Supplementary File S2. The sensitivity analysis results
1. Sensitivity analysis for the hyperparameters of lattice-physics dataset

Finding the valid range of hyperparameter values in DNNs is crucial, as it
directly impacts the efficiency of the optimization process. Due to the unknown
nature of valid values and ranges, sensitivity analysis focuses exclusively on non-
categorical hyperparameters. These non-categorical hyperparameters include
variables such as learning rate, validation split, number of nodes, and epochs. The
selection to exclusively evaluate non-categorical hyperparameters is driven by their
continuous nature, which makes them suitable for sensitivity analysis. On the other
hand, categorical hyperparameters, such as activation functions and optimizers, are
predefined with distinct values that are integral to the neural network architecture,
allowing their exclusion from the sensitivity test.

By isolating non-categorical hyperparameters for investigation, we aim to gain
insights into the impact of continuous adjustments on the performance of the system,
contributing to a comprehensive understanding of its behavior. These sensitivity
tests play a pivotal role in establishing valid ranges for subsequent optimization
processes. Our focus in this context is to identify a hyperparameter range that
guarantees a stable system state, thereby enhancing the reliability of the optimization
process [1].

Once a specific non-categorical hyperparameter is adjusted, the others are fixed
with the value displayed in Table S1. These fixed values and the test range are
carefully selected based on the preliminary investigations. For example, the chosen
number of hidden layers is two layers, the activation function is ReLLU [2], and the
optimizer is Adam [3]. All these sensitivity tests are conducted using 1000 uniform
random samples within the test range in Table S1.

Table S1. The hyperparameters for sensitivity analysis

No  Quantity Test range Fixed value
1 Learning rate 0.0001 to 0.1 0.01
2 Number of hidden layers 2 2
3 Number of nodes per layers 0 to 200 128, 64
4 Validation split 0.05t0 0.85 0.1
5 Activator ReLU ReLU
6 Optimizer Adam Adam
7 Epochs 1 to 200 200




Learning rate sensitivity test

In deep neural networks, the learning rate is a hyperparameter that determines
the step size of each iteration to move toward a minimum value of the loss function.
A very high learning rate may not facilitate finding the minimum loss function and
increases the uncertainty of the machine learning model. Conversely, a very low
learning rate may take too long to converge and sometimes get stuck in an
unexpected local minimum. In this case, we adjusted the learning rate from 0.0005
to 0.1 using a uniform random variable; the other hyperparameters such as the
number of hidden layers, number of nodes per layer, validation split, activation
functions, optimizer, and number of epochs are fixed as shown in Table S1. The
Mean square error (MSE) value was used to track the DNN's predictions and can be
calculated using the following equation:

1 ~
MSE = —¥iL,(t; — t)* (12)

where t is the predicted value and t is the actual value, and m is the number of
datasets.

It can be observed that when the learning rate is higher than approximately 0.06,
the accuracy of DNNs significantly fluctuates, leading to the unacceptable prediction
of DNNs. This phenomenon gradually reduced when the learning rate decreased to
approximately 0.02. Therefore, a learning rate higher than 0.02 is strongly not
recommended for this problem (see Fig. S1).
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Figure S1. Learning rate sensitivity test results



Validation split test

The validation split involves partitioning the dataset into a training set and a
validation set, enabling the assessment of our machine learning model’s
performance during the training process. The validation split value represents the
percentage ratio between the training data and the validation dataset. It has been
observed that setting the validation split value excessively high can result in an
inadequate training dataset, increasing the uncertainty of the model. Conversely, a
very small validation split may lead to insufficient validation of the DNN's
predictions. Figure S2 illustrates that the valid range for the validation split value
lies between 0.05 and 0.5. However, it was revealed that maintaining this value as
fixed throughout the optimization process is essential to ensure a sufficient and
consistent validated dataset, guaranteeing the stable accuracy of the DNN
predictions.
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Figure S2. Validation split sensitivity test results
Number of nodes per hidden layers test

This test is to roughly identify the valid range of the number of nodes for the
two-hidden layer case by adjusting their number of nodes, independently. Therefore,
the results can be constructed by the combination of a random number of nodes in
each layer, which is a so-called dual sensitivity test. In this dual sensitivity test, we
utilized the MSE-1 as a metric to measure the accuracy of the DNN predictions. The



blue zone in Figure S3 indicates the very bad ML predictions due to the high value
of MSE. As a result, it is recommended that the number of nodes should be generally
greater than 30 for each layer to obtain acceptable accuracy.
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Figure S3. Number of nodes sensitivity test results
Number of epochs

The term "epochs" represents the number of iterations over the training dataset
during which a DNN learns and updates its parameters to enhance its predictions.
Therefore, the valid value of epochs should be an integer number (Z*). The optimal
number of epochs depends on factors such as the complexity of the problem, the size
of the dataset, and the architecture of the neural network. In this sensitivity test, we
adjusted the epochs under 1 to 200. Consequently, the results indicated that the
number of epochs should be higher than 50 (see Fig. S4). However, it can be
observed that there are still some noisy results even after 50 epochs. To mitigate this
bias, we implemented the ModelCheckpoint in Keras [4] during the training process.
This allowed us to store the best accuracy achieved, ensuring that the best candidate
could always be obtained despite the presence of noise. As a result, we treated the
number of epochs as a fixed value (epochs = 200) during the optimization process
and did not consider it as a hyperparameter requiring adjustment.



Epochs sensitivity test
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Figure S4. Number of epochs sensitivity test
2. Sensitivity analysis for the hyperparameters of the public datasets
The selected initial range for sensitivity analysis were presented in Table S2.

Table S2. The hyperparameters for sensitivity analysis

No  Quantity Test range Fixed value
1 Learning rate 0.00001 to 0.1 0.001
2 Number of hidden layers 2 2
3 Number of nodes per layers 1 to 200 100, 100
4 Activator ReLU ReLU
5 Optimizer Adam Adam
6 Batch size 1 to 200 50
7 Epochs 1 to 200 100

2.1 Boston Housing dataset

Learning rate sensitivity test
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Figure S5. Learning rate sensitivity test
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Figure S6. Batch size sensitivity test
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Figure S7. Number of epochs sensitivity test
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Figure S8. Number of nodes sensitivity test

2.2 CHF dataset

Learning rate sensitivity test
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Figure S9. Learning rate sensitivity test
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Figure S10. Batch size sensitivity test
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Figure S11. Number of epochs sensitivity test
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Figure S12. Number of nodes sensitivity test

2.3 Concrete compressive strength (CCS) dataset
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Figure S13. Learning rate sensitivity test
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Figure S14. Batch size sensitivity test
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Figure S15. Epochs sensitivity test
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Figure S16. Number of nodes sensitivity test

2.4 Combined Cycle Power Plant (CCPP) dataset
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Figure S18. Batch size sensitivity test
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Figure S19. Epochs sensitivity test
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Figure S20. Number of nodes sensitivity test

2.5 Gas Turbine CO and NOx Emission (NOX) dataset
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Figure S21. Learning rate sensitivity test
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Figure S22. Batch size sensitivity test
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Figure S23. Epochs sensitivity test
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Figure S24. Number of nodes sensitivity test

In this investigation, the hyperparameters to be selected to optimize such as
learning rate, number of epochs, batch size, and number of nodes in the hidden layers
of the DNN model. The selected ranges of hyperparameters in Table S3 for all
datasets are carefully evaluated based on this sensitivity test. The total number of
sample is 1000 for all sensitivity tests.



Table S3. The selected ranges of hyperparameters for all public datasets

No Quantity BH CHF CCS CCPP NOX
1 Learning rate 1E-5 to 1E-2 SE-3 to 2E-2 1E-2 to 4E-2 2E-3t02E-2 5E-3 to 2E-2
2 Number of hidden layers 2 2 2 2 2
3 Number of nodes per layers 25 t0 200 100 to 200 100 to 200 25 t0 200 25 t0 200
4 Epochs 50 to 200 50 to 200 25 to 200 50 to 200 100 to 200
5 Activator ReLU ReLU ReLU ReLU ReLU
6 Optimizer Adam Adam Adam Adam Adam
7 Batch size 1 to 50 1 to 50 1to 25 100 to 150 25 to 50
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