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Abstract: This paper presents a mathematical model to examine the transmission and stability
dynamics of the SEIR model for COVID-19. To assess disease progression, the model incorporates
a time delay for the time delay and survival rates. Then, we use the Routh-Hurwitz criterion,
the LaSalle stability principle, and Hopf bifurcation analysis to look at disease-free and endemic
equilibrium points. We investigate global stability using the Lyapunov function and simulate the
model behavior with real COVID-19 data from Indonesia. The results confirm the impact of time
delay on disease transmission, mitigation strategies, and population recovery rates, demonstrating
that rapid interventions can significantly impact the course of the epidemic. The results indicate that
a balance between transmission reduction and vaccination efforts is crucial for achieving long-term
stability and controlling disease outbreaks. Finally, we estimate the degree of disease control and
look at the rate of disease spread by simulating the genuine data.

Keywords: SEIR model; delay differential equations; stability analysis; Hopf bifurcation; Lyapunov
function; COVID-19
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1. Introduction

Diseases and infections have always presented an imminent threat to both people and
animals. Diseases transmitted by blood or physical touch are known as communicable
diseases. Infections and diseases can also be transmitted by inhaling an airborne virus or
being bitten by a virus carrier. Moreover, breathing in airborne viruses or being attacked
by virus carriers can spread infections and diseases. These diseases and infections have
the potential to spread widely, resulting in pain, losses to the community, and financial
damages. These diseases cost millions of lives each year, especially in developing countries.
Mathematical modeling is an excellent tool for studying these diseases from various per-
spectives, estimating potential losses, and developing strategies to combat them. Utilizing
mathematical modeling to investigate these diseases from many perspectives, predict pos-
sible losses, and create strategies is a great idea. We followed these references [1-9] since
numerous models have been created to investigate the rates of transmission of various
endemic species.

Many authors have investigated epidemiological models with latent or incubation
periods because several diseases, like tuberculosis and influenza, have a period in which an
individual is diseased but not yet infectious. A typical technique to illustrate this incubation
period is to introduce an exposed class [10] or apply a delay effect [11]. As a result, it is
vital to compare these two modeling strategies with the incubation time.
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All SIR, SIS, SIRS, and SEIR epidemic models utilize delay differential equations
(DDESs) to simulate different infectious durations. Hethcote and van den Driessche [12]
analyzed an SIS epidemic model that considers the length of infectiousness and has a
constant time delay. Global stability in a SIR epidemic model with a given delay, which
characterizes the time it takes for an individual to lose infectiousness, was analyzed by
Beretta et al. [13]. Song and Cheng [14] investigated how time delay affects the stability of
an endemic equilibrium.

Plenty of authors have investigated the global stability of SIR, SIRS, SIS, and SEIR
models extensively, employing the directed Lyapunov technique to establish it. The devel-
opment of a Lyapunov function has made it easier to study global stability at the endemic
equilibrium point. We studied the following references to learn more about the Lyapunov
function [15-18]. For instance, the SEIR model is one of the models used to study infectious
diseases, where S stands for susceptible, a healthy person who is susceptible to infection;
E for exposed, a person infected with the disease but not yet contagious, meaning the
disease is in its incubation period; I for infectious, a person who can infect others before
showing symptoms; and R for recovered, a person who has recovered from the disease
due to vaccination or isolation. For more details related to epidemic models and infectious
diseases like the SEIR model, we refer to these references [12,13,19].

In epidemiology, Hopf bifurcation is a crucial dynamic phenomenon. It can be used
to interpret the periodic behavior of different infectious diseases. We refer the reader
to [20-26] for more details about a Hopf bifurcation. It has been shown that delays can
affect a system’s dynamic behavior in a complex way.

Suwardi Annas, etc. in [27] analyzed the stability of the COVID-19 pandemic’s trans-
mission throughout Indonesia and presented the SEIR model as the model Equation (1):

dfT(tt) — x— (pI(t) + 5+ 9)S(1),

d%’f) — pI(1)S(t) — (6 +K)E(E),

d;i(:) — QE(t) — (e + o+ x)I(1), M
‘”;75” = oI(t) + 9S(t) — kR(t),

where N(t) = S(t) + E(t) + I(t) + R(t) represents the human population, S represents
the number of susceptible individuals, E represents the number of exposed individuals,
I represents the number of infected individuals, R represents the number of recovered
individuals, with x the rate of birth or death population, # is the probability of changing
from S to E, 6 is the probability of changing from E to I, with the rate of death population
by COVID-19, €, ¢ is the probability of changing from I to R, and ¢ is the vaccine of the
susceptible population.

Many diseases’ incubation periods are well-established. For example, it takes three to
fourteen days for dengue fever symptoms to manifest, seven days for the bird flu latent
period to manifest, and up to a year or more for the rabies incubation period to last. As a
result, there is a connection between the current disease spread and a certain past quantity
that can be easily observed as a constant number.

Applying the SEIR mathematical model, a research project was performed to inves-
tigate the spread of COVID-19. The model was built using the SEIR model, which is
presented in [28]. The generation matrix approach, as detailed in [29], was utilized in
the model analysis to determine the basic reproduction number and general stability of
COVID-19 propagation. We obtained secondary data on COVID-19 in Indonesia from [30]
to conduct computational simulations of the model, and then simulated our results to
estimate and mitigate the number of COVID-19 cases in Indonesia.

To the best of our knowledge, there is no previous literature specifically dealing with
model Equation (1) in the case of time delay that represents the improvement of the results
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in [27]. Therefore, our motivation in this paper is to provide the modification of the model
Equation (1) by adding the time delay, &, for S, I comparables, knowing that the fraction
of infected individuals and the survival rate is the e *¢ term at time t. We then go on to
discuss the Hopf bifurcation and stability analysis of the SEIR model, which is represented
in the model Equation (2). Finally, we rate this model by numerically simulating some data.
The following is the structure of the model Equation (2):

dﬁT(tt) =k yl(t—E)S(t— E)e™ — (x + 9)S(t),

P _ 1 - 25 - e — (0.4 0E(D),

dldiit) =0E(t) — (e+ 0 +x)I(t), @)
‘”;75” — GI(t) + 0S(t) — kR(8).

On the other hand, ¢ > 0 refers to the time before exposure to injury as a result of a decrease
in social interaction, either as a result of government-implemented disease control measures
or as a voluntary choice made by citizens.

This work aims to explore the analysis of local stability in both endemic and disease-
free equilibriums. After that, we use the Lyapunov function to investigate the epidemic
equilibrium’s global stability. Thus, we use the delay, ¢, as a parameter to examine the Hopf
bifurcation and show that a Hopf bifurcation occurs when the positive equilibrium loses
stability due to a delay that exceeds a threshold value. Finally, we employ a simulation of
the actual data to determine the degree of strength, moderateness, or weakness of disease
control and to look at the rate of disease transmission.

The organization of this paper is as follows. In Section 2, we recognize the existence of
positive equilibrium and examine the local stability in the equilibriums, including both the
epidemic and disease-free states. After that, we use the global stability of Lyapunov function
equilibrium to investigate the endemic situation. In Section 3, we use the linearized system’s
characteristic Equation (2) to determine whether Hopf bifurcations exist at the epidemic
equilibrium point. In Section 4, we use the Maple tool to determine the equilibrium points,
find the next generation matrix, and find the Jacobian to determine the eigenvalues, and
then use Matlab to simulate data to illustrate the level of disease control and the disease’s
rate of spread using the dde23 function.

2. The Stability Analysis of Equilibria

This section examines both the model equation’s endemic equilibrium Equation (2)
and the local stability of a disease-free equilibrium.

2.1. Some Results and Discussion

In this part of the article, our focus is on the disease-free and endemic equilibrium
points. These points are given by

(i) The first point is a disease-free equilibrium where there is no spread of disease and
that satisfies the conditions E = I = 0. It is given by

Ey = (S,E,I,R) = (Kiﬁ,o,o, (Kiﬁ)) 3)



Mathematics 2024, 12, 3697

4of 16

(ii) The second point is endemic equilibrium that is used to predict the spread of disease
and satisfy the conditions S # 0, E # 0, I # 0, and R # 0. So that

(e+0+%) (k+6)
noe=x¢ 7/
1Kfe ¢ — (e+0+x)(k+6) (k+8)
170(k+0)exs ’
170xe™ ¢ —(e4-0+x) (k+0) (k+0)
17(e+o+x)(k+0)e ¢ ’
176%0ke "¢+ (e+0+x) (k40) [K204((8—0)0+8 (0 +€) )x+06¢€]
7(e+o+x) (k+0)0Kere

E1=(S,E,[LR) =

The Basic Number of Reproduction g

The expected value of multiple vulnerable populations contracting the infection during
the endemic is represented by the basic reproduction number. Equations containing only
infection can be used to calculate basic reproduction numbers. The approach used to
calculate basic reproduction numbers employs the next-generation matrix G, which is
defined as:

G=Fvl

The first step to find G, we obtain

[ n1Se=*¢ B (0 +x)E
H_{ 0 ]'m_[ﬂE—@+U+@I'

Then we obtain F and V1 matrices as follows:

_ - 0
[0 nSe*¢ 1 (6+x)
T ( o0 >’V : ( GIE = )

0+x)(e+o+x)  (e+o+k)

And then by substituting Ej, we obtain

)
O+x)e+o+K)(k+98)

Ry =

So that the endemic equilibrium point, E;, can be written as:

(K+l9)§R0’
w1 ),
E1=(S,E,I,R) =
1= GBI ) (1, 1),

o (k+8)%(e+0+k) (k4+0)Ro+nxe ¢ K20+ ((8—0)0+8(0+¢) ) k+00¢]
nx(e+0+x) (k+0) (k+8)e *E Ry :

2.2. The Analysis of Local Stability

This part discusses the local stability of the endemic, E1, and the disease-free equi-
librium, Eg. We obtained the Jacobian matrices of the proposed SEIR model with a model
Equation (2) as follows:

—nle e —x — 0 0 —nSe e 0
_ nle "G —k—0 75Se~*e¢ 0
J= 0 6 —e—oc—x 0 ©)

4 0 o —K
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Consequently, we have to determine the Jacobian matrix’s eigenvalue in Equation (5) by

—nle e —x — 89— ¢ 0 —1Se *e—e¢ 0
—KGp—08 —Kk—0— —KGp—08
det(] — oI) = nle *te k—0—0 1nSe *te 0 —0.
0 0 —€—0—K—0 0
% 0 o —K—0

Now, in the following theorem, we discuss the stability of the first equilibrium point,
Ep,if Rg < 1, forall ¢ > 0.

Theorem 1. The equilibrium free of disease if o < 1, then Ey is locally asymptotically stable;
otherwise, E is unstable for all { > 0.

Proof. Using det(] — ¢I)g, = 0, we can obtain the characteristic equation of Eo:

Qxe*Ce—00
(et o+ 9 le ket ontote - 1] ©
So that
—KG p—08
(K+Q)(K+l9+Q)[Q2+Q(2K+9+€+U)+(€+0’+K)(K—|—9)—%} =0. (7)

Then from Equation (6), the eigenvalues evaluated at Ey are 07 = —(k+ ) < 0,00 = —x <0,
we have

—KkG =0
92+g(2x+9+e+a)+(e+a+x)(;<+9)—’%: ®)
For ¢ = 0, Equation (8) becomes
> +o2k+0+eto)+(e+a+x)(x+6)(1—Ry) =0. 9)

Thus, the roots of Equation (9) contain negative real parts if #; < 1. Therefore, Ej is
unstable by the Routh criteria if Ry > 1.
For ¢ > 0, let 9 = i@, where @ > 0. Substituting ¢ = i® into Equation (8), we obtain

170xe™"¢
(k+0)

—@?+i2k+0+e+ )0+ (e+0o+x)(k+6) — (cos@¢ —isin@¢) =0. (10)

Hence, we obtain the real and imaginary parts, as

7;{6
’Zi’i 9 cos ¢ = (e + 0 +x)(x +0) — @2,
_K@'
zsz 5 sin@wf = —@(2xk+ 60 + €+ 0). (11)

After the two equations in (11) are squared and added, this produces

1202K2e—2K¢

@+ [(e+ 0+ K)? + (k+0)| @ + (e + 0+ )2 (k +6)* — o7

=0. (12)
The Equation (12) can be written as

@ + [(e+ o412+ (x+0)%| @+ (e + o+ x)2(c+0)(1-RY) =0.  (13)
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Let Q = @?, also we denote
a= [(6+0’+K)2+ (K+9)2},b = (e+0+x)2(k+60)%(1—R3).
After that Equation (13) can be written as
Q’+aQ+b=0.

For Equation (13), it is evident that the roots have negative real parts if ¥y < 1. If ¢ # 0,
then Ej is not locally asymptotically stable. Ruan and Wei state that Eg is unstable if g > 1
(see [31] [Corollary 2.4]). O

At this point, assuming Ry > 1 for { > 0, we concentrate on the local stability of the
endemic equilibrium point, E;.

Theorem 2. The equilibrium of endemic if Rg > 1, then Ey is locally asymptotically stable;
otherwise, Eq is unstable for all { > 0.

Proof. The characteristic of Equation (5) evaluated at E; is a fourth-degree polynomial
as follows

o + 110> + hoo? + 30 + hy + <11@3 +ho* + 130+ l4>e*9§ —0, (14)
whereas

h=4+oc+e+0+79,
hp=(e+o+x)(k+0)+(xk+3)+xBx+0+0c+e+6),
hs=(e+o+x)(x+0)(xk+0)+x[(x+9)+ (e+0+x)(x+8)],
hy=x(e+o+x)(x+0)(x+0)
Lh=x&+09)(Ry—1),

10Kxe "¢

b= (k+9)(2x++e)(Ro—1) — (=g

+x(k+9)(Ro—1),

Iy =[(e+0+K)(k+6) +x(2k+0+e+0)](x+8)(Ro— 1) — 7791;0"5 {1+ (K—tﬂ)}'

170x%e e

ly=x(e+o+x)(k+0)(k+3)(Ro—1)— R

For ¢ = 0, Equation (14) becomes

o' + 110> + 120* +a30 + a4 = 0, (15)

where

ap =1,

m=m+h=0Ulck+o+e+0+0)+ (x+09)(Ro—1),
m=h+h=[(e+o+x)(xk+6)+ (k+0)+xBxc+0+0+e+0)]
nOKke ¢

(k+9)Ry’

a3 =Tz +13=(e+0o+x)(x+0)(x+8)+x[(x+8)+ (e +0+x)(x+0)]

+(k+0)(Ro—1)(3k + 0 +¢) —

71(5
10xe [1 L },
Ro (k+9)

+(e+o+x)(x+0)+Kx(2k+0+e+0)](xk+3)(Ry—1) —

n0x%e e

ag=hs+1li=x(x+09)(e+0o+x)(k+6)Ry— R
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If ¥ > 1, itis evident that a; > 0, where i = 0, 1,2, 3, thereby
ag,a1 > 0,a1ap —az >0,
, (16)
az(ayap — az) — agay > 0,a4 > 0.

Then, according to the Routh-Hurwitz criterion, all distinctive roots of Equation (16)
have negative real parts [32]. Therefore, E; is locally asymptotically stable.

When ¢ > 0, we assume @ > 0 and ¢ = @i. Consequently, by modifying Equation (14)
to have ¢ = @i, we find

@* — i@ — hy@? + i@hs + hy + (—i@®l) — @%1, + i@ls + 13)(cos @F — i sin@¢) = 0.

After the separation of the real and imaginary parts, the result is

(l@? — 13) cos @ + (h@® — 30) sin @& = @* — hp@? + hy, a”
(h@® — @) cos @& — (@?lp — 1) sin @ = hz@ — hy@°.
Squaring and adding both equations gives
@8 + (1} —2hy — 2)@® + (K3 — 2myhy — 13 + 21115 + 2hy )@+ as)
+(13 + 2y — 2hahy — 13)@% + 13 — 13 = 0.
Assuming that Q = @2, then Equation (18) can be written in the form
Q*+hQP+1Q*>+mQ+n =0, (19)
where
h=n —2h — 13,
| =15 — 2hyhy — 13 + 2113 + 2Ry, 0)

m =13 + 2lly — 2hohy — 13,
n=ni—12

Lemma 3.3.1 in [33] is satisfied if $y > 1, 11,1, m, n given in Equation (20), respectively, are
positive. []

Lemma 1. Equation (19) has no positive real roots if i > 0, m > 0,1 > 0,and n > 0.
Proof. The left side of Equation (19) is known as
£(Q) = Q* + 1Q® +1Q% + mQ + n. 1)
The derivative of f(Q) with respect to Q consequently is obtained as follows:
£(Q) =4Q% +31Q% +2IQ + m. (22)

Knowing that ' (Q) > 0 for Q > 0 indicates that the function f(Q) is increasing for Q > 0.
Equation (19) has no positive real roots since f(0) =n > 0. O

Remark 1. There is no @ such that i is an eigenvalue of characteristic Equation (19), according
to Lemma 1. Consequently, for all values of the delay ¢ > 0, the real part of all eigenvalues of
Equation (15) is negative according to Rouché’s theorem [34] ([Theorem 9.17.4]).

Now we have established the analysis above, we can deduce the following.

Theorem 3. Suppose that
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(i) Ro>1;

(i) h>0m>0,1>0,andn > 0.

Thus, the endemic equilibrium, Eq, is stable, and it is locally asymptotically stable for all ¢ values
greater than zero.

Remark 2. Theorem 3 states that E; is locally asymptotically stable for all values of delay ¢ > 0
if the parameters satisfy conditions (i) and (ii); in contrast, Eq is locally asymptotically stable
independent of the delay. The stability of E1, however, depends on the delay value; if the conditions
in Theorem 3, in particular, any of the inequalities in (ii), are not satisfied, the endemic equilibrium
may lose stability as the delay varies, which could result in oscillations.

Remark 3. If m < 0, then Qlim f(Q) = oo and f(0) = n < 0 are true. For this purpose,
—>00
Equation (19) has at least one positive root, Q1. As a result, ® = \/Qq indicates that Equation (18)

has at least one positive root.
2.3. Global Stability of Endemic

In this part, we use Lyapunov’s function to study the global stability of the endemic
equilibrium point, Eq, of a model Equation (2) if ¥y > 1.

Theorem 4. (Lyapunov Stability Theorem) Assuming that Ry > 1, the endemic equilibrium
point, Eq, is globally stable. However, if Ry < 1, then Eq is unstable.

Proof. We consider the proposed SEIR model on the first three variables only (S, E, and I).
The Lyapunov function on R3. can be represented as follows:

(5-§) , (E-E)  (1-1)  (R-R)

VIS E ) =" 2 2 2

. - _ (k+9)
since E; = (S, E, I) = (W =), S (R - 1)).
It is not difficult to realize thatat S = S*,E = E*,and = [*, R=R*,V(S,E,I) > 0
and V (S, E, I) = 0. Now, since we have evaluated V's derivative about t, we have

ds dE oI . dR
S+ (E—E) L+ (1= 1) +(R—R)S

V'(S,E 1) =(5— 5% = "

=(S—S") [k —ySlexp™ —(x + 0
(I—I*)[GE

)| )S] + (E— E*)[SIexp *¢ —(6 +«x)E]
(k1 + 0 +1)I] + (R — R*)[al(t)+l95( )—KR( )]
[(S S*)(Kiﬁ 1)+ E E* (%)E e+t7+1<)1}
[1—1* (8)E+(R—R")(£1(t) + 25(1) - ())}
—vSIeXp (s —§*) — (E~E*)]
—x[(§ =5 (K2~ 1) + (E- EY) (g V)E+(1- ') (552 +1)1]
—x{(l—l*)(ﬂ)fs (R=R%)[£1(t) + £5() — R(1)] |
—nSTexp *¢[(S —S*) — (E—E*)] < 0.

If the following conditions hold:
@@ S>S*and *? —1>0,then =¥ > 1.
(b) E>E*and &% >0,then +1>0and ¢ > —1.
() I>TI*and <2t > 0, then €2 +1 > 0and €22 > —1.
(d) V'(S*,E*,I*)=0if S = $*,E = E*,and I = I*.
Thus, the model Equation (2) is globally stable at E; with &y > 1 if it satisfies the
conditions (a)—(d). O
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1
¢1 = — arccos

1

(h@? — 1) (@} — ho@ + hy) + (L@} — @) (h3@1 — I @?)

3. Analysis of Hopf Bifurcation

In this section, we use the time delay, ¢, as the bifurcation parameter to illustrate and
find the conditions in which Hopf bifurcation occurs. The endemic equilibrium, E;, and
the condition Ry > 1 are assumed throughout this section.

We now turn to the analysis of bifurcations. As functions of the bifurcation parameter
¢, we present the solutions of Equation (15).

Theorem 5. Given that @1 is the largest positive simple of Equation (18) and

(i) m<OQor
(ii) m>0andn <0

are satisfied, let us assume that Rg > 1. In this case, Eq is asymptotically unstable when ¢ > ¢q
and stable when & < &1, where

1 (bt —1y) (@] — ho@ + hy) + (1@F — @) (h3@1 — M @7)
¢1 = — arccos 5 3
[ (12(7)1 - 14)2 + (11(7)1 - 13(27)2

The Hopf bifurcation, where ¢ passes through the critical value ¢y, is a family of periodic solutions
that bifurcates from Eq when ¢ = ¢;.

Proof. Let o(§) = x(&) + i@ (&) be the eigenvalues of Equation (14), such that x(¢;) = 0
and @ (1) = @1 for a given initial value of the bifurcation parameter ;.
Assuming that @; > 0, we can deduce the following from Equation (17)

(lb@? — 1) cos @ + (@3 — 3@) sin @F = @* — hp@? + Ty, }

(h@® — I3@) cos @F — (@2l — 1) sin @F = hz@ — hy@5.

So, we obtain that

2jmt

, j=012,...

(h@? —14)? + (h@3 — l3@)? * @

We can additionally confirm the subsequent transversal condition

dReg(S)

> 0.
dg ‘Hl

When ¢ > ¢, the steady state becomes unstable, and the real part of 0(¢) becomes positive
by continuity. In addition, ¢ passes a critical rate ¢; at which a Hopf bifurcation occurs; we
refer to [20,33]. By differentiating Equation (14) in regards to ¢, we find
[4¢ + 31102 + 2hag + hi3 + [3110% + 2lag + Iy — E(hig + lag? + la@ + 1) |e %] 3B
= 0e~ (1> + 12¢* + 130 + Iy).

Then
(dg) 1 4% 4+ 31107 4+ 2hp0 + i3 + (31107 + 210 + 14)e®6E (1107 + 1o + 130 + 14)Je ™%
ag 0e=% (1103 + 1o + 130+ 14)
403 +3Mm10% + 20 + i3 (8he* +2ho+1y)e™®% ¢
0e % (o3 +ho? +130+1y)  o0e % (li®+ho*+lo+1) 0
(30* + 27110° + 20 — 11g) 210° + 1ho* — Iy ¢

QZ(Q4+h1Q3+h2Q2+h3Q+h4) QZ(Q4+11Q3+12Q2—|—13Q+Z4) 6



Mathematics 2024, 12, 3697 10 of 16
Therefore,
-1
sign{d(fle Q)} = sign{Re(l?) }
C Ql(ﬂl g Q=i¢91
_ sz'gn Re |:_ (3@4 + 2h1Q3 + thz - Fl4) + 211Q3 + Z2Q2 — 14 . g :|
Q*(¢* + 10> + 120> +hizo +1y) — @*(0* + 110> + o> + 130 +1s) 0 |y,
_ sign (30} — hp@? — y) (@] — Mo @3 + hy) — 211 @3 (301 — 1y @3)
2 2
(Z)%[((D‘l1 — Flz(D% + Fl4) + (T’lgd)l — Fl1(D§’) ]
I3 + Lh@?) (I3 — ;0>
+sign[ (Is+ 1@21)(3 107)
@}[(ls — b@?)” + (o — 1@7)?]

, { 38 4 2(1} — 2hy — 2)@ + (2hy + 13 — 2Mohs + 21115 — 3) 0 — (W} —13) }
= sign
@2[(0% — 1p@? + 1y)” + (31 — 1y@3)’]

, 308 + 200 + 0¥ —n
= sign 1 L1 5
w%[(w% — I"lz(D% + h4) + (T’lgc’O1 — hl(D:f) ]

From Equation (21), we obtain
Q) = Q* + Q% +1Q* + mQ + n.

Here, i,1 > 0and m > 0,n > 0. As w; is the largest positive simple root of
Equation (18), we obtain
d(Reo)

dg @=01,6=C1

> 0.

According to Rouché’s theorem [3], the root of characteristic Equation (15) continuously
varies from a value less than §; to one greater than ¢, crossing the imaginary axis from the
left to the right. As a result, the transversality criterion is satisfied; at { = ¢1, the conditions
of Hopf bifurcation [35] are satisfied. [

4. Numerical Simulations

In addition to the theoretical analysis of the results in Section 2, we provide some
numerical results of the model Equation (2), which includes additional values for ¢, 6,
and ¢ to determine if the case of investigation is an epidemic or a free-disease case in this
section. Moreover, by analyzing the degree of containment and control as strong, moderate,
or weak, we also examine the rate at which the disease is spreading.

The data used in this analysis are real, as shown in Figures 1-4, and we followed these
references [36,37]. The initial conditions used to simulate our results are N = 26960 x 1072,
So = 37358, Ey = 13923, Iy = 23191, and Ry = 13213. We also depend on some parameters
suchasx = 6.25 x 1073, = 0.62 x 1078, 0 = 0.0006667 , and € = 7.344 x 10~ . The time
period here is in days, so for some drawings we used a duration of 60 days, and for others
we used a duration of 200 days to clarify the drawings more accurately.

Remark 4. Figure 6 in [27] indicates more spread, especially with larger B values, and indicating
an epidemic state also demonstrates varying levels of control.

Remark 5. The worst control is seen in [27] Figure 7, which indicates a more serious epidemtic
condition with a marked increase in infected cases before any decrease.

Remark 6. Furthermore, in [27], the impact of health measures is seen in Figure 8, which indicates
the best control at v = 1%, which implies successful measures, and rapid spread at v = 100%.
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Remark 7. Figure 9 in [27] illustrates the highlights of the effectiveness of health measures at low
“v” values, leading to high recovery numbers.

o X 104 5(t) Curves of SEIR Model
[ vartheta = 0.01
3.5 — yartheta = 0.5
vartheta =1

A

' L ol 4 4 A 4 ks 4 =L !
0 20 40 60 80 100 120 140 160 1BO 200
Time (t)

(a)
<104 S(t) Curves of SEIR Model

— artheta = 0.2
35" — vartheta = 0.5
vartheta =1

LA

DD 2.0 -‘-liﬂ 60 éD 100 ‘I?;D 140 160 1.E-D 200

Time (t)

(b)
Figure 1. (a) in Figure 1 illustrates how values affect the transmission of disease, it is shown
that control improves as “®” decreases. In (b), ¢ = 20% gives the best and excellent control over
disease spread, indicating high effectiveness, but ¢ = 100% represents the worth control, meaning
greater spread. At ¢ = 1%, the minimal spread represents the best control, and at & = 100% the
highest spread.
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2104 R(t) Curves of SEIR Model

— yartheta = 0.01
4.5 1 : — yartheta = 0.5

vartheta=1

1 . . .
1] 20 40 60 BO 100 120 140 160 180 200

Time (t)
(a)
R{t) Curves of SEIR Model

%104
— yartheta = 0.2
4.5 H m— yartheta = 0.5

vartheta =1

1 . \ .
0 20 40 60 BO 100 120 140 160 180 200

Time (t)

(b)
Figure 2. For the recovered people, we have two cases in Figure 2: (a) of well-controlled disease with
significant recovery numbers at low “¢” values. However, in (b) it is shown that low “8” values result
in strong disease control and a high number of recoveries, while high values lead to greater spread.
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E(t) Curves of SEIR Model
14000 ¢

xi =3, theta = 3, vartheta = 0.01
12000 | — i =7, theta = 7, vartheta = 0.5
xi =14, theta = 14, vartheta = 1

10000 |
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i 6000
4000
2000 k
0 M
-2000
0] 10 20 30 40 50 B0
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(a)
E(t) Curves of SEIR Model
14000 7
— i = 3, theta = 0.3, vartheta =0.01
12000 m— i = 7, theta = 0.7, vartheta = 0.5
xi =14, theta = 1.4, vartheta=1
10000
8000
i 6000
4000
2000
ot
-2000
1] 10 20 30 40 50 B0
Time (t)
E(t) Curves of SEIR Model
14000 ¢
i = 3, theta = 0.2, vartheta = 0.01
12000 e i = 7, theta = 0.5, vartheta = 0.5
xi =14, theta = 1, vartheta =1
10000
8000
i, 6000
4000
2000
]
2000 . . \ . . )
0 10 20 30 40 50 60
Time (t)

(©)
Figure 3. The first graph in Figure 3: (a) shows moderate control in an epidemic state. While graph
(b) shows high disease control effectiveness, indicating a state that is close to free of disease. The best
graph (c) illustrates a rapid decrease in exposed individuals. In summary, states close to an epidemic
in (a) and states nearing free of disease in (b,c) are shown.
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w10t I{t) Curves of SEIR Model

|. " m— i = 3, theta = 3, vartheta =0.01
36 f 3 ——— xi= 7, theta = 7, vartheta = 0.5
= xi =14, theta = 14, vartheta = 1

2.8

26§

24F

2.2 ” : : : ; :
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Time (t)

(a)

«10% I(t) Curves of SEIR Model
367

m— i = 3, theta = 0.01, vartheta = 0.3
34 m— i = T, theta = 0.02, vartheta = 0.6
xi =14, theta = 0.4, vartheta = 1

32

\

0 10 20 30 40 50 60

Time (t)

(b)
Figure 4. With a consistent decrease from the start, indicating a strong response in Figure 4 the first
graph (b) exhibits the best control over the disease. Higher ¢ and 6 values, on the other hand, may
result in moderate-to-poor control of diseases, as in (Figure 3c). This might accelerate the spread of the
disease. As a result, the number of infected cases increases more quickly, and control is less effective.
All curves gradually decrease but not as successfully as apparent in a graph (a), which indicates
moderate control. Overall conclusion: a graph (b) illustrates the best disease control, whereas the
plot (a) is in the middle position.

5. Conclusions

We presented a delayed SEIR epidemic model with a latent period for studying local
and global stability. We went further into the main role of time delay and how it affected
this study. The basic reproductive number, Ry, is defined and the dynamical behavior of the
model is examined. The following is a summary of the study’s results. If iy < 1 for all time
delays ¢ > 0, then the disease-free equilibrium is locally asymptotically stable. If Ry > 1 for
all time delays ¢ > 0, then the endemic equilibrium point is locally asymptotically stable.
Applying the Lyapunov functional approach and the LaSalle invariance principle, the
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endemic equilibrium point is globally asymptotically stable if the reproductive number, ¥,
is greater than unity for all time delays. Hopf bifurcation leads to periodic oscillations and
instability for a specific time lag, {. An analysis involves the Hopf bifurcation conditions
for the endemic equilibrium point. The effect of the time lag parameter, ¢, on the behavior
of the infection has been studied. According to the results, the disease can be efficiently
controlled and managed by increasing vaccination rates and minimizing interactions
through precautionary measures. On the other hand, a higher rate of vaccination and
interactions between people may result in moderate-to-poor control of diseases, which
might accelerate the spread of the disease. Despite its simplicity, the basic DDE model
may control huge population densities and display various dynamics, including quasi-
periodic and chaotic patterns. Several other factors affect the speed of disease spread and
its control, such as taking precautionary measures and vaccinating young children. We will
certainly work on implementing this in future research and will apply it to other diseases
like malaria.
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