
Citation: Xie, S.; Gan, C.; Lawniczak,

A.T. Analyzing Decision-Making in

Cognitive Agent Simulations Using

Generalized Linear Mixed-Effects

Models. Mathematics 2024, 12, 3768.

https://doi.org/10.3390/math

12233768

Academic Editors: Yu-Wang Chen, Mi

Zhou and Tao Wen

Received: 27 September 2024

Revised: 25 November 2024

Accepted: 25 November 2024

Published: 29 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Analyzing Decision-Making in Cognitive Agent Simulations
Using Generalized Linear Mixed-Effects Models
Shengkun Xie 1,* , Chong Gan 1,2 and Anna T. Lawniczak 2

1 Global Management Studies, Ted Rogers School of Management, Toronto Metropolitan University,
Toronto, ON M5B 2K3, Canada; ganc@uoguelph.ca

2 Mathematics and Statistics, University of Guelph, Guelph, ON N1G 2W1, Canada; alawnicz@uoguelph.ca
* Correspondence: shengkun.xie@torontomu.ca; Tel.: +1-416-979-5000 (ext. 543474)

Abstract: Enhancing model interpretability remains an ongoing challenge in predictive modelling,
especially when applied to simulation data from complex systems. Investigating the influence and
effects of design factors within computer simulations of complex systems requires assessing variable
importance through statistical models. These models are crucial for capturing the relationships
between factors and response variables. This study focuses on understanding functional patterns and
their magnitudes of influence regarding designed factors affecting cognitive agent decision-making
in a cellular automaton-based highway crossing simulation. We aim to identify the most influential
design factors in the complex system simulation model to better understand the relationship between
the decision outcomes and the designed factors. We apply Generalized Linear Mixed-Effects Models
to explain the significant functional connections between designed factors and response variables,
specifically quantifying variable importance. Our analysis demonstrates the practicality and effec-
tiveness of the proposed models and methodologies for analyzing data from complex systems. The
findings offer a deeper understanding of the connections between design factors and their resulting
responses, facilitating a greater understanding of the underlying dynamics and contributing to the
fields of applied mathematics, simulation modelling, and computation.

Keywords: generalized linear mixed-effects models; cellular automaton; cognitive agents; agent-based
simulations; complex systems; variable importance measures
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1. Introduction

Simulation approaches offer significant advantages in studying complex systems, pro-
viding insights across various real-world applications [1–13]. Traditional models based on
ordinary and partial differential equations often fail to capture the nonlinear relationships
and multifaceted interactions characteristic of complex systems [1–11,13,14]. While ordi-
nary and partial differential equation models work well for simpler, linear dynamics, they
struggle to capture emergent behaviours resulting from large numbers of interacting entities
and their interdependencies. Individually based simulation models (e.g., multi-agent-based
simulation models, cellular automata, and lattice gas cellular automata models), provide
flexibility by incorporating details of local interactions and relationships, allowing them to
capture the emergent properties and nonlinear dynamics of complex systems. This makes
individually based simulation models indispensable for studying the dynamics of natural
and man-made complex systems. Examples of natural complex systems demonstrating
intricate interactions among individuals include fish schooling, wolf pack behaviour, and
bird flocking. Similarly, complex engineering systems like robot swarms, vehicular traf-
fic on highways, and pedestrian movement in crowded cities involve many interacting
entities and individually based simulation models have been used extensively to study
their dynamics.
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In artificial intelligence and robotics, technological advancements have driven numer-
ous robot applications across industries [15,16], such as manufacturing [17–22], automa-
tion [23,24], mining [25,26], surgery [27–30], and aerospace [31,32]. Considering mainte-
nance and update costs is essential for robotics applications [33]. In some circumstances,
swarms of simple robots may offer advantages over complex robots, as they are more cost-
effective to produce and easier to repair. When a robot breaks in a swarm, it can be easily
replaced, reducing downtime and costs. Robot swarms may also provide greater reliability,
robustness, and flexibility [34]. A robot swarm can often complete a task successfully even
if some of its members fail, unlike scenarios where the malfunction of a single complex
robot disrupts operations. Thus, even with individual failures, overall performance remains
largely stable, ensuring uninterrupted operations. Additionally, autonomous robot swarms
may engage in collective learning and sharing experiences to improve decision-making and
accelerate task execution [35–39]. This highlights the importance of studying robot swarms
as complex systems in which robots are modelled by autonomous cognitive agents.

A cognitive agent is an autonomous agent capable of performing cognitive actions,
i.e., a sequence of activities such as perceiving information in the environment and from
other agents, reasoning about this information using existing knowledge, judging it with
prior knowledge, responding as needed to other cognitive agents or to the external en-
vironment, and learning by updating or augmenting knowledge when new information
is obtained [40,41]. In these papers, the authors explore the minimal intelligence require-
ments for microbots, experimenting with very primitive cognitive agents modelled using
biomimicry. The cognitive agents apply observational learning, a type of social learning where
they “imitate what works and don’t do what doesn’t work” [42]. This research has motivated fur-
ther studies on how simple cognitive agents, using basic decision-making algorithms and
building their knowledge bases by observing previous cognitive agents’ crossing attempts,
can learn to cross a highway modelled with cellular automata [43–45]. In this research,
highway traffic is used as an example of a dynamically changing environment in which
simple learning algorithms are explored. The simulation models of the considered complex
system depend on numerous factors, each with multiple levels. Therefore, applying various
statistical and machine learning methods is necessary to understand how these factors and
levels influence the system’s behaviour.

This paper is the continuation of these investigations. It follows up a theoretical
investigation into the principles of social learning and biomimicry applied to simple cognitive
agents [40–50]. The study conducted thus far focuses on understanding the fundamental
mechanisms of learning and adaptation in these agents and does not involve the devel-
opment or deployment of any physical or technological systems. The concepts explored
in this research may have potential applications in various engineering and social science
fields, including microbots, nanobots, or autonomous vehicles (AVs) in engineering or
financial markets, risk analysis, and management, where psychological drivers play a
pivotal role in decision-making processes. It is important to note that any practical en-
gineering implementations of this research would require further work, technological
advancements, and ethical considerations. Specifically, any application of swarm nanotech-
nology in military contexts would necessitate the development of advanced communication
and control systems that are robust, secure, and capable of operating independently of
existing infrastructure such as 5G or the Internet of Things. These technologies rely on
centralized networks and communication protocols that could be vulnerable to disruption
or interception. To ensure the effectiveness and security of swarm microbots in military
applications, it would be crucial to develop decentralized communication and control
mechanisms that are resilient to interference and can operate autonomously in complex
environments. The presented simulation model of cognitive agents learning to cross the
cellular automaton-based highway could be extended to modelling more complex traffic
scenarios (e.g., intersections of multi-lane highways) and various forms of communication
among agents and the infrastructure to study their effects on cognitive agents’ learning
abilities based on principles of social learning and biomimicry. However, any such poten-
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tial extension would result in a much more complex simulation model, the dynamics of
which would depend on many more factors, making it significantly more difficult to study
emergent behaviours.

Complex systems often exhibit emergent behaviours and system-wide patterns arising
from local interactions [1,2]. Computer simulations effectively capture these phenomena, help-
ing researchers understand how local dynamics drive broader system behaviours [1,2,5,6]. The
behaviours and dynamics of complex systems are highly dependent on input variables,
with some variables playing a more critical role than others. Thus, identifying suitable
predictive modelling approaches becomes crucial, as these approaches not only map re-
lationships between input and output variables but also provide valuable insights into
their impact on a complex system model’s performance through simulation data analy-
sis. In this context, adopting statistical and machine learning methodologies that balance
predictive power and interpretability is essential. Applying these methodologies should
facilitate an understanding of variable relationships and offer additional insights into how
these relationships affect the accuracy and reliability of predictive models. By selecting
effective predictive modelling approaches, researchers and practitioners can deepen their
understanding of complex system dynamics, enhance prediction accuracy, and make more
informed decisions based on model insights. Ultimately, this will lead to more effective
applications of predictive modelling across various domains in complex systems [51–53].

1.1. Objective

The analysis of data from complex systems and their simulation models remains an
active area of research, with significant efforts dedicated to developing predictive models and
analytical techniques to extract meaningful insights [5,7,8,54–56]. Machine learning techniques,
particularly Artificial Neural Networks (ANNs) [57–59], play a central role in capturing the
nonlinear relationships between input and output variables in complex systems. However, a
major challenge with these methods is their lack of interpretability [60–63], which limits our
understanding of how different predictors influence outcomes and reduces our ability to
assess their contributions to predictive models.

This study extends previous work on modelling and simulating cognitive agents
learning to cross a cellular automaton-based highway, developed and analyzed in [45–47].
These cognitive agents model simple robots placed strategically at highway crossing points.
The agents’ primary objective is to learn to cross through vehicle traffic by leveraging
shared and updated knowledge from previous crossing attempts. This learning process
enhances the agents’ decision-making, enabling them to decide whether to cross or wait.
The behaviour of the agents is influenced by various simulation parameters, such as Car
Creation Probability (determining the highway traffic density), the agents’ propensity for
risk taking (i.e., Desire), risk avoidance (i.e., Fear) related to crossing, and agents’ access
to a knowledge base. These factors interact in ways that lead to varying outcomes, from
successful crossings to strategic waiting.

Understanding the relationships between these parameters and the resulting agents’
decisions is essential for gaining insight into the agents’ learning processes and overall
performance. By analyzing these interactions, we can identify how cognitive agents adapt
to complex traffic environments and improve their decision-making. These findings of-
fer valuable insights for optimizing the behaviour of autonomous robots with minimal
computational capabilities in real-world scenarios, advancing the development of adaptive
systems capable of navigating in dynamic and uncertain environments.

1.2. Novelty

This study introduces a novel approach to measuring the importance of variables
in simulation experiments through a custom-developed agent-based simulation model.
The main objective is to analyze how experimental factors influence cognitive agents’
ability to learn and to cross a cellular automaton-based highway. While previous research
has examined this problem using traditional statistical methods [45–47,64], this study
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presents innovative tools and analytical techniques for processing computer simulation
data. The potential of these tools and techniques is illustrated through their application
to the considered cognitive agent-based simulation model. However, these tools and
techniques are general and can be applied to simulation data from diverse complex system
simulation models.

We propose using Generalized Linear Mixed-Effects Models (GLMMs) to individually
model four key decision variables of the cognitive agent-based simulation model. We
then measure the variable importance to quantify the significance of each input factor’s
contribution (i.e., model predictor). The novelty of this approach lies in its ability to
provide variable importance measures and reveal the functional patterns and effects of
model predictors, while also addressing the inherent uncertainty in measuring these effects.
The findings enhance our understanding of the relationships between input and output
variables, offering deeper insights into complex system behaviours. Furthermore, this
study demonstrates the effectiveness of advanced statistical methods, particularly GLMMs,
in capturing the effects of experimental factors, encouraging their broader use in analyzing
data from complex systems.

1.3. The Outline

The remaining sections of this paper are organized as follows. In Section 2, we review
and discuss previous studies and the relevant literature. Section 3 offers a brief overview of
the data variables and the cognitive agent-based simulation model used in this research. It
also provides a brief summary of the proposed methodologies. In Section 4, we present a
summary of the main findings of our research and we thoroughly discuss its key results.
In Section 5, we compare the investigated approach with the Artificial Neural Network
approach. Lastly, in Section 6, we draw conclusions from our study and provide additional
remarks regarding potential directions for future research.

2. Related Work

The simulation data from the considered model of cognitive agents learning to cross
a cellular-automaton-based highway have previously been studied using classical statis-
tical methodologies [45–47,64]. In a recent study by [48], canonical correlation analysis
was conducted to examine the correlations between variables to ensure that no important
variables would be omitted in the future research. Additionally, regression tree analysis
was performed to explore the effects of model configuration parameters on agents’ deci-
sions, with a particular emphasis on the Knowledge Base Transfer parameter. The findings
contributed to a better understanding of how autonomous agents learn in different traffic
environments. The methodology proposed in [48] can also be applied to analyze data
from other simulation models to gain deeper insights into factor effects. The regression
tree analysis in [48] illustrated the input factor effects on the decision outcome variables.
However, the nature of regression tree analysis limited its ability to provide quantitative
information about the functional relationships between input and output variables, as well
as the quantification of variable importance. To overcome this limitation, [49] modelled
the same simulation data using ANNs. The findings from [49] demonstrated that ANNs
effectively capture the relationships between input and output variables, outperforming
classical modelling approaches such as Generalized Linear Models (GLMs). However,
the non-parametric nature of ANNs allows investigation of modelling performance solely
through plots of observed and predicted values. Additionally, the study in [49] addressed
factor effects and their significance by measuring variable importance. The primary objec-
tive of [49] was to extend the investigation of simulation data from models of complex
systems beyond classical statistical methods to advanced statistical modelling and anal-
ysis. However, the variable importance measured through the weight values obtained
from ANNs offered only limited model interpretability. Therefore, in [50], the concept of
explainable data analysis was introduced for a better understanding of the agents’ learning
performance in the cognitive agent-based simulation model studied in both [48,49]. The
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study in [50] utilized principal component analysis to reduce input data dimensions and
then applied K-Means clustering to group the data. Two new algorithms were developed
to identify the optimal number of clusters, enhancing clustering results and effectively
reducing the number of treatments. The proposed algorithms showed promising results
and outperformed traditional methods for determining the optimal number of clusters in
K-Means clustering. The work in [50] offers a general solution to the problem of analyzing
high-dimensional computer simulation data. However, the problem of variable importance
was not specifically addressed in this work.

Recent advancements in complex systems analysis include the integration of machine
learning techniques [65–67], such as deep learning and reinforcement learning [68], to
extract deeper insights from both real-world and simulation data of these systems. For
example, in study [68], deep reinforcement meta-learning and self-organizing approaches
were applied for traffic signal control, demonstrating that meta-learning methods outper-
form classical learning methods. The deep reinforcement learning approach has proven
effective in understanding how local behaviours influence global system dynamics. Fur-
thermore, explainable AI (XAI) techniques have gained significant attention in complex
systems analysis. In [69], an XAI approach was proposed for distress prediction in complex
financial systems. These methods incorporating explainable AI techniques aim to provide
insights into the decision-making processes of AI models, making them more transparent
and interpretable. In healthcare, XAI has been explored to address the challenge of AI being
perceived as a “black box”, emphasizing its role in building trust and improving under-
standing of AI-driven decisions [70]. Research in study [71] emphasizes the need to tailor
explanations to specific user types, offering an overview of XAI’s recent developments,
techniques, and assessment methods.

Additionally, the modelling and analysis of complex systems using XAI have been
explored in [72–74]. Despite these advances, a key limitation of using explainable methods
in machine learning, deep learning, and reinforcement learning, to enhance understanding
of relationships between input and output variables in complex systems, lies in the trade-
off between model accuracy and interpretability. Although deep learning networks and
reinforcement learning agents excel at capturing patterns in data, extracting meaningful
explanations for their decisions remains challenging. XAI techniques, such as feature
importance analysis or surrogate models, seek to bridge this gap, but they often simplify
the underlying models, potentially losing critical details essential for accurate predictions.
Furthermore, the computational cost of some explainability methods, especially in deep
learning, presents challenges to their scalability and practicality in real-time applications.

Transitioning from machine learning models to statistical methods for data analysis
of complex systems [75–77], GLMMs have been widely adopted to investigate both the
fixed and random effects of underlying factors. For instance, in [78], GLMMs were used
to identify factors that influence formulaic sequence development over time, highlighting
their ability to account for both systematic and individual variations. In another example,
researchers in [79] used GLMMs to analyze ants’ movement patterns, examining metrics
such as average speed, event duration, and stopping duration between events, which
revealed a power law relationship indicating predetermined movement durations. Ad-
ditionally, in [80] GLMMs were applied to analyze complex systems data from the US
Department of Defense, where the inclusion of random effects significantly enhanced
model accuracy. This approach demonstrated that incorporating random effects leads to
greater precision in the models. GLMMs have gained substantial traction among ecologists
and evolutionary biologists due to their ability to handle uncertainties and their flexibility
in analyzing non-normally distributed data within ecological systems. Research in this
domain has explored statistical inference and outlined optimal data analysis practices
tailored for scientists in these fields [81], as well as power analysis techniques specifically
for GLMMs in ecology and evolution [82]. However, despite their advantages, GLMMs are
best suited for modelling linear relationships. While they can incorporate random effects
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to manage hierarchical or clustered data, they often encounter challenges in capturing
complex, nonlinear interactions between variables in complex systems.

3. Methods and Materials
3.1. Simulation Model

The model of cognitive agents learning to cross a cellular automaton (CA)-based
highway was developed in [64]. Cognitive agents employ simple learning algorithms
rooted in an “observational social learning” mechanism [42,83], where each agent learns by
observing the outcomes of other agents’ attempts to cross and by imitating those that
succeeded. The modelling approach shares similarities with children learning to cross
a road at “uncontrolled pedestrian crossings” and animals learning to cross a country
road. The simulation model consists of several components: the highway, vehicles, agents,
their knowledge and learning approaches, and agents’ decision processes. This article
aims to present a concise introduction to this model and its designed factors for simulation
setups. A more detailed description of the considered simulation model and prior statistical
analysis of its simulation data can be found in [45,46,48–50,64].

3.1.1. The Highway

The highway is modelled by a sequence of cells (each cell representing 7.5 m of a
highway); its length and the number of lanes can be adjusted as per user specifications.
In this paper, we consider a unidirectional single-lane highway. As vehicles move along
the highway, the occupancy state of each cell—whether occupied or vacant—dynamically
changes based on the presence of a vehicle, continuously updating over time. When a
vehicle enters a cell already occupied by an agent, the agent is considered to be struck by
the vehicle.

3.1.2. The Vehicles

In the model, vehicles are generated randomly at the start of the highway at each time
step, based on a specified Car Creation Probability (CCP). Since each cell on the highway
can only accommodate a single vehicle, any newly generated vehicle that encounters an
occupied cell will wait until the cell is vacant before entering the highway. Vehicles on
the highway follow the modified rules of the Nagel–Schreckenberg cellular automaton
(CA) traffic model [84]. Their objective is to reach their maximum allowable speed while
avoiding collisions with other vehicles. However, they do not decelerate to avoid agents
crossing the highway. The traffic dynamics on the highway are influenced by two configu-
ration parameters: Car Creation Probability (CCP) and Random Deceleration (RD). The
CCP value determines the vehicle density on the highway, directly affecting the level of
traffic congestion. For example, a CCP value of 0.1 indicates a low vehicle density, allowing
vehicles to move freely, whereas a CCP value of 0.9 signifies a very high vehicle density,
resulting in full congestion. The RD parameter modifies vehicle motion behaviour and can
have a value of either 0 or 1. When set to 0, vehicles adhere to the Nagel–Schreckenberg traf-
fic model rules, adjusting their speed to avoid collisions. When set to 1, vehicles randomly
decelerate with a probability of 0.5 at each time step, provided that this deceleration does
not cause a collision. Thus, the RD parameter introduces more randomness into vehicle
motion, influencing the complexity of the traffic environment. By adjusting the CCP and
RD parameters, the model can simulate a wide range of traffic scenarios to analyze their
impact on the cognitive agents’ learning ability to cross the highway, which is the focus of
this research.

3.1.3. The Agents, Their Knowledge and Learning Approaches

In the simulation model of cognitive agents learning to cross a CA-based highway, the
agents’ primary objective is to successfully cross the highway, i.e., to avoid being hit by an
oncoming vehicle. At every time step, an agent is generated at a specified crossing point
located on one side of the highway and is placed in a queue at this crossing point. In the
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considered simulations, the agents are generated at the crossing point 60 cells away from
the start of the highway, which corresponds to 450 m from the beginning of the highway.
Once an agent reaches the edge of the highway, it is called an “active agent” and it faces
three possible actions:

1. Attempt to cross the highway;
2. Wait at the crossing point;
3. Move along the highway to a neighbouring crossing point, referred to as “Horizontal

Movement” in the presented simulations.

Each active agent attempts to cross the highway in two steps: (1) entering the highway
and (2) exiting the highway, i.e., completing the crossing. If an active agent is struck by an
oncoming vehicle during the crossing attempt, it is promptly removed from the simulation.
This represents the active agent’s unsuccessful crossing. Active agents make their crossing
decisions based on a specific decision formula. The active agents’ decision formulas will be
discussed in Section 3.1.4. Additionally, the outcomes of active agents’ crossing decisions
are influenced by four key experimental factors/parameters of the model: “Horizontal
Movement” (HM), “Fear”, “Desire”, and “Knowledge Base Transfer” (KBT).

The factor HM determines whether an active agent can move to one of the neigh-
bouring cells while waiting to attempt to cross. When HM = 0, active agents must wait
at their selected crossing points and cannot move. However, if HM = 1, each active agent
has the option to remain at its current crossing point or to move randomly, one cell to
the left or right along the highway, with a probability of 1/3 for each case. As a result, if
HM = 1, multiple crossing points may emerge during the simulations, even if only one
crossing point is initialized at the start of each simulation. Since the active agents use
“observational social learning” (i.e., they imitate successful strategies from other agents
and avoid unsuccessful ones), multiple crossing points increase the active agents’ ability
to observe the outcomes of crossing decisions of other agents, thereby enhancing their
learning. The maximum distance that the active agents can move away from their initial
crossing point is capped at five cells in our simulations.

The agents’ propensity for risk taking is controlled by the factor called “Desire”, while
their propensity for risk aversion is controlled by the factor called “Fear”. For example, if
Fear = 1 and Desire = 0, an agent exhibits complete fear and no desire to cross the highway,
indicating total risk aversion. We consider 25 different combinations of Fear and Desire
values in our experimental setups. Each combination, alongside each level of the other
factors, constitutes a treatment in our simulation experimental design, aiming to analyze
the effects of these factors and their interactions.

To enable agents to learn from the outcomes of past crossing attempts, the model
incorporates a knowledge-based (KB) table that records the active agents’ both correct
and incorrect crossing and waiting decisions made by them when attempting to cross
the highway. The KB table maintains a record of these decisions for different estimated
distances of oncoming vehicles (close, medium, far, and out of visual range) and their
estimated speeds (slow, medium, fast, and very fast). Thus, at each time t, the information
in the KB table provides a historical record of correct and incorrect crossing and waiting
decisions for each combination of vehicle distance and speed, i.e., the assessments of active
agents’ decisions up to time t. Before making a crossing decision, an active agent accesses
the KB table and, based on its knowledge of the historical records, decides whether to cross
or not. The KB table entries are continuously updated throughout each simulation run,
with each decision assessment leading to an update of the corresponding table entry.

The model employs two distinct learning approaches, determined by the value of
the “Knowledge Base Transfer” (KBT) factor. This factor dictates whether the KB table of
the initial crossing point is transferable at the end of a simulation run with a lower CCP
value to the agents at the start of a simulation run with an immediately higher CCP value.
When KBT = 0, the KB tables are not transferred from agents in a traffic environment with a
lower CCP value to those in an environment with an immediately higher CCP value, or any
other value. When KBT = 1, the KB table is always transferred at the end of a simulation
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run from agents in a lower CCP environment to agents in an immediately higher CCP
environment at the beginning of a simulation run. This process of KB table transfer is
carried out for each simulation repeat. The factor KBT also determines the initialization of
KB tables. For example, when KBT = 0, the KB table is initialized as a tabula rasa, i.e., a
“blank slate” represented by zeros at each table entry. During the initialization period of
each simulation run, active agents attempt to cross the highway regardless of the observed
distance and speed combinations until either the first successful crossing or five consecutive
unsuccessful crossings occur, whichever comes first. After this initialization period, active
agents make decisions based on the KB table and their decision formula. However, when
KBT = 1, the KB table is initialized as a tabula rasa only for simulations with CCP = 0.1. For
higher CCP values, each KB table is initialized with the information accumulated from less
dense traffic environments.

3.1.4. The Agents’ Decisions and the Model Simulation Loop

As discussed earlier, each active agent makes its decision to cross or not cross the
highway based on its knowledge of historical records that evaluate the outcomes of crossing
and waiting decisions made by other agents. The results of an active agent’s decision can
be classified into the following categories:

1. Correct Crossing Decision (CCD): The active agent decided to cross the highway and
did so successfully.

2. Incorrect Crossing Decision (ICD): The active agent decided to cross but was struck
by an oncoming vehicle.

3. Correct Waiting Decision (CWD): The active agent decided to wait, which was the
correct choice, as crossing would have resulted in being hit by an oncoming vehicle.

4. Incorrect Waiting Decision (IWD): The active agent decided to wait, but if it had
crossed, it would have done so successfully.

As mentioned earlier, the assessment of each decision (i.e., CCD, ICD, CWD, and
IWD) is recorded as a count in the KB table of all agents waiting at the active agent’s
crossing point. When an active agent is deciding whether to cross, it first accesses the
KB table and integrates this information into its decision-making process. Depending
on the simulation setup, the active agent may use one of the following decision-making
formulas: the Crossing-Based Decision Formula (cDF) or Crossing-and-Waiting-Based
Decision Formula (cwDF). The Crossing-Based Decision Formula (cDF) considers only
historical data on crossing decisions of active agents (i.e., CCD and ICD), while the Crossing-
and-Waiting-Based Decision Formula (cwDF) includes historical data on both crossing and
waiting decisions (i.e., CCD, ICD, CWD, and IWD). Each decision-making formula also
takes into account the active agent’s risk preferences, quantified by its Fear and Desire
factors. The values of Fear and Desire factors provide insight into the active agent’s
inclination toward risk taking or risk aversion. Further mathematical details on the cDF
and cwDF are provided in [45,46,64].

It is worth noting that the cDF incorporates only one feedback loop that assesses
crossing decisions, whereas the cwDF integrates two feedback loops, one for crossing
decisions and one for waiting decisions. Our simulations show that using two feedback
loops in the decision-making process significantly improves active agents’ performance.
More agents learn to cross the highway successfully, while the number of struck agents
remains steady. Additionally, the number of agents waiting in queues is reduced by the end
of the simulation. Thus, when agents use the cwDF instead of cDF, they make more correct
crossing decisions (CCDs) by reducing the number of incorrect waiting decisions (IWDs),
while the number of incorrect crossing decisions (ICDs) remains almost unchanged.

To recap, the simulation model of cognitive agents learning to cross a CA-based high-
way includes several key components: the highway, vehicles, agents, their knowledge and
learning approaches, and their decision-making processes. After loading the configuration
and Knowledge Base files, the program executes the main simulation loop, which runs at
each time step. This loop involves the following steps:
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1. Generating vehicles at the start of the highway based on the Car Creation Probability.
2. Generating agents at each crossing point (CP) with their attributes of Fear and Desire.
3. Updating vehicle speeds according to the modified Nagel–Schreckenberg model.
4. Moving active agents from their CP queues onto the highway when the decision

algorithm indicates they should cross.
5. Updating vehicle locations on the highway and checking whether any active agent

has been hit.
6. Advancing the current time step.

Once the simulation is complete, the results are written to output files using the
output functions.

3.2. Experimental Setting and Simulated Data

In this section, we discuss the experimental setup of the simulation model of cognitive
agents learning to cross the CA-based highway. The resulting data are analyzed in this
paper. The model involves many parameters/factors, which we have discussed earlier, e.g.,
highway length, vehicle/Car Creation Probability (CCP), vehicle Random Deceleration
(RD), the selection of crossing points (CPs) at the initialization of a simulation setup, agents’
“Horizontal Movement” (HM), which controls agents’ ability to move to neighbouring
crossing points, agents’ Knowledge Base Transfer (KBT), and decision formula (DF) type,
which can be cDF or cwDF.

To compare the learning performance of agents using the cDF with those using the
cwDF, two data sets were generated—one for the cDF and the other for the cwDF. This was
the only difference in DF parameter setup between the two data sets. In the experimental
setup of the simulation model, the constant values of the parameters were as follows:
(1) a single-lane highway of 120 cells in length (i.e., a stretch of 900 m of a real highway, as
each cell represents 7.5 m of the highway); (2) a single CP set at cell 60 at the initial setup;
(3) 1511 time steps for each simulation run; (4) 30 repetitions for each simulation setup; and
(5) a representation of the KB table at each CP in a 3 × 4 matrix with an additional row entry.
Each KB table has three groupings of distance and four groupings of speed. A vehicle is
perceived as close if it is 0 to 5 cells from the CP, medium distance if 6 to 10 cells away, far if
11 to 15 cells away, and out of visual range if 16 or more cells away from the CP, regardless
of its speed. This is encoded in the additional row entry of the KB table. A vehicle’s speed
is perceived as slow if it travels 0 to 3 cells per time step, medium speed if 4 or 5 cells per
time step, fast if 6 or 7 cells per time step, and very fast if it travels 8 to 11 cells per time
step. The maximum speed of a vehicle can be 11 cells per time step, which is equivalent
to 99 km/h. For each decision formula, there are six common parameters/factors whose
values vary in the simulation setups. These parameters are as follows:

1. CCP (Car Creation Probability): This parameter determines the density of cars’ traffic
and varies between the following values: 0.1, 0.3, 0.5, 0.7, and 0.9.

2. RD (Random Deceleration): If RD = 1, each car has a probability of 0.5 of randomly
decreasing its speed by 1 unit; if RD = 0, this is not allowed. The RD parameter
simulates erratic drivers in the model.

3. HM (Horizontal Movement): This parameter takes values of 0 or 1. It determines
whether active agents can move along the highway, away from their CPs, when they
decide to wait. Active agents can “move horizontally” only when HM = 1. In the
simulations, an active agent can move one cell per time step, and the maximum
distance from its CP is 5 cells in both directions. Thus, when HM = 1, up to 11 active
agents may be making crossing decisions simultaneously. When HM = 0, active agents
are not allowed to move or change their CPs.

4. KBT (Knowledge Base Transfer): This parameter takes values of 0 or 1. The KBT
parameter determines if the KB table from agents at a lower CCP value is transferred
at the end of a simulation run to agents in the following simulation run with an
immediately higher CCP value. If KBT = 0, no transfer occurs; if KBT = 1, the KB table
is transferred between simulation runs.
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5. Fear Parameter: This parameter reflects an agent’s risk aversion.
6. Desire Parameter: This parameter reflects an agent’s propensity for risk taking.

Both the Fear and Desire parameters vary between the following values: 0.00, 0.25, 0.5,
0.75, and 1.00. These parameters are part of the active agents’ decision-making formulas
and influence an agent’s success in learning to cross the highway.

Note that the KBT, HM, RD, and DF parameters are binary, while CCP, Fear, and
Desire are categorical. The full simulation means that simulations were carried out for
all the parameters’ combinations described. The data analyzed in this paper come from
the full simulation of the model. For each decision formula (i.e., cDF and cwDF), the data
are organized into a matrix with 45,330,000 rows and 12 columns. When needed, the two
matrices were merged for analysis. The 12 column headings are as follows:

• Time: In this column is recorded each time step in each simulation repeat.
• CCD, CWD, ICD, IWD: These columns, respectively, record the numbers of correct

crossing decisions, correct waiting decisions, incorrect crossing decisions, and incorrect
waiting decisions at each time step in each simulation repeat.

• Rep: Records the repetition number for each simulation setup.
• CCP, Fear, Desire, KBT, RD, HM: These columns record the values of the respective

parameters: 5 values for CCP, 5 for Fear, 5 for Desire, 2 for KBT, 2 for RD, and 2 values
for HM.

Thus, for each decision formula, 1000 different parameter value combinations were
analyzed. The 45,330,000 rows in each data matrix of a respective decision formula result
from multiplying 1511 time steps, 30 repetitions, and 1000 parameter value combinations.
However, in this work only the data at the end of each simulation repeat was analyzed,
i.e., the numbers of CCDs, ICDs, CWDs and IWDs at the final simulation step 1511.

3.3. Discussion of the Simulation Model and Its Potential Extensions

The presented model of cognitive agents learning to cross a CA-based highway was
developed as an experimental platform to identify suitable minimal cognitive agents using
social learning and biomimicry as approaches to learning in dynamically changing environ-
ments. It emphasized minimal entities, both in terms of storage and logical primitives,
keeping in mind potential implementations in swarms of simple robots with minimal
computational resources operating in isolation. Thus, the model deliberately avoided
formal methods and established algorithms, instead exploring learning algorithms that are
not computationally demanding. However, the presented simulation model is sufficiently
general for its cognitive agents to be considered as an abstraction of an autonomous vehicle
(AV) learning what to do when it suddenly encounters another moving vehicle on its path.
The AV must decide whether to continue or brake/stop to avoid a collision. The AVs make
their decisions solely based on the decision outcomes of other AVs encountering such situa-
tions in the past, without any communication among themselves or with infrastructure,
such as road sensors. In many real-world applications, especially in developing regions
or rural highways, advanced Internet of Things infrastructure, such as roadside units or
networked vehicle-to-everything communication, may not be available. Thus, modelling
cognitive agents that do not rely on networked inputs remains relevant, particularly in
environments where 5G and Internet of Things technologies are not fully deployed or
where such systems may malfunction. Nevertheless, we acknowledge the importance of
incorporating networked agents in future models as Internet of Things and 5G technologies
become more widespread. Such models could indeed improve cognitive agent perfor-
mance, potentially reducing collisions and improving efficiency by leveraging shared data
between vehicles and cognitive agents.

In models of Internet of Things-enhanced traffic environments, the cognitive agents’
decision-making process would have to undergo significant changes to incorporate real-
time data from roadside units and networked vehicles. The cognitive agents would receive
information about oncoming vehicles’ positions and speeds, allowing them to make more
accurate decisions. Consequently, cognitive agents would no longer solely rely on historical
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knowledge of outcomes of decisions made by other agents but could incorporate real-time
data into their decision-making processes, improving the accuracy of their decisions. Fur-
thermore, incorporating the abstraction of Internet of Things technology into the cognitive
agents’ simulation model would enable predictive modelling, where cognitive agents could
anticipate future traffic conditions based on data transmitted from networked vehicles.
This would further enhance the cognitive agents’ decision-making. However, such modi-
fied models would be far more complex and require significantly greater computational
resources than the presented one, and the cognitive agents’ performance would depend on
many more factors than those considered in this work. Thus, the statistical analysis of their
simulation data would be far more challenging than that of the presented model.

3.4. Effects of Parameters Using Linear Mixed-Effects Models

Expanding on the foundations of Linear Models (LMs), the Linear Mixed-Effects
Model (LMM) introduces specific linear predictors that integrate random effects alongside
the typical fixed effects. When all the included random effects are statistically insignificant,
the model simplifies to the conventional LM. In this study, we incorporate the parameters
CCP, Fear, and Desire as random effects, while KBT, HM, RD, and DF serve as fixed
effects. This selection and configuration of the statistical model were motivated by the
continuous nature of the CCP, Fear, and Desire factors, with specific levels chosen for
simulation purposes, in contrast to the remaining factors that possess only two levels. The
model coefficients estimate the effect differences between these two levels. The following
description outlines the structure of this Linear Mixed-Effects Model:

Yi = αi
0 + αi

1KBT + αi
2HM + αi

3RD + αi
4DF + (1|CCP) + (1|Fear) + (1|Desire) + ϵi, (1)

where the notation of (1|·) represents a random intercept, contributed by a level of the
random-effect variable. So, there are multiple random effect intercepts from different com-
ponents, and one random effect intercept is often superimposed on another to become the
model intercept. In model (1), the error is assumed to be Gaussian-distributed. Since a ran-
dom effect variable is assumed to have a mean of zero and a constant variance–covariance
matrix in a Linear Mixed-Effects Model, we can estimate the relative effect at each level of
the underlying factor and the standard deviations associated with these estimates. There-
fore, the confidence interval of these estimates can be constructed. Additionally, by measur-
ing the variability of these random effects across the levels of the underlying factor, one can
further evaluate the variable importance associated with each random-effect variable.

It is important to note that, in Equation (1), the error term is assumed to follow a
Gaussian distribution, which may not be appropriate for count data. Since the response
variable in our study represents the total number of decisions, it is necessary to extend
the LMM framework to a GLMM to better accommodate the characteristics of the count-
based response.

3.5. Modelling the Effects of Parameters Using Generalized Linear Mixed-Effects Models

The GLMM is a versatile approach frequently employed in the analysis of complex
systems. In our specific context, the responses are diverse in nature, representing various
counts of decisions made by cognitive agents. Given the non-normal distribution of these
responses, the applicability of the LMM is limited. A key advantage of the GLMM lies
in its ability to extend the capabilities of the LMM by accommodating error distributions
belonging to an exponential family. This feature increases the model’s flexibility in handling
various types of response distributions. The density function governing the response
variables in the GLMM can be expressed as follows ([85]):

f (Yi|θi, ϕ) = exp
[

Yiθi − b(θi)

a(ϕ)
+ c(Yi, ϕ)

]
, (2)
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where θi is the canonical parameter characterizing the location of the ith observation and ϕ
is the dispersion parameter characterizing the scale. In GLMMs, instead of modelling Yi

directly, a linear predictor ηi is introduced such that the Linear Mixed-Effects Model (1) can
be rewritten as

ηi = αi
0 + αi

1KBT + αi
2HM + αi

3RD + αi
4DF + (1|CCP) + (1|Fear) + (1|Desire). (3)

Each random intercept follows a normal distribution with a mean of zero and a specific
variance, which represents the degree of heterogeneity within the population. A specific
link function, denoted as g(·), establishes the connection between the linear predictor ηi

and the expected value of Yi:

g(E(Yi)) = ηi. (4)

As shown in Equation (4), the model offers flexibility by allowing transformations on
the expected value of the response in Equation (1). A specific case arises when the link
function g(·) is the identity function, implying that the linear predictor is equivalent to the
expected value of the response variable, Yi.

This comprehensive framework of the GLMMs enables us to incorporate the complex
dependencies and variations observed within the data, thereby facilitating a more accurate
representation of the underlying processes governing the decision-making patterns of the
cognitive agents in our model.

Among the various error distributions available for GLMMs, the Tweedie distribution
emerges as a particularly valuable option, adept at managing positively skewed data.
Notably, the Tweedie distribution is a specific case within the broader class of exponential
family distributions. Our analysis explores three key instances encapsulated within the
Tweedie distribution: Poisson, Gamma, and Inverse Gaussian distributions. This investi-
gation enables the implementation of these distributions within the GLMM framework.
Furthermore, it is crucial to emphasize that we consistently employ the log link function
across all three distributions to ensure uniformity and coherence across our analyses.

This precise and comprehensive approach not only allows us to address the intricacies
of positively skewed data effectively but also reinforces the robustness and reliability of
our analytical framework. By adopting a carefully designed and consistent approach to
data modelling, we ensure the integrity and accuracy of our analytical outcomes, thereby
significantly enhancing the depth and credibility of our research findings.

Various methods have been developed for parameter estimation within the GLMM
framework, all rooted in the principle of maximum likelihood estimation. Let the fixed
effects for KBT, HM, RD, and DF be denoted as α, and the random effects for CCP, Fear,
and Desire as γ. The likelihood function is formulated as follows:

L(α, ϕ|Y) =
n

∏
i=1

f (Yi|α, ϕ, γ)l(γ)dγ, (5)

where l(γ) represents the distribution of the random effects. The integration process
presents challenges in obtaining a closed-form solution due to the potential non-normality
of the function f (·). A commonly adopted approach to address this complexity is the
use of Taylor expansions [86]. For example, the technique of penalized quasi-likelihood
incorporates both fixed and random effects within the second-order approximation of
the Taylor series expansion [87]. Although effective and straightforward in the context of
LMMs, this method may produce biased estimates when the response distribution deviates
from normality, as observed in the case of a Poisson distribution [85].

In our study, estimates for both fixed and random effects are obtained using the
glmer function, a tool available within the ’lme4’ package for R (version 3.6.0 or higher).
This function employs a numerical integration technique to approximate the likelihood
of the GLMM [85]. Specifically, it employs the Laplace approximation, where the integral
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takes the form of
∫

exp{l(x)}dx and the integration is approximated by identifying the
maximum and second derivative of l(x). This method facilitates a robust and efficient
estimation process, producing reliable results even when confronted with complex and
non-normally distributed data. This ultimately improves the accuracy and reliability of our
parameter estimates.

4. Results

In this section, we present the results of modelling and analyzing the simulation data
generated by our simulation model. We begin with the simulation data obtained from
different scenarios using diverse simulation inputs. The workflow of this investigation is
illustrated in Figure 1.

Simulation Model 
Blocks

Highway Vehicles Agents Decision
Processes

Linear
Mixed-Effects 

Model

Models

Generalized Linear
Mixed-Effects 

Model

Analysis

Fixed 
Effects

Random 
Effects

Variable Importance 
Measures

Figure 1. The workflow of the presented research, including the cognitive agent simulation model,
statistical modelling, and analysis.

4.1. Results of Linear Mixed-Effects Modelling of Cognitive Agent Decisions

In the LMM, we treated the factors KBT, HM, RD, and DF as fixed effects because we
assumed they had a constant relationship with any of the responses. However, a closer
examination reveals that the influence of these fixed effects may vary across different
response variables. This observation highlights the diverse impacts of these fixed-effect
factors, corresponding to distinct decision outcomes within the population of cognitive
agents. Notably, the estimates of random effects associated with the factors CCP, Fear, and
Desire are determined based on the grouping of responses according to different levels
of these factors. The uniformity of these random effects within each level enhances the
understanding of their specific influences on decision patterns.

The model output from the LMM, as displayed in Table 1, reveals the significance of
all four response variables within the models, reiterating their influential role on decision-
making processes. Thus, further validation of the importance of these input factors is
provided. Additionally, a notable pattern emerges, revealing that Knowledge Base Transfer
leads to a significant increase in the number of CCDs, while decreasing the numbers of
ICDs, CWDs, and IWDs. This suggests that Knowledge Base Transfer enhances cognitive
agents’ ability to learn to cross the highway, despite the fact that the transferred knowledge
originates from agents who developed it in a different traffic environment than those
receiving it. This finding underscores the strong connection between the use of knowledge-
based strategies and the resulting decision outcomes.

Turning to the estimates of random effects, Table 2, along with the confidence interval
plots in Figures 2 and 3, highlights the nuanced influence of each level of the factors CCP,
Fear, and Desire on the decision-making process. These visual representations emphasize
the varying impacts of different levels of these factors on the decision outcomes, establishing
a clear monotonic relationship—an interpretative advantage of the LMM. The interpretabil-
ity of the LMM, in contrast to the previously employed GLM and GAM, greatly enhances
the understanding of the complex dynamics underlying decision-making patterns.

Furthermore, in Table 3, we measure the variable importance by calculating the
standard deviation for continuous random variables and the range divided by four for
discrete random variables. To maintain consistency with the settings in GLMMs, we
treat random-effect variables as discrete. This is reasonable since the factors CCP, Fear,
and Desire consist of multiple levels. Figure 4 presents the variable importance plots for
GLMMs with Gaussian error functions. We observe that the variable importance rankings
are as follows: HM, Fear, DF, KBT, CCP, Desire, and RD for CCD; Desire, HM, Fear, CCP,
RD, KBT, and DF for ICD; Fear, HM, CCP, Desire, RD, KBT, and DF for CWD; and Fear,
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HM, KBT, DF, CCP, Desire, and RD for IWD. These results closely mirror the rankings from
the previous models, where the predictors HM and Fear play key roles in cognitive agents’
decision-making, and predictor Desire exhibits a strong relationship with the number
of ICDs.

Table 1. The estimated linear coefficients with standard errors for the fixed-effect terms of the Linear
Mixed-Effects Models (LMMs) that fit the responses CCD, ICD, CWD, and IWD, respectively.

CCD ICD CWD IWD

(Intercept) 186.55 * 3.94 66.48 *** 2389.71 ***
(87.39) (2.44) (11.77) (421.86)

KBT 176.56 *** −2.59 *** −16.45 *** −1484.83 ***
(1.62) (0.04) (0.33) (16.18)

HM 622.03 *** 8.57 *** 32.94 *** 1915.08 ***
(1.62) (0.04) (0.33) (16.18)

RD −5.63 *** 3.92 *** −17.44 *** 35.11 *
(1.62) (0.04) (0.33) (16.18)

DF 260.97 *** 0.66 *** −1.62 *** −1220.68 ***
(1.62) (0.04) (0.33) (16.18)

AIC 805,479.02 366,817.18 614,138.94 1,081,307.28
BIC 805,560.03 366,898.20 614,219.96 1,081,388.30
Log Likelihood −402,730.51 −183,399.59 −307,060.47 −540,644.64
Num. obs. 60,000 60,000 60,000 60,000
Num. groups: CCP 5 5 5 5
Num. groups: Fear 5 5 5 5
Num. groups: Desire 5 5 5 5
Var: CCP (Intercept) 2512.83 7.28 121.64 82,155.53
Var: Fear (Intercept) 34,862.53 8.32 503.70 762,263.23
Var: Desire (Intercept) 793.90 14.13 67.07 43,757.86
Var: Residual 39,550.80 26.40 1629.59 3,925,780.43

Note: *** p < 0.001; * p < 0.05.

Table 2. The estimated random-effect coefficients in Linear Mixed-Effects Models that fit the responses
CCD, ICD, CWD, and IWD, respectively.

CCD ICD CWD IWD

CCP
0.1 −87.47 3.85 18.95 502.47
0.3 5.52 1.64 −5.88 −37.13
0.5 19.43 −0.90 −7.88 −125.92
0.7 27.80 −2.03 −5.5 −168.11
0.9 34.72 −2.57 0.30 −171.31

Fear
0 269.91 4.02 −24.57 −1277.81
0.25 61.11 1.42 −16.87 −380.34
0.5 −7.86 −0.30 −4.95 222.16
0.75 −88.89 −1.64 19.64 409.88
1 −234.27 −3.50 26.75 1026.1047

Desire
0 −45.17 −5.73 12.56 337.32
0.25 −8.76 −1.31 3.36 52.98
0.5 11.05 0.65 −2.45 −66.47
0.75 20.09 2.43 −5.70 −150.04
1 22.80 3.96 −7.76 −173.79
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Table 3. Variable importance measures for response variables CCD, ICD, CWD, and IWD based on
standard deviations of the factors KBT, HM, RD, DF, CCP, Fear, and Desire considered in the Linear
Mixed-Effects Models.

Dependent Variable:

CCD ICD CWD IWD

KBT 44.141 0.648 4.113 371.209
HM 155.508 2.143 8.236 478.769
RD 1.407 0.981 4.360 8.778
DF 65.242 0.166 0.406 305.171
CCP 30.548 1.607 6.706 168.445
Fear 126.047 1.882 12.831 575.979
Desire 16.993 2.422 5.080 127.779

(a) CCD (b) CCD (c) CCD

(d) ICD (e) ICD (f) ICD

Figure 2. The plots of confidence interval estimates of random intercepts associated with the fac-
tors CCP (first column), Fear (second column), and Desire (third column), respectively, in GLMM
modelling of response variables CCD (first row) and ICD (second row) with Gaussian error function.

(a) CWD (b) CWD (c) CWD

Figure 3. Cont.



Mathematics 2024, 12, 3768 16 of 26

(d) IWD (e) IWD (f) IWD

Figure 3. The plots of confidence interval estimates of the random intercept associated with the
factors CCP (first column), Fear (second column), and Desire (third column), respectively, in GLMM
modelling of response variables CWD (first row) and IWD (second row) with Gaussian error function.

(a) CCD (b) ICD

(c) CWD (d) IWD

Figure 4. Variable importance measures of predictor variables in the Generalized Mixed-Effects
Model with Gaussian error function, based on standard deviations, for response variables CCD, ICD,
CWD, and IWD, respectively.

4.2. Results of Generalized Linear Mixed-Effects Modelling of Cognitive Agent Decisions

In this phase of the analysis, we broadened the scope of our investigation by fitting
GLMMs, allowing for a comprehensive exploration and comparison of model performance
across various error functions, including Poisson, Gamma, and Inverse Gaussian. The
results of the fixed-effect coefficients in the GLMMs using different error functions for the
considered decision types are presented in Tables 4–6. These tables display the results,
respectively, for Poisson, Gamma, and Inverse Gaussian error functions. Notice that in
Table 4, the presented results are for all four decision types, while in Tables 5 and 6, they
are presented only for the decisions CCD, CWD, and IWD. The reason that we did not
include the results for ICD in these tables is that the ICD dataset includes some data
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points where the number of ICDs = 0, and the Gamma and Inverse Gaussian models
cannot fit data with a response value of zero. Thus, we could not apply Gamma or Inverse
Gaussian models for this data set. Tables 4–6 provide information showing that each model
offers valuable insights into the distinct contributions of the predictors, highlighting their
respective magnitudes and directions of influence, thereby deepening our understanding
of the dynamics governing the decision-making processes of cognitive agents. A closer
examination of the results reveals that while the parameter estimates using Poisson and
Gamma error functions show no statistically significant differences, they exhibit slight
deviations from those obtained using the Inverse Gaussian error function. For example,
the coefficient value of HM on CCDs is 0.93 and 1.25 under the Poisson and Gamma
distributions, respectively. However, this coefficient value notably increases to 3.42 when
using the Inverse Gaussian distribution, suggesting a more substantial impact of HM
on correct crossing decisions within this model. Consistent with the findings from the
GLM and LMM analyses, the predictors KBT, HM, RD, and DF significantly influence the
decision-making process, reaffirming their critical role in types of outcomes.

Moreover, integrating Knowledge Base Transfer into the cognitive agents’ process of
learning significantly increases the number of their correct crossing decisions while simul-
taneously reducing the count of both correct and incorrect waiting decisions. In terms of
model fit, the Inverse Gaussian error distribution produces the lowest AIC and BIC values,
indicating a better fit compared to the Poisson and Gamma error functions. This finding
underscores the importance of selecting an appropriate error function, demonstrating its
critical role in achieving a more accurate and reliable representation of decision-making
dynamics within the cellular automaton-based highway scenario.

The analysis of random-effect coefficients within the GLMMs, as delineated in Table 7,
offers valuable insights into the intensity of the effects associated with each level of the
parameters. Notably, a discernible monotonic pattern emerges across most of the random
effects, highlighting a consistent trend in their influence on the decision-making processes
of the cognitive agents. However, an exception to this pattern arises in the case of CCP’s
impact on correct waiting decisions. Specifically, as CCP increases from 0.1 to 0.7, we
observe a corresponding decrease in the number of CWDs. Surprisingly, an increase in
CCP from 0.7 to 0.9 correlates with an increase in the number of CWDs, representing a
distinct shift in the impact of CCP on decision outcomes. The observed shift likely results
from the fact that the traffic for CCP values 0.7 and 0.9 is extremely congested, making it
difficult to cross the highway. Thus, waiting to cross it is correct most of the time.

This observation underscores the complex relationship between CCP and correct
waiting decisions, emphasizing the dynamic interplay between these variables within the
decision-making process. Such a nuanced understanding is crucial for designing effective
interventions and strategies to optimize decision outcomes, particularly in scenarios where
varying levels of CCP influence the agents’ learning process. By exploring the implications
of this unique pattern, we can gain deeper insights into the complex decision-making
processes that govern the agents’ behaviour.

The evaluation of variable importance for each predictor within the GLMM frame-
work was conducted using flatness, measured by computing the standard deviation of
each response variable. Table 8 summarizes the comprehensive variable importance scores,
with the corresponding variable importance plots depicted in Figure 5. A thorough exami-
nation of the results reveals that the order of predictor importance in the Poisson GLMM
consistently aligns with that observed in the LMM. However, an intriguing shift becomes
apparent when considering the rankings of predictors within the Gamma GLMM and
Inverse Gaussian GLMM. This notable discrepancy is observed in the varying rankings of
predictors for each type of decision, highlighting the influence of the choice of error func-
tions on assessing variable importance. For instance, when utilizing the Inverse Gaussian
error function, the ranking of predictors for CCD shifts to the factors Fear, HM, DF, CCP,
KBT, RD, and Desire, signalling a distinct hierarchy of influence compared to the other error
functions. Despite these discrepancies, it is crucial to note that the most influential predic-
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tors remain consistent across the different error functions, with HM and Fear consistently
emerging as dominant factors affecting the decision-making processes of the cognitive
agents. The role of HM as an influential predictor is easier to understand than that of Fear.
Recall that when HM = 1, multiple crossing points may emerge during the simulations,
even if only one crossing point was initialized at the start of each simulation. Since the
agents use “observational social learning” (i.e., they imitate successful strategies from other
agents and avoid unsuccessful ones), multiple crossing points increase the agents’ ability to
observe the outcomes of crossing decisions of many more other agents compared to when
only one crossing point is allowed (i.e., when HM = 0), thereby enhancing the cognitive
agents’ learning. This analysis provides a comprehensive understanding of the differential
impacts of the error functions on the ranking of predictor importance and underscores
the robust and stable influence of certain key predictors, such as HM and Fear, on agents’
decision outcomes. Furthermore, this analysis highlights the role of these predictors and
their significance in influencing the overall performance of the cognitive agents. Moving
forward, a focused investigation into the main factors, namely HM, Fear, and Desire, can
yield a more thorough understanding of the agents’ learning and decision-making pro-
cesses. This paves the way for developing improved strategies to enhance the cognitive
agents’ overall performance.

Table 4. Fixed-effect coefficients with standard errors for the Generalized Linear Mixed-Effects Model
with Poisson error function.

Poisson

CCD ICD CWD IWD

(Intercept) 5.64 *** 1.29 *** 4.08 *** 7.42 ***
(0.10) (0.27) (0.16) (0.09)

KBT 0.25 *** −0.28 *** −0.25 *** −0.77 ***
(0.00) (0.00) (0.00) (0.00)

HM 0.93 *** 1.01 *** 0.52 *** 1.04 ***
(0.00) (0.00) (0.00) (0.00)

RD −0.01 *** 0.43 *** −0.27 *** 0.02 ***
(0.00) (0.00) (0.00) (0.00)

DF 0.37 *** 0.07 *** −0.02 *** −0.63 ***
(0.00) (0.00) (0.00) (0.00)

AIC 8,574,896.31 393,983.95 1,181,136.66 45,225,415.52
BIC 8,574,968.33 394,055.97 1,181,208.68 45,225,487.54
Log Likelihood −4,287,440.16 −196,983.97 −590,560.33 −22,612,699.76
Num. obs. 60,000 60,000 60,000 60,000
Num. groups: CCP 5 5 5 5
Num. groups: Fear 5 5 5 5
Num. groups: Desire 5 5 5 5
Var: CCP (Intercept) 0.01 0.08 0.02 0.02
Var: Fear (Intercept) 0.06 0.10 0.10 0.25
Var: Desire (Intercept) 0.00 0.24 0.01 0.01

*** p < 0.001; ** p < 0.01; * p < 0.05.

Table 5. Fixed-effect coefficients with standard errors for the Generalized Linear Mixed-Effects Model
with Gamma error function.

Gamma

CCD CWD IWD

(Intercept) 5.16 *** 4.17 *** 7.51 ***
(0.18) (0.14) (0.17)

KBT 0.39 *** −0.18 *** −0.55 ***
(0.01) (0.00) (0.00)
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Table 5. Cont.

Gamma

CCD CWD IWD

HM 1.25 *** 0.35 *** 0.71 ***
(0.01) (0.00) (0.00)

RD −0.01 −0.32 *** 0.02 ***
(0.01) (0.00) (0.00)

DF 0.72 *** −0.01 ** −0.53 ***
(0.01) (0.00) (0.00)

AIC 872,177.97 552,567.86 967,423.69
BIC 872,258.99 552,648.87 967,504.71
Log Likelihood −436,079.99 −276,274.93 −483,702.85
Num. obs. 60,000 60,000 60,000
Num. groups: CCP 5 5 5
Num. groups: Fear 5 5 5
Num. groups: Desire 5 5 5
Var: CCP (Intercept) 0.00 0.00 0.01
Var: Fear (Intercept) 0.07 0.02 0.05
Var: Desire (Intercept) 0.00 0.00 0.00

*** p < 0.001; ** p < 0.01; * p < 0.05.

Table 6. Fixed-effect coefficients with standard errors for the Generalized Linear Mixed-Effects Model
with Inverse Gaussian error function.

Inverse Gaussian

CCD CWD IWD

(Intercept) 5.39 *** 4.33 *** 7.63 ***
(0.97) (0.24) (0.26)

KBT 1.29 *** −0.13 *** −0.41 ***
(0.01) (0.00) (0.00)

HM 3.42 *** 0.21 *** 0.51 ***
(0.03) (0.00) (0.00)

RD 0.36 *** −0.37 *** 0.02 ***
(0.01) (0.00) (0.00)

DF 2.18 *** −0.00 −0.48 ***
(0.02) (0.00) (0.00)

AIC 958,219.28 545,801.35 945,278.79
BIC 958,300.30 545,882.37 945,359.81
Log Likelihood −479,100.64 −272,891.68 −472,630.40
Num. obs. 60,000 60,000 60,000
Num. groups: CCP 5 5 5
Num. groups: Fear 5 5 5
Num. groups: Desire 5 5 5
Var: CCP (Intercept) 0.01 0.00 0.00
Var: Fear (Intercept) 0.04 0.00 0.00
Var: Desire (Intercept) 0.00 0.00 0.00

*** p < 0.001; ** p < 0.01; * p < 0.05.
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(a) CCD (b) ICD

(c) CWD (d) IWD

Figure 5. Variable importance measures of predictor variables in the Generalized Mixed-Effects
Model with Poisson error function, based on standard deviations, for response variables CCD, ICD,
CWD, and IWD, respectively.

Table 7. The estimated random-effect coefficients in Generalized Mixed-Effects Models.

Poisson Gamma Inverse Gaussian

CCD ICD CWD IWD CCD CWD IWD CCD CWD IWD

CCP
0.1 −0.13 0.38 0.27 0.23 −0.07 0.18 0.26 0.70 0.11 0.19
0.3 0.01 0.20 −0.08 −0.01 −0.00 −0.08 −0.03 −0.08 −0.08 −0.08
0.5 0.03 −0.07 −0.12 −0.06 0.01 −0.09 −0.06 −0.51 −0.09 −0.10
0.7 0.04 −0.22 −0.08 −0.08 0.02 −0.05 −0.08 −0.70 −0.05 −0.11
0.9 0.05 −0.29 0.01 −0.08 0.05 0.03 −0.09 −0.76 0.02 −0.12

Fear
0 0.35 0.40 −0.42 −0.91 0.67 −0.36 −0.60 1.30 −0.42 −0.54
0.25 0.11 0.18 −0.25 −0.11 0.12 −0.21 −0.13 −1.03 −0.27 −0.22
0.5 0.02 0.01 −0.03 0.21 −0.02 −0.02 0.08 −1.34 −0.08 −0.06
0.75 −0.11 −0.16 0.31 0.29 −0.16 0.26 0.21 −1.57 0.19 0.07
1 −0.37 −0.44 0.39 0.52 −0.61 0.33 0.44 −2.68 0.27 0.30

Desire
0 −0.07 −0.88 0.18 0.16 −0.08 0.17 0.10 −0.11 0.15 0.05
0.25 −0.01 −0.06 0.06 0.03 −0.02 0.05 0.01 −0.03 0.02 −0.01
0.5 0.02 0.16 −0.03 −0.03 0.02 −0.03 −0.02 0.03 −0.06 −0.03
0.75 0.03 0.33 −0.09 −0.07 0.04 −0.08 −0.04 0.03 −0.11 −0.04
1 0.03 0.45 −0.12 −0.09 0.05 −0.11 −0.05 0.01 −0.13 −0.04
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Table 8. Variable importance measures for Generalized Mixed-Effects Models.

Poisson Gamma Inverse Gaussian

CCD ICD CWD IWD CCD CWD IWD CCD CWD IWD

KBT 0.06 0.07 0.06 0.19 0.10 0.05 0.14 0.32 0.03 0.10
HM 0.23 0.25 0.13 0.26 0.31 0.09 0.18 0.86 0.05 0.13
RD 0.00 0.11 0.07 0.00 0.00 0.08 0.00 0.09 0.09 0.00
DF 0.09 0.02 0.01 0.16 0.18 0.00 0.13 0.54 0.00 0.12
CCP 0.04 0.17 0.10 0.08 0.03 0.07 0.09 0.36 0.05 0.08
Fear 0.18 0.21 0.20 0.36 0.32 0.17 0.26 1.00 0.17 0.21
Desire 0.02 0.33 0.08 0.06 0.03 0.07 0.04 0.03 0.07 0.02

5. Comparison with Artificial Neural Network Model Approach

In our previous work [49], we employed a predictive modelling approach using Artifi-
cial Neural Networks (ANNs). This section presents a comparative analysis to evaluate the
variable importance derived from both GLMMs and ANNs. While both methods provide
valuable insights into the influence of different predictors on the behaviour of cognitive
agents, they differ significantly in terms of interpretability, sensitivity, and computational
complexity. A key distinction between the two studies lies in the input simulation data:
in [49], a single decision formula was used, namely, the Crossing-and-Waiting-Based De-
cision Formula (cwDF), whereas in this study, we analyze data from the full simulation
model, i.e., data obtained from both decision formulas, cDF and cwDF.

The GLMMs results reveal that the predictors HM and Fear consistently rank as the
most influential factors across all four decision types, i.e., CCD, ICD, CWD, and IWD. These
rankings remain relatively consistent across the considered error functions, i.e., Gaussian,
Poisson, Gamma, and Inverse Gaussian, although notable shifts are observed in the relative
importance of other predictors, such as CCP, Desire, and KBT, depending on the error
structure used. For instance, in the Gamma and Inverse Gaussian GLMMs, Fear takes
precedence over Desire, indicating that the choice of error function can significantly affect
the ranking of variables. This flexibility underscores one of the key strengths of GLMMs:
their ability to model a variety of response distributions, facilitating a better understanding
of predictor effects under different statistical assumptions. This adaptability has been
particularly valuable when modelling complex decision-making processes, where predictor
impacts may vary across contexts or response types.

In contrast, the ANN models consistently identified CCP and KBT as the most im-
portant factors, with KBT showing different influences on crossing and waiting decisions
depending on the number of hidden layers in the network. For instance, in the multi-layer
ANN, KBT exerts a positive effect on crossing decisions but negatively impacts waiting
decisions. However, in the single-hidden-layer ANN model, the effect of KBT is less clearly
visible, highlighting a limitation of ANN in terms of interpretability. The use of the Olden
function to calculate variable importance in the ANN framework provides a measure of
influence but does not offer insight into the direction of the effects. This contrasts with
the GLMM approach, where both the magnitude and the direction of the predictor effects
are evident, offering a more comprehensive understanding of how variables influence
cognitive agents’ behaviour.

Another point of divergence between the two methods lies in the assessment of
variable sensitivity. In GLMMs, sensitivity is closely tied to the variability of the predictors
across different response types. For instance, while HM and Fear are highly sensitive
across all decision types, factors like CCP and Desire exhibit more decision-specific effects.
This detailed sensitivity analysis provides deeper insights into the functional roles of
different predictors, particularly in scenarios where small changes in predictor values can
significantly affect outcomes. ANN models, on the other hand, offer less clarity in this
regard. While ANNs successfully identify CCP and KBT as dominant predictors, they offer
limited insight into the sensitivity of variables and how small fluctuations in input values
might influence the outcomes.
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6. Conclusions

We applied Generalized Linear Mixed-Effects Models (GLMMs) to explain the signifi-
cant functional connections between designed factors and response variables, specifically
quantifying variable importance in a complex simulation model of cognitive agents learning
to cross a CA-based highway. Our analysis demonstrated the practicality and effectiveness
of these statistical models and methodologies for analyzing data from complex simulation
models. The findings of this study provide deeper insights into the connections between
design factors and their corresponding responses, enhancing our understanding of the
underlying dynamics and contributing to the fields of swarm robotics, applied mathematics,
simulation modelling, and computational analysis.

Implementing GLMMs to analyze simulation data of complex systems represents a crit-
ical milestone, integrating fixed and random effects into our analytical framework. While
the results regarding variable importance were generally consistent across methodologies,
subtle variations in the rankings of influential factors emerged. Although the definitive hier-
archy of these factors remains ambiguous, our focus shifted toward uncovering underlying
trends and conducting nuanced analyses to unravel the patterns that govern the learning
dynamics of cognitive agents. This comprehensive approach significantly enriches our
understanding of how multi-level design factors contribute to overall learning outcomes
within simulated complex environments. Our study introduces an adaptable analytical
framework applicable to diverse investigations involving complex systems and computer
simulations while offering critical insights to enhance model interpretability, particularly in
additive or mixed-effects models. This approach departs from the conventional practice of
solely assessing statistical significance, addressing potential biases and fostering a more
holistic and robust analysis of simulation data.

The development of a simulation framework integrating the study of Desire (propen-
sity for risk taking) and Fear (propensity for risk avoidance) factors in decision-making
reveals potential applications extending beyond technical optimization, such as in robot
swarms (by enhancing decision-making strategies in multi-agent systems), to domains of
risk analysis and management. By comprehensively examining how risk taking (Desire)
and risk avoidance (Fear), across various levels, influence outcomes in our system, we
gain valuable insights that align with not only robot swarms but also research domains
where psychological drivers play a pivotal role, such as financial markets. The statistical
methodology presented in this paper, applied to investigating psychological drivers in
decision-making, has broad implications for understanding risk-related behaviours and
decision-making processes. It may provide businesses with tools to better anticipate and
manage risks through proactive, data-driven strategies.

In the future, our research trajectory will focus on refining interpretability within more
complex machine learning models, particularly those grounded in decision tree-based
methodologies. By leveraging the capabilities of these advanced statistical techniques, we
aim to deepen our understanding of the dynamics governing decision-making processes
within complex systems. This work marks a significant advancement in assessing variable
importance in simulation-based experiments of complex systems, including decision-
making scenarios. It offers fresh insights into analyzing simulation data for engineering,
natural, and social systems. The framework, particularly through its emphasis on risk
taking (Desire) and risk avoidance (Fear), not only enriches research on robot swarms but
also inspires businesses to explore innovative methods of studying consumer behaviour.
By understanding how psychological drivers influence decisions, businesses can better
identify consumer patterns, anticipate market trends, and make strategic decisions in areas
such as product development and customer engagement. The broad applicability of this
approach across diverse domains of computer simulation in engineering and social sciences
underscores the critical role of advanced statistical techniques in modelling and deciphering
the complexities inherent in complex system dynamics.
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