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Abstract: As an extension of the (univariate) Birnbaum–Saunders distribution, the Type-II generalized
crack (GCR2) distribution, built on an appropriate base density, provides a sufficient level of flexibility
to fit various distributional shapes, including heavy-tailed ones. In this paper, we develop a bivariate
extension of the Type-II generalized crack distribution and study its dependency structure. For
practical applications, three specific distributions, GCR2-Generalized Gaussian, GCR2-Student’s
t, and GCR2-Logistic, are considered for marginals. The expectation-maximization algorithm is
implemented to estimate the parameters in the bivariate GCR2 models. The model fitting results
on a catastrophic loss dataset show that the bivariate GCR2 distribution based on the generalized
Gaussian density fits the data significantly better than other alternative models, such as the bivariate
lognormal distribution and some Archimedean copula models with lognormal or Pareto marginals.

Keywords: heavy-tailed distribution; type-II generalized crack distribution; Spearman’s rho; Kendall’s
tau; EM algorithm; catastrophic loss
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1. Introduction

Researchers have examined diverse classes of distributions to study various facets
of problems. Most loss datasets in the context of actuarial loss modeling share some
common characteristics, such as being skewed to the right, unimodal (multimodal in
certain situations), and having a thin left tail and a moderate to extremely thick right tail.
In recent years, various classes of heavy-tailed distributions, including the subexponential
distribution class, have been studied for modeling heavy-tailed (or extreme) data [1–3].
On the other hand, a different stream of problems, such as the periodic vibrations in
commercial aircraft, have motivated the introduction of the Birnbaum–Saunders (BS)
distribution [4]. The BS distribution models the total time elapsed until a critical threshold
is exceeded by fatigue accumulated on a subject (material) of interest, causing the failure
event (or a crack) of the material to occur. Due to its ability to fit right-skewed data, the
BS distribution is highly effective for modeling numerous scenarios, e.g., situations where
there is an accumulation of a certain factor that drives a quantifiable characteristic to
surpass a critical threshold. See [5] for details on the theoretical properties and applications
of the BS distribution.

Various extensions of the BS distribution have been discussed in the literature. In [6],
an extended version of Birnbaum–Saunders distribution family is introduced using the
density of elliptical distribution in place of the standard normal density that quantifies the
amount of the stress per cycle of material use in the BS setting. In [7], the extreme value
version of the generalized Birnbaum–Saunders (GBS) distribution, whose tail thickness is
determined by that of the auxiliary distribution (i.e., an elliptical distribution), has been
discussed. Some applications of the extreme value BS models can be found in [5,8].
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The (three-parameter) Gaussian crack (lifetime) distribution introduced in [9] is an-
other important extension of the BS distribution. The Gaussian crack (CR) distribution is a
two-component mixture of inverse Gaussian and length-biased inverse Gaussian distribu-
tions with a weight parameter p, and it features increased flexibility to fit various datasets
due to the additional mixture weight parameter. However, the Gaussian crack distribution
relies on the standard normal base density, and thus it lacks heavy-tailedness. The limited
applicability of the Gaussian crack distribution for modeling heavy-tailed data such as
insurance losses motivates the construction of a large class of generalized crack (GCR)
distributions [10]. The GCR distribution class contains the Gaussian crack distribution as a
specific member, and each member of the class is built on a specific choice of a base-density
function that determines the tail characteristics of the resulting GCR distribution. In [10,11],
the GCR distributions with the Student’s t and the generalized Gaussian base-density
functions are applied to catastrophic losses and heavy-tailed precipitation time series,
respectively.

In [12], the GCR distribution class has recently been further extended to the class of
Type-II generalized crack (GCR2) distributions in which an additional shape parameter
τ is included to increase flexibility over the GCR class. The key distributional properties,
such as the tail characteristics of GCR2 distribution, depend on the specification of the
base-density function and the shape parameters involved in each model.

In the literature, several important modeling frameworks allow for the creation of
new distribution families from given ones, including the Azzalini method [13], Lehmann-
type distributions [14], and Topp-Leone families [15]. While each framework possesses
its own distributional characteristics, these general frameworks are common in the sense
that the specification of the baseline distribution function (or a density function) plays a
crucial role in determining key distributional properties of the constructed model. For
instance, the Lehmann-type I setting with Stoppa (baseline) distribution function renders
a model that can be effectively used for actuarial data with extreme observations [16]. In
this sense, the modeling approach used in the construction of the GCR/GCR2 distribution
class is in line with these general frameworks. Typical parametric distributions built
under the aforementioned general frameworks have simple (closed) forms, and thus, they
may not perform well when data features complex (i.e., multimodal) shapes. Due to its
mixture structure, the GCR/GCR2 distribution with an appropriate baseline density can be
advantageous over the simple models in such cases.

Regarding applications for bivariate data with heavy-tailed marginals, a bivariate
GCR distribution in the form of a four-component mixture of independent models has been
constructed in [17]. The authors demonstrate that bivariate GCR models can exhibit useful
dependence structures and serve as valuable models for diverse real-world situations.

This paper aims to extend the univariate GCR2 models to bivariate cases by employing
the mixture model structure used in [17]. Three specific examples of GCR2 distributions, i.e.,
a newly constructed GCR2 model based on the logistic density in addition to the GCR2-t
and the GCR2-GG models introduced in [12], are used as marginals to effectively model
heavy-tailed insurance/catastrophic loss data. We investigate some theoretical properties
of the proposed bivariate models, such as the conditional distribution and the dependence
structure, and discuss the expectation-maximization (EM) algorithm for model estimation.
The applicability of the proposed bivariate GCR2 models and the estimation method is
illustrated through a model fitting to a real disaster loss dataset.

The rest of this paper is organized as follows. Section 2 gives a brief review of the
origin, definition, examples, and key properties of the univariate Type-II generalized
crack distributions for the reader’s convenience. In Section 3, the bivariate Type-II gen-
eralized crack distribution is introduced with some detailed discussions of its theoretical
properties. A method of model estimation and its application on a real catastrophic loss
dataset are presented in Sections 4 and 5, respectively. Finally, Section 6 provides some
concluding remarks.
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2. Type-II Generalized Crack Distribution
2.1. Birnbaum–Saunders Distribution

Birnbaum–Saunders distribution (also known as the fatigue life distribution) intro-
duced in [4] is one of the most popular distributions for modeling the time of a crack (or a
failure) occurrence when a material specimen is used repeatedly and experiences material
fatigue due to the gradual accumulation of stress/damages. The failure event occurs when
the accumulated stress on the material specimen hits a critical threshold w > 0, and the
failure time T is the first hitting time of the accumulated stress to the critical threshold. The
derivation of the Birnbaum–Saunders distribution as an approximate distribution of the
first hitting time of the Brownian motion can be found in [12]. In fact, the BS distribution is
a two-point mixture of the inverse Gaussian (IG) and the length-biased inverse Gaussian
(LB-IG) distributions with equal mixture weights. Formally, the cumulative distribution
function (cdf) and probability density function (pdf) of BS distribution, respectively, are
given as follows:

FBS(x; α, β) = Φ

(
1
α

(√
x
β
−
√

β

x

))
, x > 0, (1)

fBS(x; α, β) =
1
2

f IG(x; α, β) +
1
2

fLB−IG(x; α, β), x > 0, (2)

where

f IG(x; α, β) =

√
β

α
x−3/2ϕ

[
1
α

{(
x
β

)1/2
−
(

β

x

)1/2
}]

(3)

fLB−IG(x; α, β) =
1

α
√

β
x−1/2ϕ

[
1
α

{(
x
β

)1/2
−
(

β

x

)1/2
}]

, (4)

in which β > 0 and α > 0 are the scale and shape parameters, respectively; Φ(·) and ϕ(·)
denote the cdf and pdf of the standard normal distribution, and f IG and fLB−IG denote the
cdf and pdf of the two-parameter IG and the LB-IG distributions, respectively.

2.2. Gaussian Crack Distribution

The Gaussian crack distribution introduced in [9] is an extension of BS distribution by
introducing the weight parameter p ∈ [0, 1] in place of the fixed weight of 1/2 in the BS
distribution. Naturally, the CR distribution allows for higher flexibility compared to the
classical BS distribution. The pdf of the Gaussian crack distribution is given as follows:

fCR(x; α, β, p) = p f IG(x; α, β) + q fLB−IG(x; α, β)

=

(
p
√

β

α
x−3/2 + (1 − p)

1
α
√

β
x−1/2

)
ϕ

[
1
α

{(
x
β

)1/2
−
(

β

x

)1/2
}]

,

for x > 0, where β > 0, α > 0 and 0 ≤ p ≤ 1 are scale, shape, and mixture weight
parameters, respectively, and q = 1 − p.

Even though the right tail of the CR distribution thickens as p decreases, the tail
maintains the shape of an exponential distribution. It is easy to see that the limit of the
hazard rate function of the CR distribution converges to a constant that is greater than
zero, i.e.,

lim
x→∞

fCR(x)
1 − FCR(x)

=
1

2βα2 > 0,

which suggests that the Gaussian crack distribution does not belong to heavy-tailed distri-
bution class [3,18].
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2.3. Generalized Crack Distribution

In [10], the Gaussian CR distribution family has been extended to a large class of
generalized crack (GCR) distribution whose members depend on the specification of the
base-density function g(·), where g(·) is a base (or auxiliary) density function which is
symmetric about zero. The base-density function replaces the standard normal density
function ϕ(·) used for the Gaussian crack density.

Specifically, a random variable T has the generalized crack(GCR) distribution with
base density g, denoted as GCR(α, β, p; g) where the parameters α > 0, β > 0 and the
mixture weight 0 ≤ p ≤ 1, if its pdf is given as

fGCR(x; α, β, p; g) = p f IS(x; α, β; g) + q fLB−IS(x; α, β; g),

where

f IS(x; α, β; g) =

√
β

α
x−3/2 g

[
1
α

{(
x
β

)1/2
−
(

β

x

)1/2
}]

fLB−IS(x; α, β; g) =
1

α
√

β
x−1/2 g

[
1
α

{(
x
β

)1/2
−
(

β

x

)1/2
}]

.

The functions f IS and fLB−IS denotes the pdfs of the inverse symmetric (IS) and the
length-biased inverse symmetric (LB-IS) distribution, respectively, on the base-density
function g(·). The cdf of the GCR(α, β, p; g) distribution is given as:

FGCR(x; α, β, p; g) = G(b(x)) + (2p − 1)
∫ ∞

b(x)

s√
s2 + 4/α2

g(s) ds

where G(x) = 1 − G(x) is the survival function of the distribution with the cdf
G(x) =

∫ x
0 g(s)ds corresponding to the base-density function g(·), and

b(x) = 1
α

[√
β/x −

√
x/β

]
.

A general expression for the nth raw moments of the IS and LB-IS random variable,
along with details on the tail behavior of the GCR distribution, is provided in [10]. Their
findings demonstrated that, with an appropriate choice of the base-density function, the
heavy-tailed generalized crack distribution performs better than many well-known para-
metric distributions, such as lognormal, Pareto type II, and Weibull distributions, which
are frequently used in modeling positively skewed and heavy-tailed extreme data sets.

2.4. Type-II Birnbaum–Saunders (BS2) Distribution

The Type-II Birnbaum–Saunders distribution extends the BS distribution by introduc-
ing another shape parameter τ. Applying the inverse transform method to Equation (1),
it can easily be verified that the following stochastic relationship holds. Let us define a
random variable T as

T = β

(
αZ +

√
α2Z2 + 4
2

)2

where Z is a standard normal random variable. The Type-II Birnbaum–Saunders (BS2)
distribution includes an additional shape parameter τ > 0 to the above expression, defined
formally as

T = β

(
αZ +

√
α2Z2 + 4
2

)1/τ

.
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The pdf of the Type-II Birnbaum–Saunders (BS2) distribution is

fBS2(x; α, β, τ) =

(
2τ

αβ

)[
1
2

(
β

x

)τ+1
+

1
2

(
x
β

)τ−1
]

ϕ

[
1
α

{(
x
β

)τ

−
(

β

x

)τ}]
=

1
2

f (1)BS2(x; α, β, τ) +
1
2

f (2)BS2(x; α, β, τ),

where α > 0, β > 0, τ > 0 are model parameters, and

f (1)BS2(x; α, β, τ) =

(
2τ

αβ

)(
β

x

)τ+1
ϕ

[
1
α

{(
x
β

)τ

−
(

β

x

)τ}]
f (2)BS2(x; α, β, τ) =

(
2τ

αβ

)(
x
β

)τ−1
ϕ

[
1
α

{(
x
β

)τ

−
(

β

x

)τ}]
.

The cdf of BS2 distribution is

FBS2(x; α, β, τ) = Φ
[

1
α

{(
x
β

)τ

−
(

β

x

)τ}]
. (5)

Like the BS distribution, the BS2 distribution is a two-point mixture of densities
f (1)BS2 and f (2)BS2 with equal weights. However, with the extra shape parameter τ, the BS2
distribution provides more flexibility over the BS distribution. The BS2 distribution reduces
to the Birnbaum–Saunders distribution when τ = 1/2.

2.5. Type-II Generalized Crack Distribution

The Type-II generalized crack distribution class introduced in [12] can be seen as a
natural extension of the Type-II Birnbaum–Saunders distribution by replacing the standard
normal density with a symmetric base density and including the mixture weight parameter
p. Specifically, the pdf of GCR2 distribution with base density g is given as follows:

fGCR2(x; α, β, τ, p; g) = p f (1)GCR2(x; α, β, τ; g) + q f (2)GCR2(x; α, β, τ; g)

where

f (1)GCR2(x; α, β, τ; g) =

(
2τ

αβ

)(
β

x

)τ+1
g
[

1
α

{(
x
β

)τ

−
(

β

x

)τ}]
f (2)GCR2(x; α, β, τ; g) =

(
2τ

αβ

)(
x
β

)τ−1
g
[

1
α

{(
x
β

)τ

−
(

β

x

)τ}]
,

and the cdf is given as

FGCR2(x; α, β, τ, p; g) = pF(1)
GCR2(x; α, β, τ; g) + qF(2)

GCR2(x; α, β, τ; g)

= G(b(x)) + (2p − 1)
∫ ∞

b(x)

s√
s2 + 4/α2

g(s) ds (6)

where

F(1)
GCR2(x; α, β, τ; g) = G(b(x)) +

∫ ∞

b(x)

s√
s2 + 4/α2

g(s) ds

F(2)
GCR2(x; α, β, τ; g) = G(b(x))−

∫ ∞

b(x)

s√
s2 + 4/α2

g(s) ds,
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and b(x) := b(x; α, β, τ) = α−1{(β/x)τ − (x/β)τ}. By the symmetry of the base density g
and using L’Hopital’s rule, it is easy to verify the following asymptotic relation:

lim
x→∞

FGCR2(x; α, β, τ, p; g)
G(b(x))

= lim
x→∞

g(b(x))b′(x)
{

1 + (1 − 2p) −b(x)√
(b(x))2+4/α2

}
g(b(x))b′(x)

= 2(1 − p).

Due to the symmetry of the base density g, G(x) = G(−x), and thus, the GCR2
distribution with base density g has the following asymptotic tail:

FGCR2(x; α, β, τ, p; g) ∼ 2(1 − p)G(b(x)) = 2(1 − p)G
{

α−1[(x/β)τ − (β/x)τ ]
}

,

as x → ∞. Here we write a(x) ∼ b(x) as x → ∞ if limx→∞ a(x)/b(x) = 1. Specifically
when p = 0, FGCR2(x; α, β, τ, p; g) ∼ 2G

{
α−1[(x/β)τ − (β/x)τ ]

}
, and, when p = 1, the tail

of the GCR2 distribution decays to zero faster than G(b(x)) as x → ∞.

2.6. Specific Examples of GCR2 Distributions

The specification of the base-density function on which the GCR2 distribution is
built may depend on some key distributional features, such as tail characteristics that are
required for each specific application. Two practical examples, the GCR2-t and the GCR2-
GG distributions whose base densities are the Student’s t and the generalized Gaussian
(normal) distributions, respectively, are given in [12]. In this paper, we also consider the
GCR2 distribution with the logistic base density, referred to as the GCR2-LG distribution,
as another member of the GCR2 distribution class.

Example 1 (GCR2-t distribution). The Student’s t distribution has a regular varying tail, and
its density function is given as

gt(x; ν) =
Γ
(

ν+1
2

)
√

νπΓ
(

ν
2
)(1 +

x2

ν

)−( ν+1
2 )

, ν > 0.

From this the density of the GCR2-t distribution is expressed as

f t
GCR2(x; α, β, τ, p; ν) =

2τΓ
(

ν+1
2

)
αβ

√
νπΓ

(
ν
2
)[p

(
β

x

)τ+1
+ q
(

x
β

)τ−1
]

×
[

1+
1

α2ν

{(
x
β

)2τ

+

(
β

x

)2τ

−2
}]−( ν+1

2 )

.

The Student’s t distribution belongs to the Maximum Domain of Attraction (MDA) of the
Fréchet distribution with index ν, which means that the distribution of a properly normalized
maximum of independent and identically distributed (i.i.d.) Student’s t random variables converge
to a Fréchet distribution asymptotically. In [12], it is shown that the tail of the GCR2-t distribution
is regularly varying with index τν, and thus, it also belongs to the MDA of the Fréchet distribution.
Compared to the tail of the GCR-t distribution that has the index 1

2 ν, the tail of GCR2-t becomes
heavier than that of the GCR-t when τ becomes smaller than 1/2. Figures 1–3 illustrate the shapes
of the GCR2-t density function for a few sets of prescribed parameter values.
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Figure 1. Density functions of GCR2-t distribution with α = 0.5, β = 5 , τ ∈ {0.3, 0.5, 0.8}, p = 0.5, and
ν = 3.

Figure 2. Density functions of GCR2-t distribution with α ∈ {0.25, 0.75, 1}, β = 5 , τ = 0.3, p = 0.5,
and ν = 5.

Figure 3. Density functions of GCR2-t distribution with α = 0.75, β = 5 , τ = 0.5, p ∈ {0.3, 0.5, 0.8} and
ν = 5.

Example 2 (GCR2-GG distribution). The generalized Gaussian (GG) distribution is a large
distribution family that encompasses both thin to moderately heavy-tailed ones, and it can be
useful for various practical applications. In particular, when θ < 1, the GG distribution has a
subexponential tail (see [3] for details on the subexponential distribution class).
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The pdf of the generalized Gaussian distribution is given as

gGG(x; θ) =
θ

2λΓ
(

1
θ

) exp

(
−
∣∣∣∣ x − µ

λ

∣∣∣∣θ
)

.

Recall that the base-density function is required to be symmetric for the construction of the
GCR2 model. For this, we set µ = 0, and, for the identification of parameters, we further set
λ =

√
Γ(1/θ)/Γ(3/θ). The pdf of the resulting GCR2-GG distribution is given as follows.

f GG
GCR2(x; α, β, τ, p; θ) =

τθ

αβλΓ
(

1
θ

)[p
(

β

x

)τ+1
+q
(

x
β

)τ−1
]

exp

(
−
∣∣∣∣ 1
αλ

[(
x
β

)τ

−
(

β

x

)τ]∣∣∣∣θ
)

.

Figures 4–6 illustrate the shapes of the GCR2-GG density function for a few prescribed sets of
parameter values.

Figure 4. Density functions of GCR2-GG distribution with α = 0.75 , β = 5 , τ∈ {0.3, 0.5, 0.8}, p = 0.5,
and θ = 0.8.

Figure 5. Density functions of GCR2-GG distribution with α = 1 , β = 5 , τ = 0.5, p ∈ {0.2, 0.5, 0.8},
and θ = 1.
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Figure 6. Density functions of GCR2-GG distribution with α ∈ {0.5, 0.75, 1} , β = 5 , τ = 0.5, p = 0.5,
and θ = 1.2.

Example 3 (GCR2-LG distribution). The (symmetric) logistic (LG) distribution has the pdf

gLG(x) =
e−x/s

s(1 + e−x/s)2 .

For parameter identification, we set s =
√

3
π , and thus, the resulting GCR2-LG distribution

has one less parameters than the GCR2-t and GCR2-GG distributions. The pdf of the GCR2-LG
distribution is given as

f LG
GCR2(x; α, β, τ, p)=

(
2πτ√

3αβ

)[
p
(

β

x

)τ+1
+q
(

x
β

)τ−1
]

exp
{
− π√

3α

[(
x
β

)τ
−
(

β
x

)τ]}
(

1 + exp
{
− π√

3α

[(
x
β

)τ
−
(

β
x

)τ]})2 .

Due to the fact that the tail of the logistic distribution is heavier than that of normal distribu-
tion, the corresponding GCR2-LG distribution can be an effective model for datasets with thin to
moderately heavy tails.

Figures 7–9 illustrate the shapes of the GCR2-LG density function for a few sets of prescribed
parameter values.

Figure 7. Density functions of GCR2-LG distribution with α = 1, β = 5 , τ = 0.5 and p ∈ {0.2, 0.5, 0.8}.
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Figure 8. Density functions of GCR2-LG distribution with α =0.75 , β = 5 , τ ∈ {0.5, 0.75, 1} and
p = 0.5.

Figure 9. Density functions of GCR2-LG distribution with α ∈ {0.5, 0.75, 0.9}, β = 5 , τ = 0.3 and
p = 0.5.

As can be seen from Figures 1–9, various density shapes can be formed depending on
the distributional features of the base-density function and the values of shape parameters.
For each specific GCR2 distribution family, the right tail of the distribution becomes heavier
as the mixture weight parameter p becomes smaller. The larger the shape parameter α is,
the heavier the tail becomes, and the opposite is true for the shape parameter τ. For details
of tail properties of the GCR2 distribution, see Theorem 1 and Theorem 2 in [12].

3. Bivariante GCR2 Distribution

In this section, we introduce a bivariate distribution with GCR2 marginals and study
its key theoretical properties. Formally, the bivariate Type-II generalized crack (BVGCR2)
distribution is defined as follows.

Definition 1. A pair of random variables T = (T1, T2) has a bivariate Type-II generalized crack
distribution with base density g and parameters α = (α1, α2), β = (β1, β2), τ = (τ1, τ2) and
p = (p11, p12, p21, p22), denoted as BVGCR2(α, β, τ, p; g), if and only if, its joint pdf is given
as follows:

fBVGCR2(t1, t2; α, β, τ, p; g) = p11 f (1)GCR2(t1; α1, β1, τ1; g) f (1)GCR2(t2; α2, β2, τ2; g)

+ p12 f (1)GCR2(t1; α1, β1, τ1; g) f (2)GCR2(t2; α2, β2, τ2; g)

+ p21 f (2)GCR2(t1; α1, β1, τ1; g) f (1)GCR2(t2; α2, β2, τ2; g)

+ p22 f (2)GCR2(t1; α1, β1, τ1; g) f (2)GCR2(t2; α2, β2, τ2; g), t1, t2 > 0,
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where the mixture weight parameters satisfy 0 ≤ pj ≤ 1, j ∈ J := {11, 12, 21, 22},
∑j∈J pj = 1, and, for each i ∈ {1, 2},

f (1)GCR2(ti; αi, βi, τi; g) =

(
2τi
αiβi

)(
βi
ti

)τi+1
g
[

1
αi

{(
ti
βi

)τi

−
(

βi
ti

)τi
}]

,

and

f (2)GCR2(ti; αi, βi, τi; g) =

(
2τi
αiβi

)(
ti
βi

)τi−1
g
[

1
αi

{(
ti
βi

)τi

−
(

βi
ti

)τi
}]

.

Clearly, BVGCR2(α, β, τ, p; g) is a mixture of four combinations of independent
bivariate distributions. It is easy to see that the marginal distributions of T1 and T2 are
GCR2 (α1, β1, τ1, p1 = p11 + p12; g) and GCR2 (α2, β2, τ2, p2 = p11 + p21; g), respectively.
Please note that for simplicity, we assume that the marginal distributions are built on the
same base-density function g, but any model parameters involved in g are distinct for
each marginal.

3.1. Conditional Distribution

The conditional distribution is useful in simulating a pair of random variables from
the BVGCR2 distribution. From the following relationship between the two mixture
components of the GCR2 distribution,

f (2)GCR2(t; α, β, τ; g)

f (1)GCR2(t; α, β, τ; g)
=

(
t
β

)2τ

,

the conditional density of T2 given T1 = t1, denoted as f2|1(t2|t1; g), can be expressed as

f2|1(t2|t1; g) :=
p11 f (1)(t1; g) f (1)(t2; g) + p12 f (1)(t1; g) f (2)(t2; g)

p1 f (1)(t1; g) + q1 f (2)(t1; g)

+
p21 f (2)(t1; g) f (1)(t2; g) + p22 f (2)(t1; g) f (2)(t2; g)

p1 f (1)(t1; g) + q1 f (2)(t1; g)

=
p11 + p21

(
t1
β1

)2τ1
f (1)(t2; g) + p12 + p22

(
t1
β1

)2τ1
f (2)(t2; g)

p1 + q1

(
t1
β1

)2τ1

=

 p11 + p21

(
t1
β1

)2τ1

p1 + q1

(
t1
β1

)2τ1

 f (1)(t2; g) +

 p12 + p22

(
t1
β1

)2τ1

p1 + q1

(
t1
β1

)2τ1

 f (2)(t2; g).

Here the subscripts and parameters in the density functions have been dropped for nota-
tional convenience. From the expression, we can see that the conditional distribution of T2
given T1 = t1 is also GCR2 (α2, β2, τ2, p2|1; g) where

p2|1 =
p11 + p21(t1/β1)

2τ1

p1 + q1(t1/β1)2τ1
.

Using the conditional distribution, one can easily simulate a pair of random variates
(T1, T2) from the BVGCR2 model; first simulate T1 from the GCR2 (α1, β1, τ1, p1; g) using
the acceptance-rejection method as given in [12], and then simulate, T2 from the conditional
distribution GCR2 (α2, β2, τ2, p2|1; g).
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3.2. Dependence Measures

In this section, we derive expressions for Spearman’s rho and Kendall’s tau of BVGCR2
random variables.

3.2.1. Spearman’s Rho

Spearman’s rho is a commonly used measure of dependence between two random
variables. Due to the invariance under monotone transformations, Spearman’s rho provides
a broad interpretation of the dependence structure for any bivariate distributions. With
marginal densities fT1(t1) and fT2(t2) for the random variables T1 and T2, respectively, and
the joint distribution F(t1, t2) on (t1, t2) ∈ R2

+, the (population version) Spearman’s rho is
defined as

ρs = E(U1,U2)−E(U1)E(U2)√
Var(U1)

√
Var(U2)

= 12
∫ ∞

0

∫ ∞
0 F(t1, t2) fT1(t1) fT2(t2) dt1 dt2 − 3,

(7)

where U1 = FT1(T1) and U2 = FT2(T2) are uniform random variables, i.e., Spearman’s rho
is Pearson’s correlation between transformations of the original random variables into
standard uniform marginals. The following provides an expression for Spearman’s rho of a
pair of random variables with a BVGCR2 distribution.

Proposition 1. Suppose (T1, T2) ∼ BVGCR2(α,β,τ,p;g). Then, Spearman’s rho between T1 and
T2 is expressed as

ρs = 48(p11 p22 − p12 p21)γ1γ2, (8)

where
γi =

∫ ∞

−∞

t√
t2 + 4/α2

i

Gi(t)gi(t) dt, i = 1, 2.

Proof. See Appendix A.

3.2.2. Kendall’s Tau

Kendall’s tau is a measure of association (concordance/discordance) between two
random variables. Formally, for the random variables T1 and T2 with the joint distribution
F(t1, t2) on (t1, t2) ∈ R2

+, the (population version) Kendall’s tau is defined as

τk = P((T1 − T′
1)(T2 − T′

2) > 0)− P((T1 − T′
1)(T2 − T′

2) < 0)
= 4

∫ ∞
0

∫ ∞
0 F(t1, t2) f (t1, t2) dt1 dt2 − 1,

(9)

where the pair (T′
1, T′

2) has the joint distribution F and is independent to (T1, T2).
The following provides an expression for Kendall’s tau of random variables with a

BVGCR2 distribution.

Proposition 2. Suppose (T1, T2) ∼ BVGCR2(α,β,τ,p;g). Then , Kendall’s tau between T1 and T2
is expressed as

τk = 32(p11 p22 − p12 p21)γ1γ2, (10)

where
γi =

∫ ∞

−∞

t√
t2 + 4/α2

i

Gi(t)gi(t) dt, i = 1, 2.

Proof. See Appendix B.

Remark 1. It is important to note that

0 ≤ γ ≤ 1
4

. (11)
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These inequalities can be proven using the symmetry of g(t), G(−t) = 1 − G(t) and integra-
tion by parts. Specifically,

γ =
∫ ∞

−∞

t√
t2 + 4/α2

G(t)g(t) dt

=
∫ 0

−∞

t√
t2 + 4/α2

G(t)g(t) dt +
∫ ∞

0

t√
t2 + 4/α2

G(t)g(t) dt

=
∫ ∞

0

−s√
s2 + 4/α2

G(−s)g(−s) ds +
∫ ∞

0

t√
t2 + 4/α2

G(t)g(t) dt

= −
∫ ∞

0

s√
s2 + 4/α2

(1 − G(s))g(s) ds +
∫ ∞

0

t√
t2 + 4/α2

G(t)g(t) dt

= −
∫ ∞

0

s√
s2 + 4/α2

g(s) ds + 2
∫ ∞

0

s√
s2 + 4/α2

G(s)g(s) ds

=
∫ ∞

0
(2G(s)− 1)

s√
s2 + 4/α2

g(s) ds.

Clearly 2G(s) − 1 ≥ 0 and 0 ≤ s√
s2+4/α2 ≤ 1, for 0 ≤ s < ∞. Then, by the fact∫ ∞

0 G(s)g(s)ds = 3/8, we have

0 ≤
∫ ∞

0
(2G(s)− 1)

s√
s2 + 4/α2

g(s)ds ≤
∫ ∞

0
(2G(s)− 1)g(s)ds = 2

(
3
8

)
− 1

2
=

1
4

.

From this and by Equations (8) and (10), we obtain the following bounds for ρs and τk:

|ρs| ≤
3
4

, |τk| ≤
1
2

,

Note that ρs and τk become the maximum when p11 = p22 = 1/2 and γ attains its maximum
of 1/4.

We also remark that if p11 p22 = p12 p21, and thus ρs = τk = 0, the joint density of the
BVGCR2 model can be expressed as a product of two GCR2 marginals, i.e., the two random variables
are independent.

3.3. Tail Independence

As remarked in the previous section, the dependency measures of the proposed
BVGCR2 model are bounded, and thus, the model may not be suitable for cases where
extreme dependency is required, i.e., market turmoil. Here, we further investigate the
tail dependence of the BVGCR2 model in terms of the upper-tail dependence, which is
defined as

λU = lim
q→1

Pr[T1 > F−1
T1

(q) | T2 > F−1
T2

(q)] = lim
q→1

Pr[T1 > F−1
T1

(q), T2 > F−1
T2

(q)]

1 − q

= lim
q→1

1 − 2q + FT1,T2(F−1
T1

(q), F−1
T2

(q))

1 − q

= 2 − lim
q→1

d
dq

FT1,T2(F−1
T1

(q), F−1
T2

(q)), (12)
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where the last equality is held by L’Hopital’s rule. In fact,

d
dq

FT1,T2(F−1
T1

(q), F−1
T2

(q))

= p11
d
dq

{
F(1)

T1
(F−1

T1
(q))F(1)

T2
(F−1

T2
(q))

}
+ p12

d
dq

{
F(1)

T1
(F−1

T1
(q))F(2)

T2
(F−1

T2
(q))

}
+p21

d
dq

{
F(2)

T1
(F−1

T1
(q))F(1)

T2
(F−1

T2
(q))

}
+ p22

d
dq

{
F(2)

T1
(F−1

T1
(q))F(2)

T2
(F−1

T2
(q))

}
= p11

F(1)
T2

(F−1
T2

(q))
f (1)T1

(F−1
T1

(q))

fT1(F−1
T1

(q))
+ F(1)

T1
(F−1

T1
(q))

f (1)T2
(F−1

T2
(q))

fT2(F−1
T2

(q))


+p12

F(2)
T2

(F−1
T2

(q))
f (1)T1

(F−1
T1

(q))

fT1(F−1
T1

(q))
+ F(1)

T1
(F−1

T1
(q))

f (2)T2
(F−1

T2
(q))

fT2(F−1
T2

(q))


+p21

F(1)
T2

(F−1
T2

(q))
f (2)T1

(F−1
T1

(q))

fT1(F−1
T1

(q))
+ F(2)

T1
(F−1

T1
(q))

f (1)T2
(F−1

T2
(q))

fT2(F−1
T2

(q))


+p22

F(2)
T2

(F−1
T2

(q))
f (2)T1

(F−1
T1

(q))

fT1(F−1
T1

(q))
+ F(2)

T1
(F−1

T1
(q))

f (2)T2
(F−1

T2
(q))

fT2(F−1
T2

(q))

.

Since fT1(t1) = (p11 + p12) f (1)(t1) + (p21 + p22) f (2)(t1), fT2(t2) = (p11 + p21) f (1)(t2)

+(p12 + p22) f (2)(t2), and f (2)(ti) = (ti/βi)
2τi , i = 1, 2, we have

lim
q→1

F(1)
Ti

(F−1
Ti

(q)) = 1, lim
q→1

f (1)Ti
(F−1

Ti
(q))

fTi (F−1
Ti

(q))
= 0, i = 1, 2,

lim
q→1

f (2)T1
(F−1

T1
(q))

fT1(F−1
T1

(q))
=

1
p21 + p22

, lim
q→1

f (2)T2
(F−1

T2
(q))

fT2(F−1
T2

(q))
=

1
p12 + p22

.

Therefore,

lim
q→1

d
dq

FT1,T2(F−1
T1

(q), F−1
T2

(q)) =
p12

p12 + p22
+

p21

p21 + p22
+

p22

p21 + p22
+

p22

p12 + p22
= 2.

Then, by Equation (12), we have λU = 2 − limq→1
d
dq FT1,T2(F−1

T1
(q), F−1

T2
(q)) = 0, i.e.,

the BVGCR2 model lacks upper-tail dependence.

4. Model Parameter Estimation

In this section, we discuss parameter estimation for the bivariate Type-II generalized
crack distribution using the expectation-maximization algorithm. We briefly review the EM
algorithm in a general setting and provide a specific application to the BVGCR2 models.

4.1. Maximum Likelihood Estimation

Suppose (X1, X2, . . . , Xn) is an independent and identically distributed random sam-
ple drawn from a density f (x|θ). Likelihood function is given as

L(θ) = f (x
˜
|θ) =

n

∏
i=1

f (xi|θ).
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The maximum likelihood estimation (MLE) aims to find the parameter estimate that
maximizes the likelihood function, or equivalently, the log-likelihood function:

θ̂MLE = arg max
θ

{log f (x
˜
|θ)}.

In the presence of latent (hidden/unobserved) values, however, the direct maximiza-
tion method often does not provide reliable estimates; hence, other alternative methods are
usually considered, and one such method is the expectation-maximization algorithm.

4.2. Expectation-Maximization Algorithm

For simple mixture models with a small number of mixture components, the direct
optimization of the log-likelihood function may be used to obtain the maximum likelihood
estimates of the model parameters. However, the direct optimization often fails to converge
when the number of mixture components is large relative to the sample size.

The expectation-maximization (EM) algorithm [19] is an efficient iterative procedure
used to compute the maximum likelihood estimates in the presence of missing or hidden
data. When applied to finite mixture model settings, the expectation step renders the
separation of the mixture weight parameters from other model parameters for optimization,
and the maximization step gives an explicit solution for updating the mixture weights. Due
to this, the algorithm is the most widely used maximum likelihood estimation technique
for finite mixture models. For details on recent developments of EM-type algorithms for
the Poisson mixture model and multivariate Gaussian mixture models in complex data
settings, see [20,21], respectively.

Here, we briefly review the general form of the EM algorithm. Suppose we have ob-
served data x

˜
= (x1, x2, . . . , xn) with density p(x

˜
|θ) and some latent (hidden/unobserved

data) z
˜
= (z1, z2, . . . , zn) with density p(z

˜
|θ). The density of the complete data is denoted

by p(x
˜
, z
˜
|θ). The goal of the EM algorithm is to find the MLE, i.e., the maximum of the

observed data likelihood function,

L(θ) = ∑
z
˜

p(x
˜
, z
˜
|θ).

The EM algorithm proceeds by iterating between the following two steps;

• E-Step: This step calculates the expectation of the likelihood with respect to the
conditional distribution of z

˜
given x

˜
and the initial parameter estimate θ(m), i.e.,

Q(θ|θ(m)) = EZ|x
˜

,θ(m) [log p(x
˜
, Z|θ)].

• M-Step: Choose θ̂(m+1) = arg maxθ Q(θ|θ(m)).

Lemma 1. The EM algorithm improves Q(θ|θ(m)). That is, if Q(θ(m+1)|θ(m)) ≥ Q(θ(m)|θ(m)),
then l(θ(m+1)) ≥ l(θ(m)).

Proof. See Appendix C.

We now provide the EM algorithm for the estimation of the parameters in the BVGCR2
model. Let t = (t1, t2, . . . , tn) be a random sample drawn from a BVGCR2(α, β, τ, p; g)
distribution, where ti = (ti1, ti2) is a pair of observations for each i = 1, . . . , n, and the base
density g may have its own parameter(s) such as ν involved in the Student’s t density. We
denote the vector of parameters involved in the base densities by θ = (θ1, θ2). Letting
γ = (α, β, τ, p, θ) be the vector of all model parameters, the likelihood function based on
the incomplete data is

L(γ|t) =
n

∏
i=1

∑
j∈J

qj f j(ti1, ti2; α, β, τ; θ; g)
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where J = {11, 12, 21, 22} is the set of indexes and

f j(ti; γ; g) =


f (1)GCR2(ti1; α1, β1, τ1; θ1; g) f (1)GCR2(ti2; α2, β2, τ2; θ2; g), j = 11

f (1)GCR2(ti1; α1, β1, τ1; θ1; g) f (2)GCR2(ti2; α2, β2, τ2; θ2; g), j = 12

f (2)GCR2(ti1; α1, β1, τ1; θ1; g) f (1)GCR2(ti2; α2, β2, τ2; θ2; g), j = 21

f (2)GCR2(ti1; α1, β1, τ1; θ1; g) f (2)GCR2(ti2; α2, β2, τ2; θ2; g), j = 22.

On the other hand, letting Z = (Z1, Z2, . . . , Zn) be a set of latent variables where
Pr(Zi = j) = qj, j = 1, 2, for each i ∈ {1, . . . , n}, the likelihood function based on the
(augmented) complete data is

L(γ|t, Z) =
n

∏
i=1

∏
j
[qj f j(ti1, ti2; α, β, τ; θ; g)]I(Zi=j)

where I(·) denotes the indicator function.
Let γ(m) = (α(m), β(m), τ(m), p(m), θ(m)) denote the current estimate of γ after m-th

iteration of the EM algorithm. Then, by Bayes’ theorem, we have

p(m)
ij := Pr(Zi = j|ti, γ(m)) =

q(m)
j f j(ti1, ti2; α(m), β(m), τ(m); θ(m))

∑j∈J q(m)
j f j(ti1, ti2; α(m), β(m), τ(m); θ(m))

,

The expectation step (E-step) of the EM algorithm follows.

EZ|t,γ(m) [log L(γ|t, Z)] =
n

∑
i=1

EZ|t,γ(m)

(
log ∏

j
[qj f j(ti1, ti2; α, β, τ; θ; g)]I(Zi=j)

)

=
n

∑
i=1

EZ|t,γ(m)

(
∑
j∈J

I(Zi = j) log[qj f j(ti1, ti2; α, β, τ; θ; g)]
)

=
n

∑
i=1

∑
j∈J

Pr(Zi = j|ti, γ(m)) log
[
qj f j(ti1, ti2; α, β, τ; θ; g)

]
=

n

∑
i=1

∑
j∈J

p(m)
ij log

[
qj f j(ti1, ti2; α, β, τ; θ; g)

]
=

n

∑
i=1

∑
j∈j

p(m)
ij log qj+

n

∑
i=1

∑
j∈J

p(m)
ij log f j(ti1, ti2; α, β, τ; θ; g). (13)

The maximization step (M-step) finds the updated parameter estimates that maximize
the objective function (13), which separates qj and the other parameters (α, β, τ; θ). The
update of qj can be dealt with separately by applying the method of Lagrange multiplier.
The updated estimate is

q(m+1)
j = arg max

q

{
n

∑
i=1

∑
j∈J

p(m)
ij log qj

}
=

(
1
n

n

∑
i=1

p(m)
i,11 , . . . ,

1
n

n

∑
i=1

p(m)
i,22

)′

.

The updated estimates α(m+1), β(m+1), τ(m+1) and θ(m+1) are the maximizers of the
objective function

n

∑
i=1

∑
j∈J

p(m)
ij log f j(ti1, ti2; α, β, τ; θ; g) = (Q1) + (Q2),
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where

(Q1) =
n

∑
i=1

[
(p(m)

i,11 + p(m)
i,12 ) log f (1)GCR2(ti1; α1, β1, τ1; θ1; g)

+ (p(m)
i,21 + p(m)

i,22 ) log f (2)GCR2(ti1; α1, β1, τ1; θ1; g)
]

,

and

(Q2) =
n

∑
i=1

[
(p(m)

i,11 + p(m)
i,21 ) log f (1)GCR2(ti2; α2, β2, τ2; θ2; g)

+ (p(m)
i,12 + p(m)

i,22 ) log f (2)GCR2(ti2; α2, β2, τ2; θ2; g)
]

.

That is, the maximization for (α1, β1, τ1; θ1) can proceed separately from that for (α2, β2, τ2; θ2)
and thus, the dimensionality of the optimization problem is reduced significantly.

5. Applications

In [12], the usefulness of the univariate GCR2 models for heavy-tailed data modeling
has been demonstrated through an application with a real loss dataset. In this section, we fit
several bivariate Type-II generalized crack distributions on a real catastrophic loss dataset
compiled from the International Disaster Database (EM-DAT, www.emdat.be, accessed
on 22 November 2024). Specifically, each observation in the dataset is composed of two
variables: ‘Meteo’ and ‘Hydro’. Marginally, ‘Meteo’ is a quarterly time series of (estimated)
losses from meteorological disasters such as storms and extreme temperatures, spanning
from 1950 to 2022 in Asia, and ‘Hydro’ is a series of (estimated) losses due to hydrological
disasters such as flood and landslide for the same geographical area and the time span.
For bivariate model fitting, we remove the pairs with missing observations, resulting in a
bivariate dataset with 166 observations. The losses are inflation-adjusted to be equivalent
to the US dollar values in 2021.

Table 1 presents summary statistics of losses due to meteorological and hydrological
disasters in Asia. The descriptive statistics, along with the histogram and the normal Q-Q
plots (Figures 10 and 11), suggest that the marginal distributions of the two variables are
both positively skewed and heavy-tailed. Many time series include some deterministic com-
ponents such as long-term trends and seasonality. To isolate the deterministic components,
each quarterly time series is decomposed under the multiplicative model assumption. The
time series decompositions given in Figure 12 show the presence of strong seasonality in
both time series and weak evidence of long-term trend. Since the proposed GCR2 models
do not assume any deterministic seasonality, we deseasonalize each time series by dividing
it by its estimated seasonal component.

Table 1. Descriptive summary statistics of the dataset (Unit: 100 million USD).

Data n Min 1st Qu. Median Mean 3rd Qu. Max Skewness Kurtosis

Meteo 166 0.003 2.005 7.275 30.799 35.282 287.090 2.820 11.304
Hydro 166 0.007 1.692 12.172 45.538 53.330 621.207 4.014 23.188

Figure 13 gives the scatter plots of the two seasonally adjusted variables and their
log-transformations. The figure shows some evidence of a dependent relationship between
the two variables. The sample Spearman’s rho and Kendall’s tau of the variables are 0.425
and 0.291, respectively.

www.emdat.be
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Figure 10. Histogram of Meteo loss dataset and its normal Q-Q plot.
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Figure 11. Histogram of Hydro loss dataset and its normal Q-Q plot.

We apply the EM algorithm described in Section 4.2 to fit the (seasonally adjusted)
data using six specific bivariate models: GCR-GG, GCR-t, GCR-LG, GCR2-GG, GCR2-
t, and GCR2-LG. For each model fitting, the EM algorithm requires initialization of the
parameter values. To obtain a reliable result, we first fit the marginal models separately
using the estimation method given in [12], and the fitted values of the marginal parameters,
i.e., (αi, βi, τi, θ) for GCR models and (αi, βi, τi, θ), i = 1, 2, for the GCR2 models, are
used for the initialization of the BVGCR (or BVGCR2) model parameters. For mixture
weight parameter initialization, we use a large set of possible parameter values satisfying
p11 + p12 = p1 and p11 + p21 = p2, where p1 and p2 are the mixture weight parameter
estimates for the marginal models. The log-likelihood function values of the EM fits under
the set of initializations are compared, and the one that gives the largest log-likelihood
value is selected for the final fit. To compare the performance of BVGCR2 models with
some other benchmark bivariate models commonly used in loss modeling, we further
implement the maximum likelihood estimation of the following seven bivariate models:
BVLNorm (bivariate lognormal), Clayton-LNorm (bivariate Clayton copula with lognormal
marginals), Gumbel-LNorm (bivariate Gumbel copula with lognormal marginals), Frank-
LNorm (bivariate Frank copula with lognormal marginals), Clayton-Pareto (bivariate
Clayton copula with two-parameter Pareto marginals), Gumbel-Pareto (bivariate Gumbel
copula with two-parameter Pareto marginals), and Frank-Pareto (bivariate Frank copula
with two-parameter Pareto marginals) models.
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Figure 12. Multiplicative decompositions of Meteo and Hydro time series.

Since the number of estimated model parameters differs by model, we compare the fits
of candidate models in terms of the Akaike information criterion (AIC) and the Bayesian
information criterion (BIC), defined as

AIC = −2(Log-Likelihood) + 2k

BIC = −2(Log-Likelihood) + k log n,

respectively, where k is the number of estimated parameters and n is the sample size.
Among candidate models, the preferred model is the one with the smallest value of either
of these criteria.
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Figure 13. Scatter plots of the deseasonalized data and their log-transformations.

From Table 2, we see that, based on the Akaike information criterion, the fitted BVGCR2-
GG model outperforms all the other alternative bivariate models. However, the BVGCR-LG
model is preferred in terms of the Bayesian information criterion, which heavily penalizes
complex models. Comparing the BVGCR-GG to the BVGCR2-GG, one can see that the
BVGCR2-GG significantly improves model fitting due to the additional shape parameter.

Table 2. Model comparison with AIC and BIC.

Model Log-Likelihood AIC BIC

BVGCR-GG −1370.332 2758.664 2786.672
BVGCR-t −1372.381 2762.762 2790.770

BVGCR-LG −1372.066 2758.132 2779.916
BVGCR2-GG −1367.346 2756.692 2790.924

BVGCR2-t −1371.782 2765.564 2799.796
BVGCR2-LG −1371.707 2761.414 2789.422

BVLNorm −1387.839 2785.678 2796.126
Clayton-LNorm −1393.159 2796.318 2811.878
Gumbel-LNorm −1385.676 2781.352 2796.912
Frank-LNorm −1386.976 2783.952 2799.512
Clayton-Pareto −1405.479 2820.958 2836.518
Gumbel-Pareto −1403.067 2816.134 2831.694
Frank-Pareto −1405.029 2820.058 2835.618

Table 3 gives parameter estimates of the fitted marginal distributions and the bivariate
GCR2-GG model.

Table 3. Parameter estimates of marginals and Bivariate GCR2-GG models.

α̂1 β̂1 τ̂1 θ̂1 p̂1 α̂2 β̂2 τ̂2 θ̂2 p̂2 p̂11 p̂12 p̂21 p̂22

Meteo 20.075 0.915 0.737 0.623 0.094
Hydro 11.152 1.964 0.669 0.809 0.189

Bivariate 22.644 1.494 0.791 0.477 11.442 1.964 0.675 0.798 0.124 0.040 0.072 0.764

Please note that the values of (p11 + p12) and (p11 + p21) based on the fitted BVGCR2-
GG model are larger than the corresponding estimates of p1 and p2. Spearman’s rho and
Kendall’s tau under the fitted BVGCR2-GG model are 0.173 and 0.115, respectively, which
are lower than the empirical counterparts. This may be because the empirical data contains
some spurious dependence due to the deterministic trends.
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To test the statistical significance of the parameter estimates of the BVGCR2-GG model,
we construct the bootstrap confidence intervals by computing the 2.5th and the 97.5th
percentiles of the estimates based on the 100 bootstrap samples. Table 4 shows that all
the parameter estimates on the original dataset fall in the corresponding 95% bootstrap
confidence intervals.

Table 4. The 95% bootstrap confidence intervals for the parameters in Bivariate GCR2-GG model.

α̂1 β̂1 τ̂1 θ̂1 α̂2 β̂2 τ̂2 θ̂2 p̂11 p̂12 p̂21 p̂22

Original estimate 22.644 1.494 0.791 0.477 11.442 1.964 0.675 0.798 0.124 0.040 0.072 0.764
Bootstrap mean 27.673 1.524 0.735 0.583 14.189 2.065 0.680 0.988 0.131 0.037 0.067 0.766
2.5th percentile 7.031 0.762 0.542 0.347 2.356 1.500 0.322 0.418 0.059 0.000 0.000 0.687
97.5th percentile 52.149 2.252 0.951 1.013 42.898 2.803 0.913 3.027 0.192 0.080 0.147 0.843

Figure 14 gives the contour plots of the fitted BVGCR2-GG model, and that of the
log-transformed random variables, and Figure 15 presents the scatter plots of the simulated
random variables from the BVGCR2-GG model and their log-transformations. Comparing
these plots with Figure 13, we can see that the fitted model explains the dependence
structure of the empirical data well.
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Figure 14. Contour plots of the fitted BVGCR2-GG density and the density of the log-transformed
random variables.
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Figure 15. Scatter plots of simulated random variables from the fitted BVGCR2-GG model and their
log-transformations.

6. Concluding Remarks

In this paper, we constructed a bivariate extension of the Type-II generalized crack
distribution and studied a few specific examples of the bivariate GCR2 distributions
base on the generalized Gaussian, Student’s t, and logistic densities to demonstrate the
applicability of the constructed model. Specifically, our main theoretical finding is that
the level of dependence of the constructed BVGCR2 model in terms of Kendall’s tau and
Spearman’s rho is a weak to medium association. The model fitting to catastrophic loss data
showed that the fitted BVGCR2-GG model outperformed all the other alternative models
based on the Akaike information criterion. Especially when compared to the BVGCR-GG
model, the BVGCR2-GG model has shown a significant improvement due to the increased
flexibility. With an appropriate choice of base-density function, the proposed BVGCR2
model can be effectively used for various applications that require a weak to moderate
level of dependence.

With the lack of the upper-tail dependence, the bivariate GCR2 distributions may
not be applicable for the situations where variables are (or assumed to be) asymptotically
dependent in the upper tail, e.g., stress testing for market/credit portfolios. This limitation
can be alleviated using a common parameter for both marginals and randomizing the
parameter. For example, we may set τ = τ1 = τ2, the shape parameters in the GCR2
marginals, and assume τ follows a Gamma distribution. The use of a common random
parameter is expected to widen the range of dependence levels and allow for upper-tail
dependence. We will pursue this approach in future research.
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Appendix A. Proof of Proposition 1

We drop parameters in the expressions of the functions for notational convenience and
write G(·) = 1 − G(·) and b(ti) = α−1

i [(βi/ti)
τ − (ti/βi)

τ ], i = 1, 2.
By fBVGCR2(t1, t2; α, β, τ, p) the joint distribution of (T1, T2) having BVGCR2(α, β, τ, p; g),
is

F(t1, t2) = p11F(1)
GCR2(t1)F(1)

GCR2(t2) + p12F(1)
GCR2(t1)F(2)

GCR2(t2)

+ p21F(2)
GCR2(t1)F(1)

GCR2(t2) + p22F(2)
GCR2(t1)F(2)

GCR2(t2),

and the marginal density of Ti, i = 1, 2, is

fTi (ti) = pi f (1)GCR2(ti) + qi f (2)GCR2(ti),

also, the cdf of GCR2(t; α, β, τ, p) distribution can be written as

FGCR2(t; α, β, τ, p) = 1 − G(b(t)) + (2p − 1)H(t; α, β, τ, p),

where p1 = p11 + p12, p2 = p11 + p21, qi = 1 − pi, i = 1, 2, G(x) =
∫ x
−∞ g(s)ds is the cdf of

g and

H(t; α, β, τ, p) =
∫ ∞

b(t)

s√
s2 + 4/α2

g(s)ds.

By expanding the integrand in (7) using these expressions and taking the double
integration, we have∫ ∞

0

∫ ∞

0
F(t1, t2) fT1(t1) fT2(t2) dt1 dt2

= p11{p1 p2E[FS1(S1)]E[FS2(S2)] + p1q2ζ2E[FS1(S1)] + q1 p2ζ1E[FS2(S2)] + q1q2ζ1ζ2}
+p12{p1 p2η2E[FS1(S1)] + p1q2E[FS1(S1)]E[FV2(V2)] + q1 p2ζ1η2 + q1q2ζ1E[FV2(V2)]}
+p21{p1 p2η1E[FS2(S2)] + p1q2η1ζ2 + q1 p2E[FV1(V1)]E[FS2(S2)] + q1q2ζ2E[FV2(V2)]}
+p22{p1 p2η1η2 + p1q2η1E[FV2(V2)] + q1 p2η2E[FV1(V1)] + q1q2E[FV1(V1)]E[FV2(V2)]}.

where for each i = 1, 2,

E[FSi (Si)] =
∫ ∞

0
F(1)

GCR2(ti) f (1)GCR2(ti)dti =
1
2

E[FVi (Vi)] =
∫ ∞

0
F(2)

GCR2(ti) f (2)GCR2(ti)dti =
1
2

ζi :=
∫ ∞

0
F(1)

GCR2(ti) f (2)GCR2(ti)dti

=
∫ ∞

0
[F(2)

GCR2(ti) + 2H(ti)] f (2)GCR2(ti)dti

= E[FVi (Vi)] + 2
∫ ∞

0
[H(ti) f (2)GCR2(ti)]dti =

1
2
+ 2

∫ ∞

0
[H(ti) f (2)GCR2(ti)]dti

ηi :=
∫ ∞

0
F(2)

GCR2(ti) f (1)GCR2(ti)dti

=
∫ ∞

0
[F(1)

GCR2(ti) + 2H(ti)] f (1)GCR2(ti)dti

= E[FSi (Si)]− 2
∫ ∞

0
[H(ti) f (1)GCR2(ti)]dti =

1
2
− 2

∫ ∞

0
[H(ti) f (1)GCR2(ti)]dti.
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That is, the double integral in (7) reduces to the following two integrals:
∫ ∞

0 H(t) f (1)GCR2(t)dt

and
∫ ∞

0 H(t) f (2)GCR2(t)dt. Due to the expression F(1)
GCR2(t) = 1 − G(b(t)) + H(t) and∫ ∞

−∞
H(b−1(s))

s√
s2 + 4/α2

g(s)ds

=
∫ ∞

−∞

(∫ ∞

s

z√
z2 + 4/α2

)
s√

s2 + 4/α2
g(s)ds = 0,

and changing the order of integrations, we obtain∫ ∞

0
H(t) f (1)GCR2(t)dt =

∫ ∞

0

∫ ∞

b(t)

s√
s2 + 4/α2

g(s)ds f (1)GCR2(t)dt

=
∫ ∞

−∞

(∫ ∞

b−1(s)
f (1)GCR2(t)dt

)
s√

s2 + 4/α2
g(s)ds

=
∫ ∞

−∞
(1 − F(1)

GCR2(b
−1(s)))

s√
s2 + 4/α2

g(s)ds

=
∫ ∞

−∞
(G(s)− H(b−1(s)))

s√
s2 + 4/α2

g(s)ds

=
∫ ∞

−∞
G(s)

s√
s2 + 4/α2

g(s)ds −
∫ ∞

−∞
H(b−1(s))

s√
s2 + 4/α2

g(s)ds

=
∫ ∞

−∞

s√
s2 + 4/α2

G(s)g(s)ds = γ.

Similarly, due to the expression F(2)
GCR2(t) = 1 − G(b(t))− H(t), we obtain∫ ∞

0
H(t) f (2)GCR2(t)dt =

∫ ∞

0

∫ ∞

b(t)

s√
s2 + 4/α2

g(s)ds f (2)GCR2(t)dt

=
∫ ∞

−∞

(∫ ∞

b−1(s)
f (2)GCR2(t)dt

)
s√

s2 + 4/α2
g(s)ds

=
∫ ∞

−∞
(1 − F(2)

GCR2(b
−1(s)))

s√
s2 + 4/α2

g(s)ds

=
∫ ∞

−∞
(G(s) + H(b−1(s)))

s√
s2 + 4/α2

g(s)ds

=
∫ ∞

−∞
G(s)

s√
s2 + 4/α2

g(s)ds +
∫ ∞

−∞
H(b−1(s))

s√
s2 + 4/α2

g(s)ds

=
∫ ∞

−∞

s√
s2 + 4/α2

G(s)g(s)ds = γ.

Combining these results and some simplifications give the expression (8).

Appendix B. Proof of Proposition 2

As in the proof of Proposition 1, expanding the integrand in (9) using the joint cdf and
pdf of the BVGCR2 and taking double integrals, give∫ ∞

0

∫ ∞

0
F(t1, t2) f (t1, t2) dt1 dt2

= (p11)
2E[FS1(S1)]E[FS2(S2)] + p11 p12ζ2E[FS1(S1)] + p11 p21ζ1E[FS2(S2)]

+p11 p22ζ1ζ2 + p12 p11η2E[FS1(S1)] + (p12)
2E[FS1(S1)]E[FV2(V2)]

+p12 p21ζ1η2 + p12 p22ζ1E[FV2(V2)] + p21 p11η1E[FS2(S2)] + p21 p12η1ζ2

+(p21)
2E[FV1(V1)]E[FS2(S2)] + p21 p22ζ2E[FV2(V2)] + p22 p11η1η2

+p21 p11η1E[FV2(V2)] + p22 p21η2E[FV1(V1)] + (p22)
2E[FV1(V1)]E[FV2(V2)].
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As given in the Proof of Proposition 1, E[FS1(S1)] = E[FV2(V2)] =
1
2 , ζi =

1
2 + 2γi and

ηi =
1
2 − 2γi for each i = 1, 2. With these and after some simplification, the above integral

can be expressed as∫ ∞

0

∫ ∞

0
F(t1, t2) f (t1, t2) dt1 dt2 =

1
4
+ 8(p11 p22 − p12 p21)γ1γ2.

Appendix C. Proof of Lemma 1

Given the observed data x
˜
, the log-likelihood function l(θ) := log p(x

˜
|θ). By the law

of total probability, we have

l(θ) = log p(x
˜
|θ) = log ∑

z
˜

p(x
˜
|z
˜
, θ)p(z

˜
|θ) = log ∑

z
˜

p(x
˜
, z
˜
|θ).

Then, by using Jensen’s inequality, we can obtain the following inequality on the
log-likelihood function:

l(θ) = log ∑
z
˜

p(z
˜
|x
˜
, θ(m))

p(x
˜
, z
˜
|θ)

p(z
˜
|x
˜
, θ(m))

,

= log EZ|x
˜

,θ(m)

[
p(x

˜
, Z|θ)

p(Z|x
˜
, θ(m))

]
≥ EZ|x

˜
,θ(m)

[
log

p(x
˜
, Z|θ)

p(Z|x
˜
, θ(m))

]
= EZ|x

˜
,θ(m) [log p(x

˜
, Z|θ)]− EZ|x

˜
,θ(m)

[
log p(Z|x

˜
, θ(m))

]
= Q(θ|θ(m))− EZ|x

˜
,θ(m)

[
log p(Z|x

˜
, θ(m))

]
= Q(θ|θ(m))− h(θ(m)).

Note that Q(θ|θ(m)) is the only term that depends on θ in the inequality

l(θ) ≥ Q(θ|θ(m))− h(θ(m)),

and the inequality holds for all θ including the situation where θ = θ(m). Specifically, when
θ = θ(m),

Q(θ(m)|θ(m))− h(θ(m)) = EZ|x
˜

,θ(m)

[
log

p(x
˜
, Z|θ)

p(Z|x
˜
, θ(m))

]
= ∑

z
˜

p(z
˜
|x
˜
, θ(m)) log

p(x
˜
, z
˜
|θ(m))

p(z
˜
|x
˜
, θ(m))

= ∑
z
˜

p(z
˜
|x
˜
, θ(m)) log p(x

˜
|θ(m))

= log p(x
˜
|θ(m))∑

z
˜

p(z
˜
|x
˜
, θ(m))

= log p(x
˜
|θ(m)) = l(θ(m)).

From these we can deduce that, if θ = θ(m+1) satisfies Q(θ|θ(m)) ≥ Q(θ(m)|θ(m)), then

l(θ(m+1)) + h(θ(m)) ≥ Q(θ(m+1)|θ(m)) ≥ Q(θ(m)|θ(m)) = l(θ(m)) + h(θ(m)),

and thus, l(θ(m+1)) ≥ l(θ(m)) for each m ∈ {1, 2, . . .}.
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