
Citation: Jeong, J.; Kim, C.-G.

Existence, Nonexistence and

Multiplicity of Positive Solutions for

Generalized Laplacian Problems with

a Parameter. Mathematics 2024, 12,

3668. https://doi.org/10.3390/

math12233668

Academic Editor: Salvatore A.

Marano

Received: 27 October 2024

Revised: 17 November 2024

Accepted: 19 November 2024

Published: 22 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Existence, Nonexistence and Multiplicity of Positive Solutions
for Generalized Laplacian Problems with a Parameter
Jeongmi Jeong 1 and Chan-Gyun Kim 2,*

1 Department of Mathematics, Pusan National University, Busan 46241, Republic of Korea;
jmjeong321@gmail.com

2 Department of Mathematics Education, Chinju National University of Education,
Jinju 52673, Republic of Korea

* Correspondence: cgkim75@cue.ac.kr

Abstract: We investigate the homogeneous Dirichlet boundary value problem for generalized Lapla-
cian equations with a singular, potentially non-integrable weight. By examining asymptotic behaviors
of the nonlinear term near 0 and ∞, we establish the existence, nonexistence, and multiplicity of
positive solutions for all positive values of the parameter λ. Our proofs rely on the fixed point
theorem concerning cone expansion and compression of norm type and the Leray–Schauder’s fixed
point theorem.
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1. Introduction

Consider the following singular φ-Laplacian problem:{
(q(t)φ(u′(t)))′ + λh(t) f (u(t)) = 0, t ∈ (0, 1),
u(0) = u(1) = 0,

(1)

where φ : R → R is an odd increasing homeomorphism, q : [0, 1] → (0, ∞) is a continuous
function, λ ∈ R+ := [0, ∞) is a parameter, f : R+ → R+ is a continuous function satisfying
f (s) > 0 for s > 0, and h : (0, 1) → R+ is a continuous function.

Throughout this paper, we assume the following hypotheses .

(A) There exist increasing homeomorphisms ψ1, ψ2 : R+ → R+ such that

φ(x)ψ1(y) ≤ φ(xy) ≤ φ(x)ψ2(y) for all x, y ∈ R+. (2)

For the sake of convenience, we denote by Hϱ the set{
L ∈ C((0, 1),R+) :

∫ 1

0
ϱ−1

(∣∣∣∣∣
∫ 1

2

s
L(τ)dτ

∣∣∣∣∣
)

ds < ∞

}
.

Here, ϱ : R+ → R+ is an increasing homeomorphism. Let us introduce the following
notations:

f0 := lim
s→0+

f (s)
φ(s)

and f∞ := lim
s→∞

f (s)
φ(s)

.

As is well known, it follows from (B) that

φ−1(x)ψ−1
2 (y) ≤ φ−1(xy) ≤ φ−1(x)ψ−1

1 (y) for all x, y ∈ R+ (3)
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and
L1(0, 1) ∩ C(0, 1) ⊊ Hψ1 ⊆ Hφ ⊆ Hψ2

(see, e.g., [1] or [2]).
It is a well-established fact that any function of the form

φ(s) =
n

∑
k=1

|s|mk−2s

satisfies the assumption (B)with ψ1(s) = min{sm1−1, smn−1} and ψ2(s) = max{sm1−1, smn−1}
for s ∈ R+ (see, e.g., [3,4]). Here, n ∈ N, mk ∈ (1, ∞) for 1 ≤ k ≤ n and mj ≤ ml
for 1 ≤ j ≤ l ≤ n. If n = 1, then φ(s) = |s|m−2s for some m ∈ (1, ∞). In this case,
φ(xy) = φ(x)φ(y) for all x, y ∈ R+.

The existence of positive solutions to problem (1) has been extensively researched in re-
cent decades. For instance, under various conditions on f0 and f∞, Agarwal,
Lü and O’Regan [5] examined the existence and multiplicity of positive solutions to prob-
lem (1) with φ(s) = |s|p−2s and q ≡ 1. Among other results, the existence of two positive
solutions to problem (1) was shown for λ, belonging to a certain open interval if either
f0 = f∞ = 0 or f0 = f∞ = ∞. Subsequently, Wang [1] extended these results in [5] to
generalized φ-Laplacian problems, assuming that φ satisfies (A) and h ∈ C[0, 1]. More
recently, Kim [6] further extended the results of [1,5] to singularly weighed φ-Laplacian
problems, as demonstrated by the following theorem.

Theorem 1. Assume that (A) and h ∈ Hψ1 \ {0} hold.

(i) If f0 = f∞ = 0, then there exists λ1 > λ̄ > 0 such that problem (1) has two positive solutions
for λ > λ1 and no positive solutions for λ < λ̄.

(ii) If f0 = f∞ = ∞, then there exists λ > λ2 > 0 such that problem (1) has two positive
solutions for λ ∈ (0, λ2) and no positive solutions for λ > λ.

However, in Theorem 1, there is no information for the existence of positive solutions
on [λ̄, λ1] or [λ2, λ]. When q ≡ 1, h ∈ Hψ1 and h ̸≡ 0 on any subinterval in (0, 1),
Xu and Lee [7] showed the existence, nonexistence, and multiplicity of positive solutions to
problem (1) for all positive values of the parameter λ. For other interesting results, we refer
the reader to [8–13] and the references therein.

Under the more general assumptions of q and h above, this paper aims to extend the
results of previous studies [1,5–7]. The main result is stated as follows:

Theorem 2. Assume that (A) and h ∈ Hψ1 \ {0} hold.

(1) If f0 = f∞ = 0, then there exists λ∗
0 ≥ λ0

∗ > 0 such that problem (1) has two positive
solutions for λ > λ∗

0 , one positive solution for λ ∈ [λ0
∗, λ∗

0 ], and no positive solutions for
λ ∈ (0, λ0

∗).

(2) If f0 = f∞ = ∞, then there exists λ∗
∞ ≥ λ∞

∗ > 0 such that problem (1) has two positive
solutions for λ ∈ (0, λ∞

∗ ), one positive solution for λ ∈ [λ∞
∗ , λ∗

∞], and no positive solutions
for λ > λ∗

∞.

In [2], the nonlinearity f = f (t, s) was required to satisfy f (t0, 0) > 0 for some
t0 ∈ [0, 1], so that all non-negative solutions are positive ones. By Theorem 1 in [2], the
existence of an unbounded solution component was guaranteed, and further analysis of
the behavior of f at ∞ showed the existence, nonexistence, and multiplicity of positive
solutions to problem (1). Compared with the results in [2], the nonlinearity f = f (s)
considered in this paper may satisfy f (0) = 0, which allows for the trivial solution u ≡ 0
for every λ ∈ R+. While Theorem 1 in [2] provides the existence of an unbounded solution
component to problem (1), it does not guarantee the existence of positive solutions. To
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address this limitation, we have utilized the fixed point theorem concerning cone expansion
and compression of norm type and the Leray–Schauder’s fixed point theorem in this paper.

The remainder of this paper is structured as follows. Section 2 summarizes relevant ex-
isting results without proof, providing a foundation for the subsequent proof of Theorem 2.
Section 3 introduces auxiliary lemmas that are crucial for proving Theorem 2 and provides
the proof of Theorem 2. Additionally, some examples are provided to illustrate the applica-
tion of Theorem 2. Finally, Section 4 summarizes the main results, highlights limitations of
our study, and outlines future research directions.

2. Preliminaries

Throughout this section, we assume that (A) and h ∈ Hφ \ {0} hold. The usual
maximum norm in a Banach space C[0, 1] is denoted by

∥v∥∞ := max{|v(t)| : t ∈ [0, 1]} for v ∈ C[0, 1].

Let ah := inf{t ∈ (0, 1) : h(t) > 0}, bh := sup{t ∈ (0, 1) : h(t) > 0},

āh := sup{t ∈ (0, 1) : h(z) > 0 for all z ∈ (ah, t)},

b̄h := inf{t ∈ (0, 1) : h(z) > 0 for all z ∈ (t, bh)},

γ1
h :=

1
4
(3ah + āh), γ2

h :=
1
4
(b̄h + 3bh) and γ∗

h :=
1
2
(γ1

h + γ2
h).

Then, since h : (0, 1) → R+ is a continuous function with h ̸≡ 0, we have two cases:
either

(i) 0 ≤ ah < āh ≤ b̄h < bh ≤ 1

or
(ii) 0 ≤ ah = b̄h < bh ≤ 1 and 0 ≤ ah < āh = bh ≤ 1.

Hence,
h(t) > 0 for t ∈ (ah, āh) ∪ (b̄h, bh), and 0 ≤ ah < γ1

h < γ2
h < bh ≤ 1. (4)

Let qh := q1 min{γ1
h, 1 − γ2

h} ∈ (0, 1). Here,

q0 := min{q(t) : t ∈ [0, 1]} > 0 and q1 := ψ−1
2

(
1

∥q∥∞

)[
ψ−1

1

(
1
q0

)]−1
∈ (0, 1].

Define K as the set of all non-negative continuous functions u satisfying

u(t) ≥ qh∥u∥∞ for t ∈ [γ1
h, γ2

h].

Then, K is a cone in C[0, 1]. For α > 0, let

Kα := {u ∈ K : ∥u∥∞ < α}, ∂Kα := {u ∈ K : ∥u∥∞ = α},

and Kα := Kα ∪ ∂Kα.
For L ∈ Hφ, consider the following problem:{

(q(t)φ(v′(t)))′ + L(t) = 0, t ∈ (0, 1),
v(0) = v(1) = 0.

(5)

Define the function S : Hφ → C[0, 1], for L ∈ Hφ \ {0}, by

S(L)(t) =


∫ t

0 φ−1
(

1
q(s)

∫ σ
s L(τ)dτ

)
ds, if 0 ≤ t ≤ σ,∫ 1

t φ−1
(

1
q(s)

∫ s
σ L(τ)dτ

)
ds, if σ ≤ t ≤ 1,

(6)
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where σ = σ(L) is a constant satisfying∫ σ

0
φ−1

(
1

q(s)

∫ σ

s
L(τ)dτ

)
ds =

∫ 1

σ
φ−1

(
1

q(s)

∫ s

σ
L(τ)dτ

)
ds. (7)

For any L ∈ Hφ and any σ satisfying (7), S(L) is monotonically increasing on [0, σ) and
monotonically decreasing on (σ, 1]. Note that σ = σ(L) is not necessarily unique, but S(L)
is invariant under the choice of σ satisfying (7) (see, e.g., [1]).

Lemma 1. ([2], Lemma 1 and Lemma 2) Assume that (A) holds, and let L ∈ Hφ be given. Then,
(1) S(L) is a unique solution to problem (5) with the following property:

S(L)(t) ≥ min{t, 1 − t}q1∥S(L)∥∞ for t ∈ [0, 1],

and thus, S(L) ∈ K.
(2) If L ̸≡ 0, then there exists a subinterval [σ1, σ2] of (0, 1) such that (S(L))′(t) > 0, t ∈

(0, σ1), (S(L))′(t) = 0 for t ∈ [σ1, σ2] and (S(L))′(t) < 0, t ∈ (σ2, 1).

Define the function G : R+ ×K → C(0, 1) by

G(λ, u)(t) = λh(t) f (u(t)) for (λ, u) ∈ R+ ×K and t ∈ (0, 1).

Obviously, G(λ, u) ∈ Hφ for all (λ, u) ∈ R+ ×K.
Now, we introduce the operator H : R+ ×K → C[0, 1] by

H(λ, u) ≡ S(G(λ, u)) for (λ, u) ∈ R+ ×K.

To be precise, for (λ, u) ∈ R+ ×K,

H(λ, u)(t) =

{ ∫ t
0 φ−1( 1

q(s)

∫ σ
s G(λ, u)(τ)dτ)ds, if 0 ≤ t ≤ σ,∫ 1

t φ−1( 1
q(s)

∫ s
σ G(λ, u)(τ)dτ)ds, if σ ≤ t ≤ 1,

where σ = σ(λ, u) is a constant that satisfies∫ σ

0
φ−1

(
1

q(s)

∫ σ

s
G(λ, u)(τ)dτ

)
ds =

∫ 1

σ
φ−1

(
1

q(s)

∫ s

σ
G(λ, u)(τ)dτ

)
ds. (8)

Remark 1. (1) By Lemma 1 (1), H(R+ ×K) ⊆ K.
(2) It is evident that (1) has a solution if and only if H(λ, ·) has a fixed point in K.
(3) From H(0, u) = 0 for any u ∈ K, it follows that 0 is a unique solution to problem (1)

with λ = 0.
(4) Lemma 1 (2) ensures that if u is a nonzero solution to problem (1) with λ > 0, then u is a

positive solution.

Lemma 2. ([2], Lemma 4) Assume that (A) holds, and let h ∈ Hφ hold. Then, the operator
H : R+ ×K → K is completely continuous, i.e., compact and continuous.

Finally, we introduce the fixed point theorem concerning cone expansion and com-
pression of norm type and the Leray–Schauder fixed point theorem.

Theorem 3. ([14]) Let (Y, ∥ · ∥) be a Banach space, and let P be a cone in Y. Assume that Γ1 and
Γ2 are open subsets of Y with 0 ∈ Γ1 and Γ1 ⊂ Γ2. Let Q : P ∩ (Γ2 \ Γ1) → P be a completely
continuous operator, such that if either
∥Qu∥ ≤ ∥u∥ for u ∈ P ∩ ∂Γ1 and ∥Qu∥ ≥ ∥u∥ for u ∈ P ∩ ∂Γ2 or
∥Qu∥ ≥ ∥u∥ for u ∈ P ∩ ∂Γ1 and ∥Qu∥ ≤ ∥u∥ for u ∈ P ∩ ∂Γ2,
then Q has a fixed point in P ∩ (Γ2 \ Γ1).
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Theorem 4. ([15]) Let X be a Banach space, and let P be a closed, convex, and bounded set in X.
Assume that Q : P → P is completely continuous. Then, Q has a fixed point in P.

3. Proof of Main Results

Lemma 3. Assume that (A), h ∈ Hψ1 \ {0} and f0 = f∞ = 0 hold. Let I = [a, b] be a compact
interval with 0 < a < b. Then, there exist mI and MI such that 0 < mI ≤ ∥u∥∞ ≤ MI for any
positive solution u to problem (1) with λ ∈ I.

Proof. Let w := (4b)−1ψ1(h−1
∗ ) > 0. Here,

h∗ := max

{∫ 1
2

0
ψ−1

1

(
q−1

0

∫ 1
2

s
h(τ)dτ

)
ds,
∫ 1

1
2

ψ−1
1

(
q−1

0

∫ s

1
2

h(τ)dτ

)
ds

}
> 0.

It follows from f∞ = 0 that there exists sw > 0 such that f (s) ≤ wφ(s) for s ∈ [sw, ∞). Let
Cw = max{ f (s) : s ∈ [0, sw]} > 0. Then,

f (s) ≤ Cw + wφ(s) for s ∈ R+. (9)

We begin by showing the existence of MI satisfying ∥u∥∞ ≤ MI for any positive solution
u to problem (1) with λ ∈ I. By contradiction, we assume that there exists a sequence
{(λn, un)} such that un is a positive solution to problem (1) with λ = λn ∈ I and ∥un∥∞ →
∞ as n → ∞. Then, for sufficiently large N > 0, Cw ≤ wφ(∥uN∥∞), and by (9),

f (uN(t)) ≤ 2wφ(∥uN∥∞) for t ∈ [0, 1]. (10)

Let σN denote a positive real number such that ∥uN∥∞ = uN(σN). We restrict our
attention to the case where σN ≤ 1

2 , because the case where σN > 1
2 can be treated

analogously. Then, by (3) and (10),

∥uN∥∞ =
∫ σN

0
φ−1

(
1

q(s)

∫ σN

s
λNh(τ) f (uN(τ))dτ

)
ds

≤
∫ 1

2

0
φ−1

(
q−1

0

∫ 1
2

s
h(τ)dτ2bwφ(∥uN∥∞)

)
ds

≤
∫ 1

2

0
ψ−1

1

(
q−1

0

∫ 1
2

s
h(τ)dτ

)
dsφ−1(2bwφ(∥uN∥∞))

≤ h∗ψ−1
1 (2bw)∥uN∥∞.

Consequently, w ≥ (2b)−1ψ1(h−1
∗ ). This contradicts the choice of w.

Next, we show the existence of mI satisfying ∥u∥∞ ≥ mI > 0 for any positive solution
u to problem (1) with λ ∈ I. By contradiction, we assume that there exists a sequence
{(λn, un)} such that un is a positive solution to problem (1) with λ = λn ∈ I and ∥un∥∞ →
0 as n → ∞. Since f0 = 0, there exists δ > 0 such that f (s) ≤ wφ(s) for s ∈ [0, δ].
Since ∥un∥∞ → 0 as n → ∞, there exists N > 0 such that ∥uN∥∞ < δ and f (uN(t)) ≤
wφ(uN(t)) ≤ wφ(∥uN∥∞) for all t ∈ [0, 1]. By the same reasoning as above, we can easily
show that the choice of w leads to a contradiction. Thus, the proof is complete.

Lemma 4. Assume that (A), h ∈ Hψ1 \ {0} and f∞ = 0 hold. If (1) has a positive solution at
λ = λ0, then (1) has at least one positive solution for all λ > λ0.

Proof. Let u0 be a positive solution to problem (1) with λ = λ0 and let λ̂ > λ0 be fixed.
Consider the following modified problem:{

(q(t)φ(u′(t)))′ + λ̂h(t) f (γ1(t, u(t))) = 0, t ∈ (0, 1),
u(0) = u(1) = 0,

(11)
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where γ1 : [0, 1]×R+ → R+ is a continuous function defined, for (t, s) ∈ [0, 1]×R+, by

γ1(t, s) =

{
s, if s ≥ u0(t),
u0(t), if 0 ≤ s < u0(t).

Define T1 : K → K by T1(u) = S(F1(u)) for u ∈ K, where F1(u)(t) = λ̂h(t) f (γ1(t, u(t)))
for u ∈ K and t ∈ (0, 1). Since F1(u) ∈ Hψ1 for any u ∈ K, by Lemma 1, T1 is well defined.
It is easy to see that T1 is completely continuous on K, and u is a solution to problem (11) if
and only if u = T1u.

First, we show the existence of a solution to problem (11).
(i) Assume that f is bounded on R+. From the definition of γ1 and the continuity of f ,

it follows that there exists r > 0 such that ||T1(u)||∞ < r for all u ∈ K, and T1(Kr) ⊆ Kr.
Then, by Theorem 4, there exists u ∈ Kr such that T1(u) = u, and consequently, problem
(11) has a non-negative solution u.

(ii) Assume that f is unbounded on R+. Let ϵ ∈ (0, λ̂−1ψ1(h−1
∗ )) be given. Here, h∗ is

the constant in the proof of Lemma 3. Since f∞ = 0, there exists r1 > 0 such that

f (s) ≤ ϵφ(s) for all (t, s) ∈ [0, 1]× [r1, ∞). (12)

Since f is unbounded on R+ and γ1(t, s) = s for (t, s) ∈ [0, 1]× [∥u0∥∞, ∞), there exists
r2 > 0 such that r2 > r1 and

f (γ1(t, s)) ≤ f (r2) for all (t, s) ∈ [0, 1]× [0, r2]. (13)

Let u ∈ Kr2 be given. Then, by (12) and (13),

f (γ1(t, u(t))) ≤ f (r2) ≤ ϵφ(r2) for all t ∈ [0, 1]. (14)

Let σ denote a positive constant satisfying ∥T1(u)∥∞ = T1(u)(σ). We restrict our attention
to the case where σ ≤ 1

2 , since the case where σ > 1
2 can be treated analogously. Then,

by (3), (14), and the choice of ϵ,

∥T1(u)∥∞ =
∫ σ

0
φ−1

(
1

q(s)

∫ σ

s
λ̂h(τ) f (γ1(τ, u(τ)))dτ

)
ds

≤
∫ 1

2

0
φ−1

(
q−1

0

∫ 1
2

s
h(τ)dτϵλ̂φ(r2)

)
ds

≤ h∗φ−1(ϵλ̂φ(r2)) ≤ h∗ψ−1
1 (ϵλ̂)r2 < r2.

By Theorem 4, there exists u ∈ Kr2 such that T1(u) = u, and consequently, problem (11)
has a non-negative solution u.

Finally, we show that if u is a solution to problem (11), then u(t) ≥ u0(t) for t ∈ [0, 1].
If it is true, by the definition of γ1, u is a positive solution to problem (1) with λ = λ̂, and
consequently, the proof is complete.

Assume on the contrary that there exists a solution u to problem (11) such that u(t) ≱
u0(t) for t ∈ [0, 1]. Since u(0) = u(1) = u0(0) = u0(1) = 0, there exists a subinterval
(t1, t2) ⊆ (0, 1) such that u0(t)− u(t) > 0 for t ∈ (t1, t2) and u0(t1)− u(t1) = u0(t2)−
u(t2) = 0. From the fact that u0 − u ∈ C[0, 1], it follows that there exists t∗ ∈ (t1, t2)
such that u0(t∗)− u(t∗) = max{u0(t)− u(t) : t ∈ [t1, t2]} > 0 and u′

0(t
∗) = u′(t∗). For

t ∈ (t1, t2),

−(q(t)φ(u′(t)))′ = λ̂h(t) f (γ1(t, u(t))) = λ̂h(t) f (u0(t)) ≥ λ0h(t) f (u0(t)) = −(q(t)φ(u′
0(t)))

′,

i.e.,
−(q(t)φ(u′(t)))′ ≥ −(q(t)φ(u′

0(t)))
′ for t ∈ (t1, t2). (15)
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For t ∈ (t1, t∗), integrating (15) from t to t∗, q(t)φ(u′(t)) ≥ q(t)φ(u′
0(t)). Since φ is increasing,

u′(t) ≥ u′
0(t) for t ∈ (t1, t∗). (16)

Integrating (16) from t1 to t∗, u0(t∗)− u(t∗) ≤ 0, which contradicts the choice of t∗. Thus,
the proof is complete.

Lemma 5. Assume that (A), h ∈ Hψ1 \ {0} and f0 = f∞ = ∞ holds. Let I = [a, b] be a compact
interval with 0 < a < b. Then, there exist mI and MI such that 0 < mI ≤ ∥u∥∞ ≤ MI for any
positive solution u to problem (1) with λ ∈ I.

Proof. First, we show the existence of MI satisfying ∥u∥∞ ≤ MI for any positive solution
u to problem (1) with λ ∈ I. By contradiction, we assume that there exists a sequence
{(λn, un)} such that un is a positive solution to problem (1) with λ = λn ∈ I and ||un||∞ →
∞ as n → ∞.

Let C∗ ∈ (ψ2(h−1
∗∗ ), ∞) be given. Here,

h∗∗ = min

{
γ1

hψ−1
2

(
a∥q∥−1

∞

∫ γ∗
h

γ1
h

h(τ)dτ

)
, (1 − γ2

h)ψ
−1
2

(
a∥q∥−1

∞

∫ γ2
h

γ∗
h

h(τ)dτ

)}
.

Recall that γ∗
h = 2−1(γ1

h + γ1
h) > 0 and note that h∗∗ > 0 by (4). By f∞ = ∞, there exists

K > 0 such that f (s) ≥ C∗φ(s) for s > K. For all n, un ∈ K, and un(t) ≥ qh∥un∥∞ for
t ∈ [γ1

h, γ2
h]. For sufficiently large N > 0, ∥uN∥∞ > q−1

h K and uN(t) ≥ K for t ∈ [γ1
h, γ2

h].
Thus,

f (uN(t)) ≥ C∗φ(uN(t)) for all t ∈ [γ1
h, γ2

h]. (17)

Let σN denote a positive real number such that uN(σN) = ∥uN∥∞. We restrict our attention
to the case where σN ≥ γ∗

h , because the case where σN < γ∗
h can be treated analogously.

Since uN(t) ≥ uN(γ
1
h) for t ∈ [γ1

h, σN ], by (17),

λNh(t) f (uN(t)) ≥ aC∗h(t)φ(uN(γ
1
h)) for all t ∈ [γ1

h, σN ].

Thus, by (3),

uN(γ
1
h) =

∫ γ1
h

0
φ−1

(
1

q(s)

∫ σN

s
λNh(τ) f (uN(τ))dτ

)
ds

≥
∫ γ1

h

0
φ−1

(
a∥q∥−1

∞

∫ γ∗
h

γ1
h

h(τ)dτC∗φ(uN(γ
1
h))

)
ds

≥ γ1
hψ−1

2

(
a∥q∥−1

∞

∫ γ∗
h

γ1
h

h(τ)dτ

)
φ−1

(
C∗φ(uN(γ

1
h))
)

≥ h∗∗ψ−1
2 (C∗)uN(γ

1
h),

which contradicts the choice of C∗.
Next, we show the existence of mI satisfying ∥u∥∞ ≥ mI > 0 for any positive solution

u to problem (1) with λ ∈ I. By contradiction, we assume that there exists a sequence
{(λn, un)} such that un is a positive solution to problem (1) with λ = λn ∈ I and ∥un∥∞ → 0
as n → ∞. Since f0 = ∞, there exists δ > 0 such that f (s) ≥ C∗φ(s) for s ∈ [0, δ]. Since
∥un∥∞ → 0 as n → ∞, there exists N > 0 such that ∥uN∥∞ < δ and f (uN(t)) ≥ C∗φ(uN(t))
for all t ∈ [0, 1]. By the same reasoning as above, we can easily show that the choice of C∗

leads to a contradiction. Thus, the proof is complete.

Lemma 6. Assume that (A), h ∈ Hψ1 \ {0}, and f0 = ∞ hold. If (1) has a positive solution at
λ = λ0, then (1) has at least one positive solution for all λ ∈ (0, λ0).
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Proof. Let u0 be a positive solution to problem (1) with λ = λ0 and let λ̂ ∈ (0, λ0) be fixed.
Consider the following modified problem:{

(q(t)φ(u′(t)))′ + λ̂h(t) f (γ2(t, u(t))) = 0, t ∈ (0, 1),
u(0) = u(1) = 0,

(18)

where γ2 : [0, 1]×R+ → R+ is a continuous function defined, for (t, s) ∈ [0, 1]×R+, by

γ2(t, s) =

{
u0(t), if s > u0(t),
s, if 0 ≤ s ≤ u0(t).

Define T2 : K → K by T2(u) = S(F2(u)) for u ∈ K, where F2(u)(t) = λ̂h(t) f (γ2(t, u(t)))
for u ∈ K and t ∈ (0, 1). Since F2(u) ∈ Hψ1 for any u ∈ K, by Lemma 1, T2 is well defined. It
is easy to see that T2 is completely continuous on K, and u is a solution to problem (18) if and
only if u = T2u. By the definition of γ2, f (γ2(t, s)) ≤ max{ f (s) : 0 ≤ s ≤ ∥u0∥∞} ∈ (0, ∞)
for all (t, s) ∈ [0, 1]×R+ and there exists r1 > 0 such that ||T2(v)||∞ < r1 for all v ∈ K,
which implies

∥T2(v)∥∞ ≤ ∥v∥∞ for v ∈ ∂Kr1 . (19)

Let ū0 = min{u0(t) : t ∈ [γ1
h, γ2

h]} > 0. Since γ2(t, s) = s for (t, s) ∈ [γ1
h, γ2

h]× [0, ū0],

lim
s→0+

min{ f (γ2(t, s)) : t ∈ [γ1
h, γ2

h]}
φ(s)

= lim
s→0+

f (s)
φ(s)

= f0 = ∞.

For fixed

C∗ = ∥q∥∞λ̂−1 max

ψ2

[qh

∫ γ∗
h

γ1
h

ψ−1
2

(∫ γ∗
h

s
h(τ)dτ

)
ds

]−1
, ψ2

[qh

∫ γ2
h

γ∗
h

ψ−1
2

(∫ s

γ∗
h

h(τ)dτ

)
ds

]−1
,

there exists r∗ ∈ (0, ū0) such that

f (γ2(t, s)) ≥ C∗φ(s) for all (t, s) ∈ [γ1
h, γ2

h]× (0, r∗).

Take r2 ∈ (0, min{r1, r∗}), and let v ∈ ∂Kr2 be given. Then, 0 ≤ v(t) ≤ r2 < r∗ and

f (γ2(t, v(t))) ≥ C∗φ(v(t)) ≥ C∗φ(qh∥v∥∞) for all t ∈ [γ1
h, γ2

h]. (20)

Let σN denote a positive real number such that T2(v)(σ) = ∥T2(v)∥∞. We have two cases:
either σ ≥ γ∗

h or σ < γ∗
h . We restrict our attention to the case where σ ≥ γ∗

h , because the
case where σ < γ∗

h can be treated analogously. By (3) and (20),

∥T2(v)∥∞ =
∫ σ

0
φ−1

(
1

q(s)

∫ σ

s
λ̂h(τ) f (γ2(τ, v(τ)))dτ

)
ds

≥
∫ γ∗

h

γ1
h

φ−1
(
∥q∥−1

∞ λ̂C∗φ(qh∥v∥∞)
∫ γ∗

h

s
h(τ)dτ

)
ds

≥
∫ γ∗

h

γ1
h

ψ−1
2

(∫ γh

s
h(τ)dτ

)
dsφ−1(∥q∥−1

∞ λ̂C∗φ(qh∥v∥∞))

≥
∫ γ∗

h

γ1
h

ψ−1
2

(∫ γh

s
h(τ)dτ

)
dsψ−1

2 (∥q∥−1
∞ λ̂C∗)qh∥v∥∞,

which implies, by the choice of C∗,

∥T2(v)∥∞ ≥ ∥v∥∞ for v ∈ ∂Kr2 . (21)
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By (19) and (21), in view of Theorem 3, problem (18) has a nonzero solution u with
∥r2∥∞ ≤ ∥u∥∞ ≤ ∥r1∥∞. By Lemma 1 (2), u is a positive solution to problem (18).

We show that if u is a positive solution to problem (18), then u(t) ≤ u0(t) for t ∈ [0, 1].
If it is true, by the definition of γ2, u is a positive solution to problem (1) with λ = λ̂, and
thus, the proof is complete.

By contradiction, suppose that there exists a solution u to problem (18) such that
u(t) ≰ u0(t) for t ∈ [0, 1]. Since u(0) = u(1) = u0(0) = u0(1) = 0, there exists an
interval (t1, t2) ⊆ (0, 1) such that u(t) − u0(t) > 0 for t ∈ (t1, t2) and u(t1) − u0(t1) =
u(t2)− u0(t2) = 0. From the fact that u− u0 ∈ C[0, 1], it follows that there exists t∗ ∈ (t1, t2)
such that u(t∗)− u0(t∗) = max{u(t)− u0(t) : t ∈ [t1, t2]} > 0 and u′(t∗) = u′

0(t
∗). For

t ∈ (t1, t2),

−(q(t)φ(u′(t)))′ = λ̂h(t) f (γ2(t, u(t))) = λ̂h(t) f (u0(t)) ≤ λ0h(t) f (u0(t)) = −(q(t)φ(u′
0(t)))

′,

i.e.,
−(q(t)φ(u′(t)))′ ≤ −(q(t)φ(u′

0(t)))
′ for t ∈ (t1, t2). (22)

For t ∈ (t1, t∗), integrating (22) from t to t∗, q(t)φ(u′(t)) ≤ q(t)φ(u′
0(t)). Since φ is

increasing,
u′(t) ≤ u′

0(t) for t ∈ (t1, t∗). (23)

Integrating (23) from t1 to t∗, u(t∗)− u0(t∗) ≤ 0, which contradicts the choice of t∗. Thus,
the proof is complete.

Now, we give the proof of Theorem 2.

Proof of Theorem 2. (1) Let λ∗
0 := inf{µ : (1) have at least two positive solutions for

λ > µ} and λ0
∗ := inf{λ : (1) have at least one positive solution}. By Theorem 1 (i), λ∗

0
and λ0

∗ are well defined and λ∗
0 ≥ λ0

∗ ≥ λ̄ > 0. From Lemma 4, it follows that problem (1)
has two positive solutions for λ > λ∗

0 , one positive solution for λ > λ0
∗, and no positive

solutions for λ ∈ (0, λ0
∗). To complete the proof, it is enough to show that problem (1)

has a positive solution for λ = λ0
∗. By the definition of λ0

∗ and Theorem 1 (i), there exists
a sequence {(λn, un)} such that λ̄ ≤ λ0

∗ < λn ≤ λ0
∗ + n−1 and un is a positive solution

to problem (1) with λ = λn. Then, λn → λ0
∗ as n → ∞, and by Lemma 3, there exists

m, M > 0 such that m ≤ ∥un∥∞ ≤ M for all n. Since {un} is bounded and H = H(λ, u) is
compact, there exists a subsequence {H(λnk , unk )} of {H(λn, un)} and u∗ ∈ K such that
H(λnk , unk ) → u∗ as nk → ∞. Since H(λn, un) = un, unk → u∗ as nk → ∞. Since H is
continuous, u∗ = lim

nk→∞
unk = lim

nk→∞
H(λnk , unk ) = H(λ∗, u∗). Since ∥un∥∞ ≥ m for all n,

u∗ ̸≡ 0. Thus, (1) has a positive solution u∗ for λ = λ0
∗.

(2) Let λ∞
∗ := sup{µ : (1) have at least two positive solutions for λ ∈ (0, µ)} and

λ∗
∞ := sup{λ : (1) have at least one positive solution}. By Theorem 1 (ii), λ∗

∞ and λ∞
∗ are

well defined and λ∗ ≥ λ∗ ≥ λ > 0. From Lemma 6, it follows that problem (1) has two
positive solutions for λ ∈ (0, λ∞

∗ ), one positive solution for λ ∈ (0, λ∗
∞), and no positive

solutions for λ > λ∗
∞. To complete the proof, it is enough to show that problem (1) has a

positive solution for λ = λ∗
∞. By the same reasoning as in the proof of Theorem 2 (1), we

can complete the proof.

Finally, we give some examples to illustrate the main result (Theorem 2).

Example 1. Consider the following problem:
(

1
1 + t2 φ(u′(t))

)′
+ λh(t) f (u(t)) = 0, t ∈ (0, 1),

u(0) = u(1) = 0.
(24)
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Here, φ : R → R is an odd increasing homeomorphism defined by

φ(s) = s + s2 for s ∈ R+

and h : (0, 1) → R+ is a continuous function defined by

h(t) = 0 for t ∈ [0,
1
18

] and h(t) = (t − 1
18

)(1 − t)−α for t ∈ (
1
18

, 1).

Consequently, taking

ψ1(y) = min{y, y2} and ψ2(y) = max{y, y2} for y ∈ R+,

the assumption (A) holds. Since ψ−1
1 (s) = max{

√
s, s} for s ∈ R+, h ∈ Hψ1 \ L1(0, 1) for any

α ∈ [1, 2).
Let f1 and f2 be continuous functions on R+ defined by

f1(s) = sβ1 for s ∈ R+ and f2(s) =
{

sβ2 , for s ∈ [0, 1],
es−1, for s ∈ (1, ∞).

Here, β1 ∈ (1, 2) and β2 ∈ (0, 1) are constants. Then,

( f1)0 = ( f1)∞ = 0 and ( f2)0 = ( f2)∞ = ∞.

Consequently, by Theorem 2, there exist λ∗
0 ≥ λ0

∗ > 0 and λ∗
∞ ≥ λ∞

∗ > 0 such that problem (24)
with f = f1 has two positive solutions for λ > λ∗

0 , one positive solution for λ ∈ [λ0
∗, λ∗

0 ], and
no positive solutions for λ ∈ (0, λ0

∗), and problem (24) with f = f2 two positive solutions for
λ ∈ (0, λ∞

∗ ), one positive solution for λ ∈ [λ∞
∗ , λ∗

∞], and no positive solutions for λ > λ∗
∞.

4. Conclusions

In this work, we investigated the existence, nonexistence, and multiplicity of positive
solutions to problem (1) for all positive values of the parameter λ. Our analysis relied on
the application of two key fixed point theorems: the cone expansion and compression of
norm-type theorem, and the Leray–Schauder fixed point theorem.

While our findings contribute to the understanding of problem (1), there are still
some questions that remain unanswered and opportunities for further research. Under
the assumption that f (0) > 0 instead of f0 = ∞ in Theorem 2 (2), we can show that
λ∗

∞ = λ∞
∗ (see [2]). It is still unknown whether λ∗

∞ = λ∞
∗ or λ0

∗ = λ∗
0 in Theorem 2,

even in the simplified case where q ≡ 1 and φ(u) = u′′. Our investigation focused on
problems with Dirichlet boundary conditions. As part of a natural extension of this work,
future research could explore analogous problems with nonlocal boundary conditions.
Such an extension would provide a more comprehensive understanding of how boundary
conditions influence the existence of positive solutions.
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