate X1 has a significant
impact on the time to the first recurrence of squamous cell carcinoma is consistent with
our conclusion, our method suggests that the effect of covariate X1 is additive rather than
multiplicative by comparing the estimated results across different models.
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Table 6. Parameter estimation results of the skin cancer data.

Gender Group

EST ESE p-Value EST ESE p-Value

AMM1 0.0533 0.0407 0.1903 −0.0207 0.0419 0.6212
AMM2 0.2919 0.3617 0.4196 −0.1098 0.2656 0.6793
AMM3 −0.4050 0.3859 0.2940 −0.0031 0.0380 0.9348
AMM4 0.0544 0.0441 0.2179 −1.5994 4.3731 0.7146
AMM5 0.0532 0.0431 0.2167 −0.0310 0.0432 0.4719
AMM6 0.4467 0.2294 0.0515 −0.0096 0.0380 0.8007
AMM7 0.2406 0.1922 0.2108 0.0130 0.1656 0.9374
AMM8 0.4194 0.5531 0.4483 −0.4620 0.4964 0.3519

age the number of prior cancers

EST ESE p-value EST ESE p-value

AMM1 0.4386 0.1639 0.0075 0.5612 0.1147 <0.0001
AMM2 −0.0308 0.1390 0.8248 0.4848 0.2796 0.0830
AMM3 0.8935 0.3721 0.0163 0.7565 0.2698 0.0050
AMM4 0.0153 0.0748 0.8384 1.0160 0.3325 0.0022
AMM5 0.7329 0.4469 0.1010 0.7461 0.3033 0.0139
AMM6 0.4398 0.1479 0.0029 0.5243 0.0955 <0.0001
AMM7 −0.0558 0.1178 0.6355 0.3722 0.1461 0.0108
AMM8 1.4338 0.5443 0.0084 1.0880 0.2611 <0.0001

Figures 3 and 4 present the estimation results of the baseline functions for all the
models, respectively. From Figure 4, it is evident that the estimated curves for Λ2(t) across
all the models are highly congruent. This congruence can be attributed to the similarity in
the estimation outcomes of γ across the models. In contrast, for Λ1(t), there is a divergence
in the estimation curves among the different models. This variation may be attributed
to the distinct mechanisms by which covariates influence the failure time across models,
which can be either additive or multiplicative. Moreover, the significance of the impact of
the same covariate across various models also exhibits notable differences.

Figure 3. The results of the baseline hazard function Λ1(t).
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Figure 4. The results of the baseline mean function Λ2(t).

6. Discussion

The present study explores the joint analysis of interval-censored data and panel
count data. It assumes that the hazards function of the failure time follows an additive–
multiplicative model. A joint model incorporating frailty is suggested to model the failure
time of interest and the panel count process. For the nonparametric part of the model,
Bernstein polynomials are used for approximation, and the final parameter estimation
is obtained through the method of maximum likelihood estimation. Finally, simulation
studies and case analyses are conducted. The results of the simulation and case studies
demonstrate that the method is effective in practical situations, and the proposed estimators
are consistent and asymptotically normal.

In addition, the method proposed relies on certain assumptions and has some lim-
itations. The first hypothesis is that the process of the recurrent event follows a Poisson
distribution, a theory that Wellner and Zhang [5] have confirmed to offer robustness in the
estimation process under comparable scenarios. Although the nonhomogeneous Poisson
process is widely applied in many fields, including reliability engineering, ecology, and epi-
demiology, due to its flexibility and adaptability to changes over time, and it can simulate
changes in risk or event rates across different time periods, in some cases, actual data may
exhibit greater variability than what is predicted by the nonhomogeneous Poisson process.
And we also assume that the mean function of the count process follows a proportional
mean model; it is meaningful to extend this assumption to other more general models.

Another assumption of the method proposed is that the observation process is non-
informative. However, in many practical problems, this assumption may be violated.
Consequently, further research should consider incorporating useful information from the
observation process into modeling, while jointly modeling the failure time process, the
counting process of recurrent events, and the observation process. This study assumes
that the frailties follow a gamma distribution, which simplifies the form of the likelihood
function. When the frailties follow other general distributions, the computation of the ex-
pectation with respect to the frailties is more complex, but numerical computation methods
such as Gaussian quadrature or Monte Carlo integration can be considered, thus allowing
the proposed method to be generalized to the general case where frailties follow other
distributions. In situations where there is no distributional assumption for the frailties,
new modeling and corresponding estimation methods need to be developed, such as the
two-step method; refer to Wang et al. [24] and Wang et al. [25].

Noting the involvement of squamous cell carcinoma and basal cell carcinoma in the
analysis of skin cancer data, our study focuses on the failure time of the event of interest,
specifically the first occurrence of squamous cell carcinoma, while also considering the
impact of the overall recurrence pattern of basal cell carcinoma. Further research consider-
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ing the joint analysis of the first occurrence of basal cell carcinoma and the recurrence of
squamous cell carcinoma is equally significant.
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