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Abstract: Counterparty risk, which combines market and credit risks, gained prominence after
the 2008 financial crisis due to its complexity and systemic implications. Traditional management
methods, such as netting and collateralization, have become computationally demanding under
frameworks like the Fundamental Review of the Trading Book (FRTB). This paper explores the com-
bined application of Gaussian process regression (GPR) and Bayesian quadrature (BQ) to enhance
the efficiency and accuracy of counterparty risk metrics, particularly credit valuation adjustment
(CVA). This approach balances excellent precision with significant computational performance gains.
Focusing on fixed-income derivatives portfolios, such as interest rate swaps and swaptions, within the
One-Factor Linear Gaussian Markov (LGM-1F) model framework, we highlight three key contribu-
tions. First, we approximate swaption prices using Bachelier’s formula, showing that forward-starting
swap rates can be modeled as Gaussian dynamics, enabling efficient CVA computations. Second, we
demonstrate the practical relevance of an analytical approximation for the CVA of an interest rate
swap portfolio. Finally, the combined use of Gaussian processes and Bayesian quadrature underscores
a powerful synergy between precision and computational efficiency, making it a valuable tool for
credit risk management.

Keywords: credit valuation adjustment; expected exposure; Basel III; FRTB; potential future exposure;
Gaussian process regression; machine learning; interest rate swaps
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1. Introduction

Counterparty risk is one of the most complex types of financial risk to measure and
manage, as it results from the interaction between market risk and credit risk, and is also
influenced by systemic factors such as the failure of large institutions [1–3]. This risk is
particularly relevant for over-the-counter (OTC) derivatives and has gained in importance
since the global financial crisis [4–6]. Prior to the 2008 financial crisis, numerous financial
institutions addressed counterparty credit risk by engaging exclusively with the most stable
counterparties, frequently trusting the presumed solvency of entities considered “too big
to fail.” Nonetheless, the crisis exposed that these very institutions often represented the
greatest counterparty risk. Counterparty risk arises from the combination of market risk,
which determines exposure, and credit risk, which assesses the creditworthiness of the
counterparty. It is not always clear whether a counterparty with a high probability of
default but low exposure is preferable to one with higher exposure but a lower default
probability. Credit valuation adjustment (CVA) provides a precise measure of counterparty
risk and enables a numerical distinction between these different scenarios. It assesses the
counterparty risk faced by an institution, providing the opportunity for it to be managed,
traded, or hedged effectively [1,7–9]. The precise and efficient calculation of counterparty
credit risk metrics, such as credit valuation adjustment (CVA), value at risk (VaR), and
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expected shortfall (ES) [10–14], remains a significant challenge for financial institutions.
While traditional methods are reliable, they are often computationally costly and face diffi-
culties when scaling for complex portfolios, especially those containing exotic derivatives
like Bermudan swaptions. These limitations can impede timely risk assessment, a growing
necessity under regulatory frameworks like Basel III [4,5,15,16]. This research aims to
bridge this gap by examining how advanced statistical techniques—particularly Gaussian
process regression (GPR) and Bayesian quadrature—can improve both the accuracy and
efficiency of risk metric calculations. The underlying motivation is the increasing demand
for financial institutions to adopt cutting-edge tools that provide faster, more dependable
risk evaluations. This approach offers the potential for substantial cost reductions while
ensuring compliance with evolving regulatory demands, making it a promising solution for
contemporary risk management. Various strategies are employed to mitigate counterparty
risk in OTC derivatives. Netting agreements involve legally binding arrangements that off-
set the positive and negative exposures between counterparties. By consolidating multiple
transactions into a single net position, netting reduces the overall credit exposure between
the parties. Netting agreements serve to reduce counterparty credit risk by minimizing the
outstanding amounts that must be settled between parties in the event of a default Collat-
eralization requires counterparties to post collateral, providing a buffer against potential
losses. The Credit Support Annex (CSA [17]) outlines terms for collateralization and margin
requirements, further securing transactions. Additionally, hedging with credit derivatives,
such as credit default swaps (CDSs), transfers the risk to third parties, protecting against
defaults. These combined approaches enhance risk management and financial stability.

Counterparty risk metrics must be evaluated for economic, accounting, and regulatory
purposes. The economic approach calculates potential future exposure (PFE) to set exposure
limits. The accounting approach incorporates value adjustments (XVAs), particularly CVA,
into pricing. The regulatory approach assesses the capital needed to cover unexpected
losses, such as EEPE and VaR-CVA. Exposure, essential in these three approaches, requires
rapid and accurate estimates. Banks use Monte Carlo simulations and pricing libraries to
evaluate portfolios, leading to complex and time-consuming processes, especially under
the new regulations. To overcome these challenges, institutions are increasingly adopting
approximations [8,18–20] and machine learning methods [21,22] such as deep learning
algorithms [21,23–28], to reduce computational complexity while maintaining accuracy.

1.1. Research Focus and Contributions

In this paper, we specifically focus on the application of these techniques for calculating
counterparty credit risk metrics to address the following question: How can we efficiently
implement these risk metrics, reducing computation time while ensuring satisfactory
accuracy? In the academic and professional literature, deep learning and Gaussian process
regression are used to accurately and quickly value derivatives [19,23,29,30]. Another
potential application involves using Gaussian processes to estimate the value at risk (VaR)
and the expected shortfall for market risk measurement [28,31,32]. In addition, other
machine learning applications, such as those based on neural networks and Chebyshev
tensors, are utilized to compute risk metrics [16,33]. In this research, we investigated
the application of Gaussian process regression (GPR) and Bayesian quadrature to tackle
the computational challenges associated with the evaluation of counterparty credit risk
(CCR) metrics, with a particular emphasis on credit valuation adjustment (CVA). This
study introduced a novel framework designed to overcome the issues of computational
complexity and precision in CCR metric estimation. Using advanced statistical methods
within the robust LGM-1F model, we provide a more efficient and precise approach to
managing counterparty credit risk in portfolios of fixed-income derivatives.

Our methodology capitalizes on the strengths of Bayesian quadrature, a GPR-based
technique, to compute numerical integrals with minimal observations. GPR possesses
unique mathematical advantages, such as rapid and numerically stable evaluations and
exponential convergence to the target function when dealing with analytically well-defined
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functions. These attributes make GPR a powerful tool for approximating complex functions,
particularly in derivative pricing and risk assessment. By integrating Bayesian quadrature
into this framework, we enable efficient and accurate CVA computations, significantly
reducing computational time without sacrificing precision.

A key feature of our approach is that the training phase of the algorithm for estimating
prices is carried out at the portfolio level, aggregated by counterparty, rather than on a
deal-by-deal basis. This unique methodology improves both the efficiency and performance
of the model, offering a significant advantage over conventional techniques that assess
individual transactions.

The scope of this work focuses on fixed-income derivative portfolios comprising
interest rate swaps, swaptions, and cancellable swaps, all modeled within the One-Factor
Linear Gaussian Markov (LGM-1F) framework. This widely recognized model serves as the
benchmark for evaluating and managing the risks of such derivatives, ensuring consistency
across valuation, risk management, and credit risk assessment.

This paper delivers three key contributions:

• Pricing Approximation: Using Bachelier’s formula, we demonstrate that forward start
rates can be effectively modeled as Gaussian processes, enabling efficient and accurate
CVA calculations.

• Practical CVA Approximations: We propose and validate an analytical approximation
for the CVA of an interest rate swap portfolio, simplifying the calculation process
while maintaining accuracy.

• Synergy of GPR and Bayesian Quadrature: Using GPR’s functional approximation
capabilities along with Bayesian quadrature optimization of numerical integration,
we achieve an innovative balance between computational efficiency and precision,
presenting a practical solution for credit risk management.

1.2. Paper Structure

The structure of this paper is organized as follows: Section 2 provides an overview of
the risk measures of counterparty credit, introducing key metrics such as expected exposure
and credit valuation adjustment (CVA), which are used to quantify the risk of counter-
party credit. Section 3 discusses Bayesian inference modeling, offering an introduction
to Gaussian process regression (GPR), training algorithms, and the concept of Bayesian
quadrature. Section 4 focuses on the calculation of CVA in the LGM-1F model, where
analytical CVA approximations are explored, along with swap valuation techniques within
the LGM-1F framework. Section 5 presents numerical applications for CVA calculation,
detailing convergence tests for interest rate swaps, classical CVA calculation approaches,
and numerical results obtained using GPR and Bayesian quadrature. Finally, Sections 6 and
7 provide the conclusions and discussion, summarizing the key findings and suggesting
future research directions.

2. Counterparty Credit Risk Measures

In this section, we introduce the fundamental concepts and notations related to coun-
terparty credit risk (CCR), credit exposures, and credit valuation adjustment (CVA). Coun-
terparty credit risk (CCR) refers to the possibility that a counterparty may default or fail
to fulfill its financial obligations before the settlement of derivative payments. A financial
loss occurs if, at the time of default, the derivative held by the counterparty has a positive
economic value for the financial institution [2,4]. Unlike traditional loans, where only
the lender might incur a loss, CCR impacts both counterparties: the market value can be
either positive or negative for each, and it may fluctuate over time due to changing market
conditions. The counterparty exposure, denoted as E(t), represents the potential financial
loss that the financial institution could face at time t across all outstanding derivative
transactions with the counterparty, assuming the counterparty defaults at that moment and
accounting for netting and collateral but excluding any potential recoveries [34].
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2.1. Expected Exposure

Consider a portfolio consisting of N derivative transactions between a financial institu-
tion and a given counterparty. The counterparty experiences a default at an unpredictable
time τ, which follows a known risk-neutral distribution Q(t) = Q[τ ≤ t]. Let Vi(t) repre-
sent the value at time t of the ith derivative from the institution’s perspective. The exposure
refers to the value of all derivative contracts the institution has with the counterparty, which
could incur a loss if the counterparty defaults before the maturity T (this corresponds to
the maturity date of the portfolio’s longest contract). At any given time t, the exposure E(t)
is determined by the discounted values of all trades with the counterparty, represented by
the set {Vi(t)}N

i=1. The total value of the counterparty’s portfolio at time t is expressed as
V(t) = ∑N

i=1 Vi(t). If netting is permitted, the exposure E(t) is given by

E(t) = max{V(t), 0}. (1)

Margin agreement defines the conditions under which margin (or collateral) must be posted
to cover potential losses due to changes in the value of financial instruments such as deriva-
tives. These agreements specify the types of acceptable collateral, the margin calculation
methods, procedures for margin calls, and mechanisms for resolving disputes [35]. Margin
requirements can vary depending on factors such as counterparty creditworthiness, asset
volatility, and regulatory requirements. If the netting agreement is also supported by a
margin agreement, the counterparty is required to provide collateral C(t) to the bank, and
the exposure is then given by

E(t) = max{V(t)− C(t), 0}. (2)

Credit exposure becomes relevant only in the event of a counterparty default. Therefore,
exposure assessments are contingent on this occurrence. In the following discussion, we
focus on exposure calculations without considering default events, implicitly assuming no
“wrong-way risk” is present. The expected exposure (EE) represents the expected value,
conditioned on the mark-to-market (MtM) of the derivatives portfolio being positive. It
reflects the average of the positive MtM values in the future, discounted to the present using
the risk-free rate [14]. (D(t, u) = exp

(
−
∫ u

t rs ds
)
, where (rs) represents the instantaneous

risk-free short rate process). Under the risk-neutral measure, it is given by

EE(t, u) = EQ[D(t, u)E(u)]. (3)

AS discussed in the next section, the expected exposure (EE) plays a central role in the
calculation of the credit valuation adjustment.

2.2. Credit Valuation Adjustment (CVA)

The credit valuation adjustment (CVA) plays a crucial role for financial institutions in
evaluating and mitigating counterparty credit risk, especially in the context of derivative
trading where the exposures are often considerable. It allows banks to price derivative
transactions correctly and allocate capital efficiently. By definition, CVA represents the
difference between the value of a derivative portfolio in a risk-free scenario and its actual
value that incorporates the possibility of counterparty default. Typically, CVA is calculated
as the present value of expected losses arising from a counterparty’s default, discounted
at the risk-free rate. This calculation involves modeling the default probability of the
counterparty, the loss given default (LGD), and the exposure at default (EAD). Assuming
no wrong-way risk and deterministic survival probabilities S(., .), the CVA is expressed as
follows [2,14,20,34,36]:

CVA(t, T) = EQ
[
(1− R)D(t, τ)E(τ)× 1{t≤τ≤T}

]
= (1− R)

∫ T

t
EQ[D(t, u)E(u)]dS(t, u).

(4)
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The formula (4) can be computed using the following integration scheme:

CVA(t, T) = (1− R)
m

∑
i=1

EE(t, ti)[S(t, ti−1)− S(t, ti)]. (5)

where the time periods are denoted as t = t0, t1, t2, . . . , tm = T. From this, we can see that
the CVA depends on the following components:

• Probability of Default (PD): For a nonconstant default intensity µ, the default probability
and survival probability are given by

P(t, u) = 1− S(t, u) = 1− exp
[
−
∫ u

t
µ(x)dx

]
. (6)

• Loss Given Default (LGD): This is the portion of the exposure that is unrecoverable in
the event of default. It quantifies the magnitude of losses in the event of default and is
calculated as 1− R, where R is the recovery rate.

• Exposure at Default(EAD): The expected exposure to the counterparty at the time of
default τ is represented by EE(t, τ).

CVA is influenced by various factors such as the counterparty’s creditworthiness,
market conditions, volatility of the underlying assets, and the maturity of the financial
instruments involved.

3. Bayesian Inference Modeling

This section provides an overview of numerical integration through the lens of
Bayesian inference. To ensure a comprehensive and precise presentation of Gaussian pro-
cesses, numerical integration, and Bayesian quadrature, this discussion draws on insights
and methodologies from references [31,37–40]. We begin by presenting the foundational
tools necessary to understand the basic algorithm for probabilistic integration. Next, we
tackle the problem of evaluating the integral of a function f : X −→ R over a domain
X ⊂ Rd with respect to a measure p on X :

I =
∫
X

f (x) dp(x). (7)

If a closed-form solution for this integral does not exist, numerical methods are required.
These methods approximate the integral (7) using a weighted sum of function evaluations,
which is known as a quadrature rule [38,39]:

Q( f , X, ω) =
N

∑
i=1

ωi f (xi) = ω⊥ fX, (8)

where ω = [ω1, . . . , ωN ] ∈ RN represents the real-valued weights, and
fX = [ f (x1), . . . , f (xN)]

⊥ ∈ RN denotes the function evaluations at the design points
X = {x1, . . . , xN} ⊂ X . In essence, numerical integration aims to determine the optimal
weights, design points, or both, to effectively compute (8).

3.1. Gaussian Process Regression

Gaussian processes [18,19,28,31,39,41] represent a sophisticated class of models that
assign probability distributions to entire function classes. These models provide an effective
framework for modeling and forecasting latent functions based on observed data. By taking
advantage of the marginalization properties inherent in Gaussian processes, they enable
flexible, nonparametric modeling, making them particularly well suited for Bayesian
inference tasks, including regression and classification problems.

The Gaussian process (GP) is an extension of the normal distribution from a finite
set of Gaussian random variables to an infinite collection [41]. As such, GPs are ideal for
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representing random functions of the form f : X −→ R. The realizations of a GP are
real-valued functions f : X −→ R, where the values of f are considered a function of
x ∈ X rather than just indices. More formally, let X ⊂ Rd be a nonempty subset. A random
process f on X ⊂ Rd is said to follow a Gaussian process f ∼ GP(m, k) with mean function
m : X −→ R and covariance function k : X ×X −→ R if, for any finite collection of points
X = {x1, . . . , xN} ⊂ X and any N ∈ N, the vector fX = [ f (x1), . . . , f (xN)]

⊥ ∈ RN follows
a multivariate normal distribution with

fX ∼ N (m(X), K(X, X)). (9)

The mean vector is given by [m(X)]i = m(xi) and the covariance matrix by [K(X, X)]ij =
k(xi, xj) for i, j = 1, . . . , N. The covariance function describes the covariance between
the values of the function at two inputs, x and x′ ∈ X , and is defined as k(x, x′) =
E[( f (x)−m(x))( f (x′)−m(x′))]. The function k(., .), known as the kernel function, plays
a central role in Gaussian process analysis. A widely used kernel in machine learning is the
squared exponential kernel:

k(x, x′) = σ2
f exp

(
−(x− x′)2

2l2

)
. (10)

where σf and l are non-negative scaling parameters. The covariance matrix K := K(X, X)
takes larger values when the points are closer and smaller values when they are farther apart.
This behavior occurs because the points are more strongly correlated when their function
values are similar and their variances are low, resulting in a higher covariance ([18]). The
performance of Gaussian process regression (GPR) heavily relies on the choice of kernels,
as they serve as a flexible prior for modeling functions in Bayesian inference tasks, such as
regression and classification. GPR has been effectively applied to financial modeling, such
as derivative portfolio analysis, and has proven its utility in CVA computations [1,18,19].
In GPR, the goal is to infer a latent function f from a finite set of observations, assuming
that f is a sample path of an underlying Gaussian process f ∼ GP(m, k). Let us consider
N data points y = {y1, . . . , yN} at input locations X = {x1, . . . , xN}, summarized as the
dataset D = {X, y}, perturbed by independent and identically distributed Gaussian noise
(Note that y = f (x) in the absence of noise (σ2 = 0. This corresponds to having noiseless
observations of the latent function f ):

yi = f (xi) + ϵi, where ϵi ∼ N (0, σ2). (11)

The mean goal of Gaussian process regression is to compute the posterior p(f | D) and to
predict function values at new input locations x∗ ∈ X . Specifically, the posterior is obtained
using the conditioning rules for Gaussian processes, which require the joint probability
distribution of the function values f∗ := f(x∗) at a new location x∗ and the observed data y:(

y
f∗

)
∼ N

((
m(X)
m(x∗)

)
,
(

K + σ2 IN k(X, x∗)
k(X, x∗)⊤ k(x∗, x∗)

))
, (12)

where [k(X, x∗)]i = k(xi, x∗) is the covariance vector between the training points X and the
new point x∗. We are interested in the conditional law p(f∗ | D), which represents the prob-
ability of a certain prediction for f (x∗) given the observed data. Using Equation (12) and the
standard properties of conditioning Gaussian processes [31], the conditional distribution of
f∗ given D is

f∗ | D ∼ N (mD(x∗), kD(x∗, x∗)), (13)

where the posterior mean mD(x∗) is given by

mD(x∗) = m(x∗) + k(x∗, X)(K + σ2 IN)
−1(y−m(X)), (14)
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and the posterior variance kD(x∗, x∗) is

kD(x∗, x∗) = k(x∗, x∗)− k(x∗, X)(K + σ2 IN)
−1k(X, x∗). (15)

If the prior mean m is assumed to be zero, the posterior mean E[f∗ | D] can be
expressed as

E[f∗ | D] =
N

∑
i=1

ωik(xi, x∗), where ω = (K + σ2 IN)
−1y. (16)

The formula (16) allows the posterior mean to be computed without explicitly inverting K +
σ2 IN by solving (K + σ2 IN)ω = y. Alternatively, grouping terms k(x∗, X)⊤(K + σ2 IN)

−1,
the posterior mean can also be written as

E[f∗ | D] =
N

∑
i=1

ϕiyi, where ϕ = k(x∗, X)⊤(K + σ2 IN)
−1. (17)

3.2. Training Gaussian Process Algorithms

The practical application of Gaussian process regression relies heavily on the appro-
priate selection of the covariance function. This requires a careful determination of the
kernel hyperparameters l and σf . Let θ = {l, σf } represent the model parameters. The stan-
dard approach to selecting these hyperparameters involves maximizing the log marginal
likelihood l(θ) = ln(p(y | θ)) [41], expressed as

l(θ) = ln(p(y | θ)) = −1
2

y⊤(K + σ2 In)
−1y− 1

2
ln(|K + σ2 In|)−

n
2

ln(2π), (18)

where the first term in Equation (18) quantifies data fit, the second term represents a
complexity penalty, and the last term serves as a normalization constant. Assuming a
zero-mean prior and noiseless observations, the partial derivatives of the log marginal
likelihood with respect to the hyperparameters are given by

∂l(θ)
∂θj

=
1
2

y⊤K−1 ∂K
∂θj

K−1y− 1
2

tr

(
K−1 ∂K

∂θj

)

=
1
2

tr

(
ωω⊤ −K−1 ∂K

∂θj

)
,

(19)

where ω = K−1y. One significant limitation of Gaussian processes is their poor scala-
bility with the number of observations n. The computational complexity of evaluating
the marginal likelihood in Equation (18) is primarily dictated by the inversion of the co-
variance matrix K. The log determinant of K is computed as a by-product of the matrix
inversion. For symmetric positive definite matrices of size n× n, standard matrix inversion
methods require O(n3) time. Once K−1 is available, the derivatives in Equation (19) can
be calculated in O(n2) time per hyperparameter. Consequently, the cost of derivative
computation is relatively small, enabling the optimization problem in Equation (18) to be
efficiently addressed using techniques such as gradient descent, conjugate gradient, or
quasi-Newton algorithms.

3.3. Bayesian Quadrature

With Gaussian process regression established as a modeling tool, we can now revisit
the intractable integral in (7). Bayesian quadrature [37–40] offers a probabilistic framework
for approximating such integrals by modeling the target function f as a Gaussian process.
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This approach replaces the deterministic function f with a stochastic process f, transforming
the numerical integration problem (7) into a random variable I, defined as

I =
∫
X

f(x) dp(x). (20)

As the integration operator is a linear functional, the integral of a Gaussian process also
follows a Gaussian distribution. Thus, it is more natural to consider a prior distribution
over the integrand rather than the integral itself, as quadrature rules (8) rely on pointwise
evaluations f (x1), . . . , f (xN). For specific kernel–prior combinations, the weights of the
quadrature can be computed analytically.

Although maintaining the Gaussian process model requires computational resources,
this approach generalizes the information obtained from samples across the integration
domain. This enables the targeted selection of sample points, making Bayesian quadrature
a competitive and efficient alternative to Monte Carlo methods.

Assuming a Gaussian process prior f ∼ GP(m, k), the resulting prior over the integral
I is a univariate Gaussian distribution:

I ∼ N (m, ν),

where

m = E f [I] =
∫
X

m(x) dp(x), ν = V f [I] =
∫∫
X×X

k(x, x′) dp(x) dp(x′). (21)

Given the data D = {X, y}, comprising nodes and function evaluations, Gaussian Process
Regression (GPR) can be employed on the posterior distribution f | D using the integral
operator. Bayesian quadrature thus provides a systematic method for handling noisy
observations y of the integrand f , as described in (11). The linearity of Gaussian processes
allows us to express the joint distribution of (y, I) as(

y
I

)
∼ N

([
m(X)

m

]
,
[

K + σ2 IN
∫
X k(X, x) dp(x)∫

X k(x, X)⊤ dp(x)
∫∫
X×X k(x, x′) dp(x) dp(x′)

])
. (22)

Conditioning on the observed data y yields the posterior distribution I | y ∼ N (mD , νD),
where the posterior mean mD is given by

mD = E f |D [I]

=
∫
X

[
m(x) + k(x, X)⊤(K + σ2 IN)

−1(y−m(X))
]

dp(x)

=
∫
X

m(x) dp(x) +
N

∑
i=1

∫
X

k(x, xi) dp(x)
[
(K + σ2 IN)

−1(y−m(X))
]

i
,

(23)

and the posterior variance νD is given by

νD = V f |D [I]

=
∫∫
X×X

[
k(x, x′)− k(x, X)⊤(K + σ2 IN)

−1k(X, x′)
]

dp(x) dp(x′)

=
∫∫
X×X

k(x, x′) dp(x) dp(x′)

−
N

∑
i,j=1

[
(K + σ2 IN)

−1
]

ij

∫
X

k(x, xi) dp(x)
∫
X

k(xj, x′) dp(x′).

(24)

Implementing Bayesian quadrature numerically clearly requires the calculation of two
essential integrals: the kernel mean κ(x) =

∫
X k(x, x′) dp(x′) and the initial variance
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ν =
∫∫
X×X k(x, x′) dp(x) dp(x′). Denoting the vector of kernel means evaluated at nodes

X as κ := κ(x), Equations (23) and (24) can be expressed more concisely as

mD = m + κ⊤(K + σ2 IN)
−1(y−m(X)) and νD = ν− κ⊤(K + σ2 IN)

−1κ. (25)

In the specific case of a zero prior mean and noise-free observations, the posterior mean of
I simplifies to

mD = κ⊤K−1 f =
N

∑
i=1

ωi f (xi), where ω = K−1κ. (26)

The formula (26) represents the standard version of a quadrature rule, Equation (8), which
approximates the integral as a weighted sum of the function evaluations. Bayesian quadra-
ture reformulates the integral (7) by substituting the integrals of the kernel function. To
improve computational efficiency, the kernel used in Bayesian quadrature is typically
chosen so that the kernel mean and initial variance can be derived analytically. The process
for numerically approximating the integral (7) using Bayesian quadrature is summarized
in Algorithm 1.

Algorithm 1 Bayesian quadrature.

Input: GP(m, k), p(·),D = {X, y}, σ2

Output: Bayesian quadrature estimation of the integral I
1: procedure BQ( f (·),GP(m, k), p(·),D, σ2)
2: κ ←

∫
X k(X, x)dp(x) // Compute kernel mean

3: ν←
∫∫
X×X k(x, x′)dp(x)dp(x′) // Compute kernel variance

4: m←
∫
X m(x)dp(x) // Integrate prior mean

5: m← m(X)
6: ω ← (K + σ2 In)−1κ // Compute quadrature weights
7: mD ← m + ω⊤(y−m) // Compute Bayesian quadrature mean
8: νD ← ν−ω⊤κ // Compute kernel variance
9: p(I | y)← N (mD , νD)

10: return p(I | y)
11: end procedure

4. CVA Calculation Under One-Factor Linear Gauss Markov

Calculating counterparty risk metrics and the CVA of a trading portfolio is commonly
performed using Monte Carlo simulations, as this approach is generally straightforward to
implement. The main drawback of this approach is its performance, as accuracy increases
with the number of simulations. However, when adopting a specific modeling framework
such as One-Factor Linear Gaussian Markov (LGM-1F), other alternative methods can
serve as serious options for calculating these risk indicators, offering performance that
compares very favorably to the Monte Carlo method. As mentioned earlier, the choice
of the LGM-1F model was motivated by its status as the market consensus for valuing
the majority of interest rate derivatives. Therefore, it seemed appropriate to use the
same model to estimate the valuation adjustment for counterparty risk (CVA). Below, the
derivative products comprising our trading portfolio are interest rate swaps and swaptions.
Within this framework and alongside the Monte Carlo method, we present the numerical
integration method for calculating the CVA of a portfolio of swaps and/or swaptions, as
well as an analytical formula, used as a proxy, as reference methods for calculating the CVA
of a portfolio of interest rate swaps.

Throughout the remainder of this paper, the LGM-1F model is used within a single-
curve framework. However, it is important to note that our approach can also be applied
within a multicurve framework for pricing and risk management of interest rate derivatives.
The results of our study are independent of this choice.
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In the LGM-1F framework [13,42,43], the dynamics of the zero-coupon bond B(t, T)
of maturity T is a lognormal process under risk -neutral probability Q. In this case,
the volatility of the zero-coupon bond is deterministic, and it is given by Γ(t, T) =
σ
λ (exp(−λ(T − t))− 1), where σ is a piecewise constant, and λ is a mean reversion constant.
The LGM-1F assumption for interest rate modeling, derived from the HJM framework,
is simple and tractable. The dynamics of the yield curve are specified by the piecewise
constant short-term volatility σ and the mean reversion parameter λ, and it is given as
follows:

dXt = [ϕ(t)− λXt]dt + σ(t)dWQ
t , (27)

where

X0 = 0 and ϕ(t) =
∫ t

0
σ(s)2e−2λ(t−s)ds. (28)

Note that at any future date t, all zero-coupon bonds are obtained as deterministic functions
of the the state variable Xt. This deterministic relation is referred to as the construction
formula, which is given as follows:

B(t, T) =
B(0, T)
B(0, t)

exp
(
−1

2
β(t, T)2ϕ(t)− β(t, T)Xt

)
and β(t, T) =

1− exp(−λ(T − t))
λ

.

(29)

Let us Consider an interest rate swap, and let T0 < T1 < . . . < Tn denote the settlement
dates for the fixed leg (no flows exchanged in T0). The fixed swap rate defined at date t
(t ≤ T0) equals

S(t, T0, Tn) =
B(t, T0)− B(t, Tn)

LVL(t, T0, Tn)
where LVL(t, T0, Tn) =

n

∑
i=1

δiB(t, Ti). (30)

The parameter δi is the year fraction between Ti−1 and Ti calculated in the adequate basis.
In this setup, the value of a payer fixed coupon interest rate swap with rate K (the strike of
the swap rate) at a future date t can be expressed as follows:

V(t, Xt) = B(t, T0)− B(t, Tn)− K×
n

∑
i=1

δiB(t, Ti). (31)

The calculation of the expected exposure EE(t) at a future date t for a portfolio
of interest rate swaps under this framework can be calculated either by Monte Carlo
simulations or through a one-dimensional integral involving portfolio value V(t, .) function
and the density ϕt of the Gaussian variable Xt under the terminal probability measure Qt
as follows (We adopt the notation x+ := max(x, 0) for any real number x):

EE(t) = EQ[D(0, t)V(t, Xt)
+
]

= B(0, t)EQt
[

V(t, Xt)
+
]

= B(0, t)
∫ +∞

−∞
V(t, x)+ ϕt(x) dx.

(32)

We refer the reader to Appendix A for more details on the change of measure.) In the
following, the CVA of the interest rate swaps portfolio is given by

CVA = (1− R)×EQ
[

B(0, τ)×
(∫ +∞

−∞
V(τ, x)+ϕτ(x)dx

)
× 1τ≤Te

]
= (1− R)

∫ T

0

∫ +∞

−∞
B(0, t)V(t, x)+ ϕt(x) dx dS(0, t).

(33)
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The computation of the expected exposure using Formula (32) is referred to as the numerical
integration method (NI method) in this paper.

4.1. Analytical CVA Approximation Under LGM-1F Model

It can also be practical at times to quickly estimate the expected exposure and CVA of
an interest rate swap portfolio, or the marginal contribution of a swap to such a portfolio,
outside the official simulation system. To achieve this, we demonstrate that the value distri-
bution of such a portfolio under LGM-1F can be approximated by a Gaussian distribution.
We consider a portfolio of n interest rate swaps, where the value of each swap at a future
date t is denoted by Vi(t) for i = 1, 2, . . . , n. Without loss of generality, if we consider the
swaps with values Vi as payers, we can express Vi(t) as follows:

Vi(t) =
mi

∑
k=0

ci
kB
(

t, Ti
k

)
, (34)

where

ci
0 = 1, ci

mi
= 1− (Ti

mi
− Ti

mi−1)Ki, ci
k = −(T

i
k − Ti

k−1)Ki k = 1, . . . , mi − 1. (35)

By performing a first-order Taylor expansion of B(t, Ti
k) from Formula (??) with respect to

Xt, we obtain the following approximation:

B
(

t, Ti
k

)
≈ A(t, Ti

k)− A(t, Ti
k)β(t, Ti

k)Xt, (36)

where

A
(

t, Ti
k

)
=

B
(
0, Ti

k
)

B(0, t)
× exp

(
−1

2
β(t, Ti

k)
2ϕ(t)

)
. (37)

Taking this approximation into account, the future value Vi(t) of swap i for i = 1, 2, . . . , n
in the portfolio is normally distributed and can be estimated as an affine function of the
Gaussian variable Xt, which characterizes the dynamics of the LGM-1F:

Vi(t) ≈
[

mi

∑
k=0

ci
k A
(

t, Ti
k

)]
−
[

mi

∑
k=0

ci
k A
(

t, Ti
k

)
β(t, Ti

k)

]
Xt. (38)

As the sum of normal variables remains normal, the portfolio value V(t) = ∑n
i=1 Vi(t) is

normally distributed, and it is expressed as an affine function of the Gaussian variable Xt

V(t) ≈
[

n

∑
i=1

mi

∑
k=0

ci
k A
(

t, Ti
k

)]
−
[

n

∑
i=1

mi

∑
k=0

ci
k A
(

t, Ti
k

)
β(t, Ti

k)

]
Xt. (39)

The expected value and the standard deviation of the portfolio value V(t) at any future
time t are given by

µP(t) =

[
n

∑
i=1

mi

∑
k=0

ci
k A
(

t, Ti
k

)]
−
[

n

∑
i=1

mi

∑
k=0

ci
k A
(

t, Ti
k

)
β(t, Ti

k)

]
E(Xt). (40)

and

σ2
P(t) =

[
n

∑
i=1

mi

∑
k=0

ci
k A
(

t, Ti
k

)
β(t, Ti

k)

]2

×V(Xt). (41)
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Therefore, the expected exposure EE(t) of the interest rate swaps portfolio is given by

EE(t) =B(0, t) EQt [max(µP(t) + σP(t)Z, 0)]

=B(0, t)
∫ +∞

− µP(t)
σP(t)

(
µp(t) + σP(t)x

)
Φ(x)dx

=B(0, t)
[

µP(t) N
(

µP(t)
σP(t)

)
+ σP(t)Φ

(
µP(t)
σP(t)

)]
.

(42)

where Φ is the probability density function of the standard normal distribution, and N
corresponds to its cumulative distribution function. The actual calculation of the mean
µP(t) and standard deviation σP(t) of the interest rate swap portfolio is based on the
mean and standard deviation of the variable Xt. In the context of the LGM-1F model, the
integrated form of the dynamics of Xt is given as follows:

Xt =
∫ t

0
ϕ(s)e−λ(t−s)ds +

∫ t

0
σ(s)e−λ(t−s)dWQ

s (43)

=
∫ t

0
(ϕ(s) + σ(s)Γ(s, t))e−λ(t−s)ds +

∫ t

0
σ(s)e−λ(t−s)dWQt

s . (44)

So, the mean and standard deviation—under Qt—can be obtained analytically as follows:

E(Xt) =
∫ t

0
(ϕ(s) + σ(s)Γ(s, t))e−λ(t−s)ds V(Xt) =

∫ t

0
σ(s)2e−2λ(t−s)ds (45)

The Credit Valuation Adjustment is assessed at the counterparty level, but there are in-
stances where it is beneficial to identify the contributions of individual trades to the
counterparty-level CVA. This can be straightforwardly achieved using an analytical for-
mula when the exposure distribution is Gaussian, as it is in this context. For further details
on this topic, refer to ([34]).

4.2. Swaption Valuation with LGM-1F Model

Consider a swap with expiry date Te. Let T0 < T1 < . . . < Tn (with Te < T0) denote
the settlement dates or the fixed leg (no flows exchanged in T0). The fixed swap rate defined
at date Te equals

S(Te, T0, Tn) =
B(Te, T0)− B(Te, Tn)

LVL(Te, T0, Tn)
where LVL(Te, T0, Tn) =

n

∑
i=1

δiB(Te, Ti). (46)

The parameter δi represents the year fraction between Ti−1 and Ti calculated in the adequate
basis. A payer swaption of strike K written on the above swap is an option maturing in Te
with payoff

LVL(Te, T0, Tn)(S(Te, T0, Tn)− K)+ =

(
B(Te, T0)− B(Te, Tn)−

n

∑
i=1

δiKB(Te, Ti)

)+

(47)

Within the framework of the LGM-1F, it can be demonstrated that the payoff of the swaption
can be expressed as a weighted sum of call options with appropriately chosen underlyings
and strike prices:

LVL(Te, T0, Tn)(S(Te, T0, Tn)− K)+ =
n

∑
i=1

ci

(
B(Te, Ti)

B(Te, T0)
− Ki

)+

, (48)

where ci = δiK for i = 1, . . . , n− 1, cn = 1+ δnK and Ki =
BTe ,Ti

(x0)

BTe ,T0 (x0)
. (If we write B(Te, Ti) =

BTe,Ti(XTe), we can see from Equation (??) that , for all i, x → ∑n
i=1 ci

BTe ,Ti
(x)

BTe ,T0 (x)
is strictly

decreasing, so that it is a bijection between R and ]0,+∞[. As a consequence, there exists a
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unique x0 ∈ R such that ∑n
i=1 ci

BTe ,Ti
(x0)

BTe ,T0 (x0)
= 1. By construction, the n call options in (39) all

have the same exercise domain—defined by XTe < x0—as the payer swaption.) According to
Black–Scholes theory, the price of a swaption in date t = 0 can be expressed as follows:

V⋆(0, Te, T0, Tn) =B(0, Te)×EQTe

(B(Te, T0)− B(Te, Tn)−
n

∑
i=1

δiKB(Te, Ti)

)+


=B(0, T0)×
n

∑
i=1

ci × Pbs
i (Fi, 0, σbs

i , Ki, Te).

(49)

where Pbs
i denotes the Black and Scholes price of a call option, and Fi and σbs

i are given as
follows:

Fi =
B(0, Ti)

B(0, Te)
and σbs

i =
1√
Te

β(Te, Ti)
√

ϕ(Te). (50)

The pricing formula for European swaptions is quasiclosed because the calculation of the
strikes Ki for i = 1, . . . , n requires numerically solving the zeros of a nonlinear function. This
can be time-consuming if this formula is used repeatedly, such as in the case of calculating
the CVA of a trading portfolio including swaptions through Monte Carlo simulations. To
overcome this limitation, we propose in the next subsection a fast approximation to price
European swaptions under the LGM-1F model.

4.3. Swaption Valuation with Bachelier Model

In the following, we propose an alternative method for pricing a swaption based on
an approximation of the dynamics of the swap rate within the framework of the LGM-1F.
To achieve this, we seek to calculate the differential dS(t) using Formula (30) by applying
Itô’s lemma and neglecting the terms present in the drift (for simplicity of notations, we
omit the dependence to T0 and Tn in the swap rate: S(t) := S(t, T0, Tn)):

dS(t) =

[
dB(t, T0)− dB(t, Tn)

∑n
i=1 δiB(t, Ti)

− B(t, T0)− B(t, Tn)

(∑n
i=1 δiB(t, Ti))

2

n

∑
i=1

δidB(t, Ti)

]
+ (. . .)dt. (51)

Using the assumptions made about the dynamics of the zero-coupon rates within the
framework of the LGM-1F, we obtain the following expression for λ ̸= 0:

dS(t) =
σ(t)

λ
eλtS(t)

(
B(t, T0)e−λT0 − B(t, Tn)e−λTn

B(t, T0)− B(t, Tn)
− ∑n

i=1 δiB(t, Ti)e−λTi

∑n
i=1 δiB(t, Ti)

)
dWQ

t + (. . .)dt. (52)

In order to simplify the notation, we introduce a function g(.) such that

dS(t) = σ(t)eλtg(t)S(t)dWQ
t + (. . .)dt. (53)

Equation (53) suggests adopting one of the following two approximations:

• Assuming log-normal dynamics for the swap rate with a frozen g.
• Assuming Gaussian dynamics for the swap rate with a frozen drift.

To obtain the Gaussian approximation, we set aside the drift term and then freeze the
expression of function g(t)S(t) at its initial value, i.e., ∀t > 0, g(t)S(t) ≈ g(0)S(0). We thus
obtain the approximation of the normal dynamics of the interest rate S(t):

dS(t) = σ(t)eλtg(0)S(0)dWQ
t . (54)

We conducted a comparative study between the empirical LGM-1F distribution of the swap
rate and the underlying Gaussian and log-normal distributions of the two approximations.
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The numerical tests reveal that the swap rate distribution is closer to Gaussian than log-
normal. To illustrate this, the results of the comparative study are summarized in the
Figure 1. In the following, we will only consider the case where λ ̸= 0, but the equations
and the function g can be adapted for λ = 0. One way to test the validity of the normality
assumption of swap rates under the LGM-1F model used in the approximation is to
compare the empirical distribution of a swap rate with the Gaussian distribution of swap
rates at a given date t. To do this, we focus on the distribution of the swap rate at the date
t = 3Y. This swap starts at T0 = 3Y and matures at Tn = 10Y. The payment frequency
is semiannual. We used 30,000 simulations. The empirical distribution was constructed
based on 30 homogeneous classes. In Figure 1, the histogram corresponds to the empirical
distribution obtained through Monte Carlo simulations. The curve represents the theoretical
Gaussian distribution of the approximation. The distribution tests show that the Gaussian
approximation of the swap rate dynamics is very close to the dynamics obtained within
the LGM-1F framework. The quality of the approximation is stable for different levels of
instantaneous volatility σ and mean reversion λ. Therefore, the approximation seems more
suitable for our modeling choice.

Figure 1. Comparison of the Gaussian approximation, the log-normal approximation, and the
empirical distribution of a forward swap rate obtained with the LGM-1F model via Monte Carlo
simulations. This comparison was performed for two different values of σ ∈ {0.5%, 1%} and λ = 1%.

Where the dynamics of the interest rate S(t) are governed by the normal process (54),
the price of a swaption can be obtained using the Bachelier formula as follows (For the
change of measure, we refer the reader to Appendix A. Note that we neglect the drift term
associated to this change in measure in the dynamic of the swap rate S(t), and the validity
of this approximation is confirmed by the numerical tests in Section 5.):

V⋆(0) =EQ[D(0, Te) LVL(Te) (S(Te)− K)+
]
= LVL(0)EQLVL[

(S(Te)− K)+
]

= LVL(0)
[

S(0)σ⋆
√

TeΦ
(

K− S(0)
S(0)σ⋆

√
Te

)
+ (S(0)− K)

(
1− N

(
K− S(0)

S(0)σ⋆
√

Te

))]
,

(55)

where σ⋆ ≜ σg(0)√
(Te)

√
e2λT−1

2λ . Within this framework, the expected exposure EE(t) of a

unitary interest rate swap at future date t is simply the value of the swaption written on
the above swap with maturity t:

EE(t) = EQ[D(0, t)V(t, Xt)
+] = V⋆(t) (56)
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In fact, the expected exposure can be calculated exactly using the closed-form Formula (49)
or through the approximation (55). So, the CVA of the interest rate swap is expressed
as follows:

CVA = (1− R)
m

∑
i=1

[S(0, ti−1)− S(0, ti)]×V⋆(ti). (57)

The CVA for an interest rate swap is calculated using a closed-form formula but based
on the valuation of m swaptions (which correspond approximately to m = 2500 swaption
valuations for the calculation of the CVA of a 10-year swap, assuming a daily discretization
step), which can quickly become very time-consuming.

Now, denote the value of a European swaption at future time t as V⋆(t, Xt). In this
case, the credit valuation adjustment (CVA) can be rewritten as follows:

CVA = EQ[(1− R)× D(0, τ)V∗(τ, Xτ)
+ × 1τ≤Te

]
= (1− R)×EQ[D(0, τ)V⋆(τ, Xτ)]×EQ[1τ≤Te ]

(58)

As the exposure of the long swaption position can never be negative, the credit valuation
adjustment (CVA) can be rewritten as follows:

CVA =(1− R)× P(0, Te)×V⋆(0). (59)

If the exposure to the counterparty consists of a portfolio of long and short positions in
swaptions, this can be negative and, consequently, a closed-form formula for calculating
the CVA is no longer available, and its computation become challenging.

5. Numerical Applications for CVA Calculation

This section aims to numerically evaluate the precision and speed of Bayesian quadra-
ture for computing the CVA in a derivatives portfolio. We focus on a single case study
involving a portfolio of 400 interest rate swaps in a single currency. The Gaussian process
regression (GPR) is trained on the portfolio’s residual maturity and a single risk factor,
namely, the short-term interest rate Xt of the LGM one-factor model. Although we consider
a single currency portfolio here, this approach can be easily generalized to a multicurrency
portfolio. In this context, Monte Carlo simulations serve as the benchmark method for our
comparative study of expected exposure (EE) and CVA calculations. Most CVA calcula-
tions are carried out at the netting set level using Monte Carlo simulations. The expected
exposure can be evaluated at the portfolio level, but in this study, we focus, without loss of
generality, on CVA calculation at the netting set level. For the Monte Carlo simulations,
we simulated 60,000 trajectories of market risk factors over 500 time steps into the future.
This resulted in 30,000,000 simulations, which we used as the reference for the Monte Carlo
simulations.

For the numerical implementation, we used Python and relied on widely adopted
libraries for simulation and modeling. Specifically, NumPy was used for generating the
random samples in the Monte Carlo simulations, while GPy and Emukit were employed for
Gaussian process regression and Bayesian quadrature, respectively. These libraries offered
robust and efficient tools for the statistical and machine learning models required in this
work.

The parameters and input data used in the numerical tests, such as the characteristics
of the interest rate swaps portfolio, the LGM-1F model settings, and the configuration of
the GPR and Bayesian quadrature methods, are detailed in Appendix B. This appendix
provides a comprehensive specification of all numerical elements, ensuring reproducibility
and transparency.

The figures presented in this section visually complement the numerical experiments,
offering insights into the accuracy, computational efficiency, and applicability of the meth-
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ods under investigation. Each figure serves a specific purpose in demonstrating the method-
ology and validating the results.

5.1. Convergence Tests for a Unitary Interest Rate Swap

Before outlining the method for calculating the expected exposure (EE) and counter-
party valuationadjustment (CVA) for a portfolio of swaps, we first address the calculation
for a single swap. This can be accurately calculated using the closed-form expression (49)
or the Bachelier Formula (55) for the expected exposure (56). In this numerical test, we
verified the convergence conditions of the Bayesian quadrature method when calculating
both EE and CVA for a single swap.

The key insights unveiled by Figure 2are as follows: Figure 2 illustrates the expected
exposure (EE) profile of an 8-year tenor interest rate swap, computed using three methods:
the quasi-losed Formula (49) under the LGM-1F model with daily discretization, Gaussian
approximation (55), and Monte Carlo simulations. The Monte Carlo simulations were
performed with 10,000 samples (left graph) and 60,000 samples (right graph). The figure
highlights key insights into the convergence properties of the EE profiles. It demonstrates
that the Gaussian approximation is valid, and that 60,000 simulations were sufficient to
achieve convergence to the reference swaption prices (LGM-1F). Moving forward, the
Gaussian assumption of swap rates and the Bachelier formula serve das benchmarks for
swaption pricing.

Figure 2. The expected exposure of an interest rate swap with a 8-year tenor and semiannual
payments on both legs, calculated in three different ways (quasiclosed formula LGM-1F (49), closed
formula based on the Gaussian approximation (55), Monte Carlo simulation pricing). (left graph)
The Monte Carlo method uses 10,000 simulations, and (right graph) it uses 60,000 simulations.

Figure 3 depicts the expected exposure (EE) profile of an 8-year tenor interest rate swap,
computed using the quasi-closed Formula (49) under the LGM-1F model with daily dis-
cretization and Gaussian process regression (GPR). The left panel utilizes 10 LGM-1F price
observations, while the right panel is based on 20 observations. This analysis demonstrates
that GPR provides an accurate fit to the EE profile with a limited number of training points,
highlighting its computational efficiency and precision.
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Figure 3. The expected exposure profile of an 8-year tenor interest rate swap, calculated directly
using the quasiclosed Formula (49) under the LGM-1F model with daily discretization and with the
Gaussian process regression (GPR) (the left figure uses 10 LGM-1F price observations, and the right
figure uses 20 LGM-2F price observations).

5.2. CVA Calculation of an IRS Portfolio by Classical Approaches

We present a numerical example of an interest rate swap portfolio. The number of
swaps was arbitrarily set at 400, with notional amounts uniformly set at EUR 10,000. Other
swap characteristics, such as payment frequency and maturity, were randomly assigned.
Without loss of generality, the valuation framework used was the single-curve approach.
However, this did not affect our quantitative analysis, as our approach can be easily
adapted to a multicurve framework. As a benchmark, we considered two approaches: (i)
the full pricing by the Monte Carlo method combined with a numerical integration and
(ii) two successive numerical integrations. More specifically, the expected exposure profile
was computed either through the Monte Carlo method or via numerical integration (32).
Subsequently, the CVA was determined through numerical integration with respect to the
time to maturity.

Table 1 presents the CVA value computed using the Monte Carlo Method as a function
of the number of simulations along with the corresponding computation times. Meanwhile,
Table 2 displays the same results based on the number of discretizations. The numerical test
highlighted that the Monte Carlo method converged at 60,000 simulations, yielding a CVA
value of EUR 431 with a computation time of 33 min. In contrast, numerical integration
achieved nearly the same value with a discretization step of 300, but with a computation
time of only 40 s. It is important to note that in the example presented here, the implemen-
tation of the numerical integration is relatively straightforward. However, in the general
case where the portfolio is influenced by multiple risk factors, this approach becomes
more complex. As a result, the Monte Carlo method is typically the only viable option for
effective numerical implementation, although it requires significant computational time. In
this numerical example, the Gaussian proxy method described in Section 4.1, which relies
on a quasianalytical formula for CVA calculation, can also be applied. Figure 4 illustrates
the expected exposure profile for the interest rate swaps portfolio estimated using all three
methods. Notably, the expected exposure profile calculated using the Gaussian proxy
closely aligns with the profiles obtained from the other two methods.
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Table 1. Calculation of CVA using Monte Carlo simulations.

No. of Simulations CVA Value (EUR ) Computation Time (Seconds)

10,000 EUR 434 822

40,000 EUR 434 1053

60,000 EUR 431 2006

80,000 EUR 431 3165

100,000 EUR 431 9866

Table 2. Calculation of CVA using the numerical integration method.

Discretization Steps CVA Value (EUR ) Computation Time (Seconds)

50 EUR 436 6

100 EUR 430 13

300 EUR 431 41

500 EUR 432 72

700 EUR 432 96

In Figure 4, the EE profile of a portfolio of 400 interest rate swaps is depicted, computed
using three methods: Monte Carlo, numerical integration (NI), and the Gaussian proxy. The
close alignment of the profiles across methods underscores the accuracy of the Gaussian
proxy, particularly for low-volatility scenarios.

Figure 4. The expected exposure of a portfolio of 400 interest rate swaps computed with the Gaussian
proxy, Monte Carlo, and NI methods.

Table 3 presents the numerical results of a comparative study between the Monte
Carlo method, numerical integration (NI), and the Gaussian proxy. The proxy yields good
results, particularly for relatively low volatility levels.
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Table 3. Calculation of CVA using Gaussian proxy method.

LGM1F Volatility MC Value (EUR ) NI Value (EUR ) Proxy Value (EUR )

0.5% 432 431 435

1% 629 628 642

1.5% 845 841 874

2% 1066 1062 1116

To ensure the robustness of the Gaussian approximation, we compared the density of
the simulated value of an interest rate swaps portfolio at a future date with the densities
obtained using the two other alternative methods for LGM1F volatility levels ranging
between 50 and 200 basis points. The densities of the three methods are shown in Figure 5.
This test demonstrates that the Gaussian proxy offers a good compromise between accuracy
and computational time (13 s for the Gaussian proxy method, 72 s for the numerical
integration method, and 33 min for the Monte Carlo method).

Regarding the key insights from Figure 5, this figure compares the density functions
of portfolio values at a future date calculated using Monte Carlo, NI, and the Gaussian
proxy for varying volatility levels. The results demonstrate that the Gaussian proxy offers a
reasonable compromise between accuracy and computational speed, with computational
times significantly lower than those of Monte Carlo.

Figure 5. Comparison of density functions for interest rate swap portfolio simulation under
LGM1F volatility.

5.3. Numerical Tests for CVA Calculation by GPR and Bayesian Quandature

In this subsection, we revisit the previous numerical example of an interest rate swap
portfolio to evaluate the performance of Bayesian quadrature in terms of accuracy and
computational efficiency. As a benchmark, we compared it to the CVA calculation using the
Monte Carlo method with 60,000 simulations and 500 time steps to compute the expected
exposure profile across the portfolio’s maximum maturity. As explained earlier, Bayesian
quadrature (BQ) and Gaussian process regression (GPR) training occurs along the time axis
for numerical integration, as well as on the risk factors driving the portfolio, represented
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here by the Gaussian variable Xt. Therefore, we conducted tests by varying the number of
points used for training GPR and BQ.

The key insights from Figure 6 are as follows: The figure illustrates the portfolio
values of 400 interest rate swaps at a future date computed using both a classical swap
pricer and the GPR algorithm for 10,000 simulated values of the Gaussian variable Xt This
figure demonstrates the efficiency of GPR in estimating portfolio values with a limited
number of training points. The results reveal that GPR achieves accurate approxima-
tions with as few as five training points, significantly reducing computational costs while
maintaining precision.

Figure 6. Comparison of Monte Carlo prices and GPR prices for 10,000 simulations on a given
discretization date.

The calculation of the CVA and the expected exposure involves 60,000 simulations of
the swap rate portfolio value at for 500 discretization dates. This process is time-consuming
since each of the 400 swaps is individually valued for all 60,000 simulations. In the following
numerical test, instead of calculating the portfolio value 60,000 times, we conducted it
fewer times (e.g., 5 to 15 times). These valuations served as training points for the GPR. The
above two graphs show that the GPR provides an excellent approximation with only five
training points.Therefore, we selected five prices to train the GPR algorithm at each future
date for the valuation of the portfolio’s mark-to-market. Subsequently, these valuations
were used to compute the expected exposures necessary for calculating the portfolio’s CVA.
Concurrently, we employed Bayesian quadrature, built upon Gaussian process regression,
to compute the numerical integral underlying the CVA calculation. To achieve this, a very
limited number of expected exposure computations were used to derive the entire expected
exposure profile, which served as the cornerstone for CVA computation. Figure 7 displays
the expected exposure profiles of the portfolio of 400 interest rate swaps for 15, 20, 30, and
40 observation points used in training the Bayesian quadrature algorithm.
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Figure 7. The expected exposure of the portfolio of 400 interest rate swaps for 4 different numbers of
observations (15, 20, 30, and 40) used for training the Gaussian process.

The key insights from Figure 7 are as follows: This figure demonstrates the impact
of varying the number of training observations (15, 20, 30, and 40) on the EE profiles of
the swap portfolio using Bayesian quadrature. The results indicate that increasing the
number of observations enhances accuracy, providing flexibility in balancing precision and
computational efficiency.

The value of the interest rate swaps portfolio was estimated at EUR −54,507 , with a
corresponding CVA value of EUR 432. The execution time for the CVA calculation using
Monte Carlo with 60,000 simulations was approximately 34 min (cf. Table 1).

Table 4. Calculation of CVA using the Bayesian quadrature method based on the number of training
points, where the GPR is trained on time to maturity and Xt.

No. of Training
Points

Bayesian
Quadrature
Prediction

(EUR)

Relative Error Computation
Time (Seconds) Time Savings

15 EUR 446 0.26 4 615

25 EUR 434 0.01 6 400

30 EUR 423 0.17 7 369

35 EUR 435 0.05 8 317

40 EUR 432 0.00 9 276

We conducted a numerical test using 40 training points for the GPR, with training
currently performed on the time axis, and where the portfolio value was calculated using
Gaussian process regression (trained with only five points) for the 60,000 simulations.
The Bayesian quadrature method achieved a high level of accuracy while significantly
reducing computation time to 9 s, compared to 31 min for Monte Carlo simulations. This
indicates that under the conditions of this numerical test, the Bayesian quadrature method
is 276 times faster than the Monte Carlo method while still ensuring a very high level
of accuracy.

Remark 1. We conducted similar numerical tests, this time for a comparative study between
traditional CVA calculation methods (numerical integration and Monte Carlo simulations) and



Mathematics 2024, 12, 3779 22 of 27

the Bayesian quadrature method for a portfolio of approximately one hundred swaptions. To
achieve this, we used a proxy to value the swaptions with the Bachelier Formula (55), assuming
that the forward swap rate followed a Gaussian distribution (54) within the LGM1F model. This
approach significantly improved computation time compared to valuing swaptions using the LGM1F
Formula (49). The numerical results confirmed that the Bayesian quadrature method outperformed
traditional approaches (numerical integration method and Monte Carlo simulations) in terms of
computation time while maintaining comparable accuracy.

6. Discussion

We are currently exploring new applications of Gaussian processes, specifically for
market risk assessment. By combining Gaussian process regression (GPR) with mul-
tifidelity modeling, we aim to enhance the calculation of value at risk (VaR) and ex-
pected shortfall (ES) for complex portfolios, particularly those including Bermudan swap-
tions. These exotic derivatives present significant challenges for traditional risk measure-
ment approaches, particularly in terms of computational costs. Multifidelity machine
learning [44–48] combines data of varying levels of accuracy to develop precise models
while reducing the need for high-fidelity data, which are often expensive or difficult to
obtain. In our approach, we use low-fidelity pricing models to obtain general approxi-
mations and then refine the results with high-fidelity models, ensuring precision in risk
metric calculations.

The preliminary results show that multifidelity Gaussian process egression (mGPR)
provides substantial computational savings while maintaining high accuracy, especially for
portfolios of Bermudan swaptions. This method reduces the computational costs associated
with pricing these exotic derivatives while preserving the accuracy of risk measures like VaR
and ES. We are currently preparing a detailed paper on this work, which will explore further
improvements in this methodology, including optimizing point selection in multifidelity
models. Additionally, we plan to extend this approach to other financial instruments and
risk metrics with the goal of submitting this research in the near future.

7. Conclusions

In this study, we demonstrated the significant advantages of using Bayesian quadra-
ture for the calculation of credit valuation adjustment (CVA) within the One-Factor Linear
Gaussian Markov (LGM-1F) model framework. While traditional methods for CVA cal-
culation are robust, they are often computationally intensive and time-consuming. Our
research focused on applying Bayesian quadrature, a method based on Gaussian process
regression (GPR), for CVA calculation, and compared it to traditional approaches. We
found that Bayesian quadrature, with its exponential convergence and numerical stability,
provides substantial reductions in computation time without sacrificing accuracy, making
it a compelling alternative for real-time risk management.

The numerical results confirm that Bayesian quadrature not only outperforms tra-
ditional methods in terms of efficiency but also maintains comparable precision. This
balance between speed and accuracy is critical for the practical implementation of CVA
calculations, especially under increasingly stringent regulatory requirements. Furthermore,
our application to a portfolio of fixed-income derivatives, including interest rate swaps and
swaptions, within the LGM-1F model framewor, highlights the versatility and robustness of
Bayesian quadrature. This model is widely accepted for the valuation and risk management
of such derivatives, making our findings highly relevant for financial institutions seeking
to enhance their counterparty risk assessment processes.

The three main contributions of this study are as follows:

• Sn approximation of swaption prices using Bachelier’s formula, which enables the
modeling of forward-starting swap rates as Gaussian processes, facilitating efficient
CVA computations,

• The proposal of an analytical approximation for the CVA of an interest rate swap
portfolio, simplifying the calculation process while maintaining accuracy,
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• The synergy between Gaussian process Rrgression and Bayesian quadrature, which op-
timizes numerical integration to achieve an innovative balance between computational
efficiency and precision in credit risk management.

The integration of Bayesian quadrature and Gaussian processes also opens the door
for further improvements. For instance, future research could explore optimizing point
selection methods to further enhance computational efficiency and accuracy. Additionally,
the adoption of a multifidelity approach [49] could combine models with varying levels of
accuracy and computational cost, enabling more efficient resource use and improving the
precision of CVA calculations.

In conclusion, Bayesian quadrature presents a powerful tool for the efficient and
accurate calculation of CVA, offering a promising direction for future research and practical
applications in financial risk management.
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Appendix A. Change of Probability Measure via a Numéraire

In this appendix, we outline an essential technique for pricing fixed-income derivatives:
the change in the probability measure via a numéraire. Specifically, we focus on two
fundamental probability measures used throughout this paper: the terminal probability
measure and the level probability measure. To formalize this framework, we state Theorem
A1 of numéraire change, which establishes the transformation between these measures.
For additional details, proofs, and practical implications, we refer the reader to [50].

We consider a filtered probability space (Ω,F , (Ft)t∈[0,T],Q), where Q represents the
risk-neutral probability measure.

In practice, a numéraire serves as a unit of reference when pricing a financial asset.

Definition A1. A numéraire (Nt)t∈[0,T] is any strictly positive (Ft)-adapted stochastic process
such that its discounted value process (D(0, t)Nt)t∈[0,T] is an (Ft) martingale under probability
measure Q.

For any numéraire (Nt)t∈[0,T], we can define the associated forward probability mea-
sure QN by its Radon–Nikodym derivative:

dQN

dQ = D(0, T)
NT
N0

, (A1)

Pricing financial derivatives is generally formulated as the calculation of a risk-neutral
expectation of a given payoff G discounted by the risk-free rate. The change in numéraire
in pricing corresponds to transitioning from the risk-neutral probability measure Q to the
forward probability measure QN . By Girsanov’s theorem, we have the following result:
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Theorem A1. Given a numéraire (Nt)t∈[0,T], the price at time 0 of a financial derivative with a
Q-integrable payoff G at terminal time T is given by:

EQ[D(0, T) G] = N0 EQN
[

G
NT

]
. (A2)

Moreover, if (Wt) is a Q-Brownian motion, then the process (WN
t ) is a QN-Brownian motion,

which is defined by:

dWN
t = dWt −

1
Nt

dNt . dWt (A3)

In this paper, we use this theorem for two specific numéraires:

1. The price of a zero-coupon bond B(t, T) can serves as a numéraire, and the associated
forward probability measure is the terminal probability measure, denoted by QT .

2. The level associated to a swap rate or a European swaption also acts as a numéraire,
and the corresponding forward probability measure is called the level probability
measure, denoted by QLVL.

Appendix B. Numerical Specifications

In this appendix, we briefly present the supplementary data used in the conducted
numerical tests described in Section 5.

First, we used the initial zero-coupon rates data presented in Table A1 to construct the
entire curve by a cubic-spline interpolation of 3 degrees.

Table A1. Initial zero-coupon rate data.

Tenor 1M 6M 1Y 2Y 3Y 4Y 5Y 6Y 7Y 10Y 15Y 20Y

Rate 3% 2% 2% 2% 3% 3% 3% 3% 4% 4% 5% 5%

Next, for the Monte. Carlo simulations, we simulated the Gaussian variable Xt in
the LGM-1F model using Formula (45). Numerically, the samples were generated by
function random.normal in the Python library numpy. Along with the interloped initial
zero-coupon rates, we obtained the simulated zero-coupon bonds curves (at a future date)
using reconstruction Formula (??). The numerical parameters of the LGM-1F are reported
in Table A2, and we highlight that we used a constant volatility in our numerical tests.

Table A2. LGM-1F model parameters.

Mean Reversion λ Volatility σ

1% 0.5%

The risk profile characteristic of the counterparty, used in all our calculations of the
credit value adjustment (CVA), is characterized by the recovery rate and the constant
default intensity reported in Table A3.

Table A3. Counterparty risks profile characteristics.

Recovery Rate R Default Intensity µ

1% 0.5%

We report in Table A4 the characteristics of the interest rate swap portfolio used in our
numerical tests. Except the notional and the start date, the parameters of the portfolio were
chosen randomly based on predefined ranges or specific sets of values. Specifically, the
maturity was selected as a semi-integer value between 1 year and 7 years; the frequency
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was chosen to be semiannual, quarterly, or annual; the fixed rate was selected from the
range of 2% to 5%; and the type was assigned as either a receiver or a payer swap. This
randomized selection ensured a diverse and representative portfolio of interest rate swaps
in the bank.

Table A4. The characteristics of the swaps in the portfolio used for numerical tests.

Deal ID Start Date Frequency Notional Fixed Rate Maturity Type

0 0 0.25 10,000 4% 2.5 Payer
1 0 0.25 10,000 5% 1 Payer
2 0 0.25 10,000 5% 1 Payer
3 0 0.5 10,000 3% 7 Receiver
4 0 1 10,000 4% 6.5 Payer
5 0 1 10,000 3% 4.5 Payer

...
395 0 0.5 10,000 4% 4.5 Receiver
396 0 1 10,000 2% 2.5 Payer
397 0 0.5 10,000 4% 5.5 Payer
398 0 1 10,000 4% 3.5 Payer
399 0 0.25 10,000 3% 4.5 Payer

Finally, Gaussian process regression and Bayesian quadrature were implemented
using the Python libraries GPy and emukit, respectively. Both methods utilized a squared
exponential kernel (10), with its initial (before training) numerical parameters reported
in Table A5. For Bayesian quadrature, integration was performed with respect to the
Lebesgue measure on the interval [0, T], as the survival probabilities were deterministic
and straightforward to compute.

Table A5. Squared exponential kernel parameters used for GPR and Bayesian quadrature.

Variance σ f Length Scale l

1% 10%

The inputs and numerical specifications detailed in this appendix are provided as a
complementary resource to enhance the understanding of the implementation and results
presented in Section 5. These details ensure the transparency and reproducibility of the
methodologies and results discussed in the main text.
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