Analysis Time-Delayed SEIR Model with Survival Rate for COVID-19 Stability and Disease Control
Abstract
:1. Introduction
2. The Stability Analysis of Equilibria
2.1. Some Results and Discussion
- (i)
- The first point is a disease-free equilibrium where there is no spread of disease and that satisfies the conditions It is given by
- (ii)
- The second point is endemic equilibrium that is used to predict the spread of disease and satisfy the conditions and So that
The Basic Number of Reproduction
2.2. The Analysis of Local Stability
- (i)
- (ii)
- ℏ ≥ 0, m ≥ 0, l > 0, and n > 0.
2.3. Global Stability of Endemic
- (a)
- and then
- (b)
- and then and .
- (c)
- and then and
- (d)
- if and .
3. Analysis of Hopf Bifurcation
- (i)
- or
- (ii)
- and
4. Numerical Simulations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anderson, R.M.; May, R.M. Population Biology of Infectious Diseases: Part I. Nature 1979, 280, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.M.; May, R.M. Infectious Diseases of Humans: Dynamics and Control; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Dieudonné, J. Foundations of Modern Analysis; Academic Press: New York, NY, USA, 1960. [Google Scholar]
- Capasso, V. Mathematical Structure of Epidemic Systems, Vol. 97 of Lecture Notes in Biomathematics; Springer: Berlin, Germany, 1993. [Google Scholar]
- Diekmann, O.; Jheesterbeek, J.A.P. Mathematical Epidemiology of Infectious Disease; John Wiley & Sons: London, UK, 2000. [Google Scholar]
- Hethcote, H.W.; Tudor, D.W. Integral Equation Models for Endemic Infectious Diseases. J. Math. Biol. 1980, 9, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Huo, H.F.; Ma, Z.P. Dynamics of a Delayed Epidemic Model with Non-Monotonic Incidence Rate. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 459–468. [Google Scholar] [CrossRef]
- McCluskey, C.C. Complete Global Stability for an SIR Epidemic Model with Delay-Distributed or Discrete. Nonlinear Anal. Real World Appl. 2010, 11, 55–59. [Google Scholar] [CrossRef]
- Xiao, D.; Ruan, S. Global Analysis of an Epidemic Model with Non-Monotone Incidence Rate. Math. Biosci. 2007, 208, 419–429. [Google Scholar] [CrossRef]
- Hethcote, H.W.; Stech, H.W.; Vand den Driessche, P. Periodicity and stability in Epidemic Models: A survey. In Differential Equations and Applications in Ecology, Epidemics, and Population Problems; Busenberg, S.N., Cooke, K.L., Eds.; Academic Press: New York, NY, USA, 1981; pp. 65–82. [Google Scholar]
- Cooke, K.L. Stability Analysis for a Vector Disease Model. Rocky Mt. J. Math. 1979, 9, 31–42. [Google Scholar] [CrossRef]
- Hethcote, H.W.; Van den Driessche, P. An SIS Epidemic Model with Variable Population Size and a Delay. J. Math. Biol. 1995, 34, 177–194. [Google Scholar] [CrossRef] [PubMed]
- Bretta, E.; Hara, T.; Ma, W.; Takeuchi, Y. Global Asymptotic Stability of an SIR Epidemic Model with Distributed Time Delay, Nonlinear Analysis. Theory Methods Appl. A 2001, 47, 4107–4115. [Google Scholar] [CrossRef]
- Song, X.; Cheng, S. A Delay-Differential Equation Model of HIV Infection of CD4T-cells. J. Korean Math. Soc. 2005, 42, 1071–1086. [Google Scholar] [CrossRef]
- Awasthi, A.K.; Kumar, S.; Garov, A.K. A Mathematical Model for Stability Analysis of Covid Like Epidemic/Endemic/Pandemic. medRxiv 2021. [CrossRef]
- Phitchayapak, W.; Prathom, K. Stability Analysis of SEIR Model Related to Efficiency of Vaccines for COVID-19 Situation. Heliyon 2021, 7, e06812. [Google Scholar]
- Youssef, H.M.; Alghamdi, N.A.; Ezzat, M.A.; El-Bary, A.A.; Shawky, A.M. A Modified SEIR Model Applied to the Data of COVID-19 spread in Saudi Arabia. AIP Adv. 2020, 10, 125210. [Google Scholar] [CrossRef] [PubMed]
- Youssef, H.; Alghamdi, N.; Ezzat, M.A.; El-Bary, A.A.; Shawky, A.M. Study on the SEIQR Model and Applying the Epidemiological Rates of COVID-19 Epidemic Spread in Saudi Arabi. Infect. Dis. Model. 2021, 6, 678–692. [Google Scholar] [PubMed]
- Tipsri, S.; Chinviriyasit, W. Stability Analysis of SEIR Model with Saturated Incidence and Time Delay. Int. J. Appl. Phys. Math. 2014, 4, 42. [Google Scholar] [CrossRef]
- Hassard, B.D.; Azarinoff, N.D.K.; Wan, Y.H. Theory and Applications of Hopf Bifurcation; Cambridge University: Cambridge, UK, 1981. [Google Scholar]
- Marsden, J.E.; McCracken, M. The Hopf Bifurcation and Its Applications; Springer: New York, NY, USA, 1976. [Google Scholar]
- Zhang, T.; Liu, J.; Teng, Z. Stability of Hopf bifurcation of a Delayed SIRS Epidemic Model with Stage Structure. Nonlinear Anal. Real World Appl. 2010, 11, 293–306. [Google Scholar] [CrossRef]
- Greenhalgh, D. Effects of heterogeneity on the spread of HIV/AIDS among Intravenous Drug Users in Shooting Galleries. Math. Biosci. 1996, 136, 141–186. [Google Scholar] [CrossRef]
- Greenhalgh, D.; Khan, Q.J.A.; Lewis, F.I. Hopf bifurcation in Two SIRS Density Dependent Epidemic Models. Math. Comput. Model. 2004, 39, 1261–1283. [Google Scholar] [CrossRef]
- Greenhalgh, D.; Khan, Q.J.A.; Lewis, F.I. Recurrent Epidemic Cycles in an Infectious Disease Model with a Time Delay in Loss of Vaccine Immunity. Nonlinear Anal. 2005, 63, 779–788. [Google Scholar] [CrossRef]
- Hethcote, H.W.; Yi, L.; Zhujun, J. Hopf bifurcation in Models for Pertussis Epidemiology. Math. Comput. Model. 1999, 30, 29–45. [Google Scholar] [CrossRef]
- Annas, S.; Paratama, M.I.; Rifandi, M.; Sanusi, W.; Side, S. Stability Analysis and Numerical Simulation of SEIR Model for Pandemic COVID-19 Spread in Indonesia. Chaos Solitons Fractals 2020, 139, 110072. [Google Scholar] [CrossRef]
- Rusliza, A.; Budin, H. Stability Analysis of Mutualism Population Model with Time Delay. Int. J. Math. Comput. Phys. Electr. Comput. Eng. 2012, 6, 151–155. [Google Scholar]
- Diekmann, O.; Heesterbeek, J.A.P.; Roberts, M.G. The Construction of Next-Generation Matrices for Compartmental Epidemic Models. J. R. Soc. Interface 2010, 7, 873–885. [Google Scholar] [CrossRef] [PubMed]
- Anonim 2020. Situasi Kasus Indonesia. Available online: https://covid19.kemkes.go.id/ (accessed on 5 April 2020).
- Ruan, S.; Wen, J. On the Zeros of Transcendental Functions with Applications to Stability of Delay Differential Equations with Two Delays. Dyn. Contin. Discret. Impuls. Syst. Ser. A Math. Anal. 2003, 10, 863–874. [Google Scholar]
- Willems, J.L. Stability Theory of Dynamical Systems; Nelson: New York, NY, USA, 1970. [Google Scholar]
- Wei, H.; Li, X.; Martchev, M. An Epidemic Model of a Vector-Borne Disease with Direct Transmission and Time Delay. J. Math. Anal. Appl. 2008, 342, 895–908. [Google Scholar] [CrossRef]
- LaSalle, J.P. The Stability of Dynamical Systems; SIAM: Philadelphia, PA, USA, 1976. [Google Scholar]
- Hale, J.K.; Lunel, S. Introduction to Functional Differential Equations; Springer: New York, NY, USA, 1993. [Google Scholar]
- Anonim. Proyeksi Jumlah Penduduk Indonesia 2020. 2020. Available online: https://databoks.katadata.co.id/datapublish/2020/01/02/inilah-proyeksi-jumlah-penduduk-indonesia-2020 (accessed on 29 March 2020).
- Spencer, J.A.; Shutt, D.P.; Moser, S.K.; Clegg, H.; Wearing, H.J.; Mukundan, H.; Manore, C.A. Epidemiological parameter review and comparative dynamics of influenza, respiratory syncytial virus, rhinovirus, human coronvirus, and adenovirus. medRxiv 2020. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, M.H.; El-Azab, T.; AlNemer, G.; Sohaly, M.A.; El-Metwally, H. Analysis Time-Delayed SEIR Model with Survival Rate for COVID-19 Stability and Disease Control. Mathematics 2024, 12, 3697. https://doi.org/10.3390/math12233697
Hassan MH, El-Azab T, AlNemer G, Sohaly MA, El-Metwally H. Analysis Time-Delayed SEIR Model with Survival Rate for COVID-19 Stability and Disease Control. Mathematics. 2024; 12(23):3697. https://doi.org/10.3390/math12233697
Chicago/Turabian StyleHassan, M. H., Tamer El-Azab, Ghada AlNemer, M. A. Sohaly, and H. El-Metwally. 2024. "Analysis Time-Delayed SEIR Model with Survival Rate for COVID-19 Stability and Disease Control" Mathematics 12, no. 23: 3697. https://doi.org/10.3390/math12233697
APA StyleHassan, M. H., El-Azab, T., AlNemer, G., Sohaly, M. A., & El-Metwally, H. (2024). Analysis Time-Delayed SEIR Model with Survival Rate for COVID-19 Stability and Disease Control. Mathematics, 12(23), 3697. https://doi.org/10.3390/math12233697