
Citation: de Araújo, F.J.M.; Guerra,

R.R.; Peña-Ramírez, F.A. The

COVID-19 Mortality Rate in Latin

America: A Cross-Country Analysis.

Mathematics 2024, 12, 3934. https://

doi.org/10.3390/math12243934

Academic Editors: Domma Filippo

and Francesca Condino

Received: 21 November 2024

Revised: 8 December 2024

Accepted: 10 December 2024

Published: 13 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

The COVID-19 Mortality Rate in Latin America: A Cross-
Country Analysis
Fernando José Monteiro de Araújo 1,* , Renata Rojas Guerra 1,2 and Fernando Arturo Peña-Ramírez 2

1 Graduate Program of Statistics, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, Brazil
2 Departament of Statistics, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil;

renata.r.guerra@ufsm.br (R.R.G.); fernando.p.ramirez@ufsm.br (F.A.P.-R.)
* Correspondence: fernando.monteiro@ufrgs.br

Abstract: Latin America was one of the hotspots of COVID-19 during the pandemic. Therefore,
understanding the COVID-19 mortality rate in Latin America is crucial, as it can help identify at-
risk populations and evaluate the quality of healthcare. In an effort to find a more flexible and
suitable model, this work formulates a new quantile regression model based on the unit ratio-Weibull
(URW) distribution, aiming to identify the factors that explain the COVID-19 mortality rate in Latin
America. We define a systematic structure for the two parameters of the distribution: one represents
a quantile of the distribution, while the other is a shape parameter. Additionally, some mathematical
properties of the new regression model are presented. Point and interval estimates of maximum
likelihood in finite samples are evaluated through Monte Carlo simulations. Diagnostic analysis and
model selection are also discussed. Finally, an empirical application is presented to understand and
quantify the effects of economic, social, demographic, public health, and climatic variables on the
COVID-19 mortality rate quantiles in Latin America. The utility of the proposed model is illustrated
by comparing it with other widely explored quantile models in the literature, such as Kumaraswamy
and unit Weibull regressions.
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MSC: 62J20; 62E10

1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological
agent of coronavirus disease 2019 (COVID-19). On 11 March 2020, the WHO declared
COVID-19 a global pandemic [1]. Approximately a year and two months after the WHO
declared the COVID-19 epidemic a global public health emergency, on 23 March 2021, Brazil
reported 3158 deaths in just 24 h. This figure was the highest number of deaths reported
worldwide since the beginning of the pandemic. That same day, Argentina appeared in
the top 10 countries with the highest number of daily infections (9405), and Colombia
occupied the 11th position in total deaths (62,274) since the beginning of the emergency.
Peru was also cataloged as the country in the Latin American region with more deaths per
1000 inhabitants (0.516).

In May 2020, the World Health Organization (WHO) declared that South America had
become the new epicenter of the COVID-19 pandemic, with countries like Brazil,
Argentina, and Peru reporting some of the highest per capita mortality rates worldwide [2].
As the pandemic progressed, Latin America became again an epicenter in September 2020.
Although the United States continued to lead globally in total cases and deaths, Brazil
ranked second, followed by other heavily affected countries in the region, such as Peru,
Chile, Mexico, Colombia, Ecuador, Argentina, and Bolivia [3]. Between March and June
2021, the epicenter shifted back to Latin America, driven by the spread of the Delta variant,
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which quickly became the dominant strain globally [4]. The prevalence of comorbidities
such as diarrhea and diabetes leaves the region in a complex and delicate clinical and
epidemiological environment. The situation worsens with the coexistence of other
epidemics, such as dengue and yellow fever, in addition to the long-term consequences of
chikungunya and Zika [5].

In the context of epidemic modeling, predicting infections and mortality rates at a
regional or national level is essential. [6] discusses the use of compartmental models such
as susceptible-infected-recovered (SIR) and its variants, including susceptible-exposed-
infected-recovered (SEIR) and susceptible-infected-susceptible (SIS), among others. The
SIS model, initially proposed by [7], is a mathematical model developed to describe the
dynamics of epidemics, such as infection rate and population immunity, and quantifies how
an infectious disease spreads over time. These models remain widely used, as demonstrated
by [8], who applied the SIR model to predict the number of cases of COVID-19 in Malaysia
during different pandemic phases.

Considering probabilistic modeling, several authors, such as [9,10], have investigated
how climatic and cultural factors influence the death rate from COVID-19. In such cases,
classic linear regression models have been fitted to explore these associations, accounting
for factors like temperature, humidity, and cultural dimensions. It is common to apply
this methodology to explain mortality rates based on other variables. Additionally, recent
works by [11,12] have utilized regression models to analyze the impacts of factors such as
government effectiveness, testing rates, and public health measures on COVID-19 mortality.
However, this methodology brings some limitations, particularly the assumption of normal
distribution in the response variable. This assumption does not capture the character of
the response variable since the rates are bounded random variables and, most of the time,
asymmetric. The normal distribution cannot represent this characteristic, and we note that
the specialized literature has paid little attention to this fact.

A modeling alternative is to assume a distribution in the exponential family for the
response variable. These are the well-known generalized linear models (GLMs) pioneered
by [13]. However, this assumption remains restrictive. Another class of more general and
flexible models assumes that the response distribution is deliberately left general with no
explicit distribution specified, and its parameters vary as a function of explanatory variables.
They are the Generalized Additive Models for Location, Scale, and Shape (GAMLSS)
framework [14]. Recently, applications and proposals for models based on the GAMLSS
approach have gained prominence. For example, in the study by [15], a variety of models
were used, including beta, simplex, unit gamma (UG), and unit Lindley (UL) regressions,
to identify covariates associated with the proportion of votes in municipal elections.

In this paper, we directly utilize the GAMLSS framework to formulate a new regression
model based on the Weibull distribution, aimed at explaining the COVID-19 mortality rate
in Latin America. We define a structure of systematic components on the two parameters
of the distribution: one of which represents a quantile of the distribution and the other
its dispersion. Modeling on the median is preferable over the mean when the variable
of interest is not symmetric (i.e., skewed), especially in the presence of outliers [16], in
addition to being a more robust measure of central tendency [17].

The main contribution of this paper is to propose a new regression model that facilitates
understanding and quantifying the impact of economic variables, social and demographic
indicators, and public health measures on the quantiles of the COVID-19 mortality rate.
Unlike commonly used models for these purposes, this model accommodates the typical
asymmetry and bounded nature of mortality rate data. We hope that our approach can
serve as a valuable tool for policymakers in decision-making. We focus on the initial
mortality rates of the pandemic, as other variables, such as government responses through
public policies promoting mask-wearing, widespread testing, and social isolation, began to
influence these rates as the pandemic advanced. Such initiatives underscore the importance
of government interventions in public health to mitigate the pandemic’s impacts.
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The model can be effectively applied to analyze mortality rates of diseases with low
fatality rates, such as measles, or other epidemic diseases, such as dengue and yellow fever.
This model can be extended to analyze various economic and engineering applications. In
economics, it can model data like the Gini index and poverty rates, which are proportions
between 0 and 1 and often exhibit positive skewness. In engineering, the model can be used
to analyze failure rates of systems or efficiency metrics, which may also be expressed as
percentages (ranging from 0 to 100%) and are typically skewed. These applications highlight
the importance of using more flexible models to interpret complex, asymmetrical data.

The remainder of the paper is outlined as follows. Section 2 introduces the new
regression model, the unit ratio-Weibull distribution for the COVID-19 mortality rates in
Latin American countries. Further estimation and goodness-of-fit aspects are also presented.
In Section 3, a Monte Carlo simulation study is conducted to evaluate the performance of
the maximum likelihood estimators of the proposed regression model. Section 4 describes
the data preparation and carries out the regression analysis by comparing the novel model
with other quantile regressions in the unit interval. The concluding remarks are addressed
in Section 5.

2. The Unit Ratio-Weibull Regression

This section introduces a new quantile regression for modeling double-bounded
epidemiological data. By focusing on COVID-19 applications, our approach arises as an
alternative to analyze the impact of demographic and epidemiological indicators on the
mortality rate of this disease. The proposed regression is based on the unit ratio-Weibull
(URW) distribution, which belongs to the unit ratio-extended Weibull family and was
pioneered by [18].

A random variable Y has a URW distribution, denoted by Y∼URW(σ, µ), if its
cumulative distribution function (cdf) and probability density function (pdf) are

F(y|σ, µ) = 1 − (1 − τ)yσ(1−µ)σ/[µσ(1−y)σ ], y ∈ (0, 1) (1)

and

f (y|σ, µ) =
σ yσ−1 (1 − µ)σ

µσ (1 − y)σ+1 log
[
(1 − τ)−1

]
(1 − τ)yσ (1−µ)σ/[µσ (1−y)σ ], (2)

respectively, where σ > 0 is a shape parameter, and µ ∈ (0, 1) is the τth quantile of the
distribution. For σ = 2, the unit ratio-Rayleigh (URR) distribution yields a special case.
The corresponding quantile function (qf) is

Q(u|σ, µ) =

[
µσ log(1−u)

(1−µ)σ log(1−τ)

]1/σ

1 +
[

µσ log(1−u)
(1−µ)σ log(1−τ)

]1/σ
. (3)

Since Q(τ|σ, µ) = µ, it follows that µ is a location parameter corresponding to the URW
τth quantile.

The flexibility and advantages of the URW distribution and its special case are
illustrated by numerical experiments in real and simulated data sets [18]. However, the
URW does not accommodate explanatory variables in the modeling. The current paper
overcomes this limitation by introducing the URW regression in which the quantile and
the shape parameters can be related to a linear predictor. The useful parameterization
of the URW allows us to formulate a quantile regression model that consists of two
components, namely:

(i) a random component in which Y1, . . . , Yn is a sample of n independent random
variables, where each Yt, t = 1, . . . , n, follows a URW distribution with quantile
µt and shape parameter σt, that is, Yt∼URW(σt, µt);
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(ii) systematic components through the linear predictors

η1t = g1(µt) = x⊤t β, (4)

and

η2t = g2(σt) = z⊤t γ, (5)

where xt = (1, xt2, . . . , xtk)⊤ and zt = (1, zt2, . . . , ztl)⊤ are k × 1 and l × 1 vectors
that contain observations of k and l known covariates (k + l < n), respectively. The
vectors of unknown regression parameters are β = (β1, . . . , βk)

⊤ ∈ Rk and γ =
(γ1, . . . , γl)

⊤ ∈ Rl . Finally, g1 : (0, 1) → R and g2 : R+ → R are strictly monotonic
and twice differentiable link functions that differ on the mapping required. Ref. [13]
provides an overview of some classical link functions under the generalized linear
models approach.

2.1. Parameter Estimation

Several approaches to parameter estimation are explored in the literature. However,
given its desirable and known asymptotic properties, the maximum likelihood method is
the most widely used. In this section, we determine the maximum likelihood estimators
(MLEs) of the parameters of the URW regression. Let θ⊤ = (β⊤, γ⊤) be the URW regression
parameter vector, and y⊤ = (y1, . . . , yn) the corresponding sample of n independent
observations. The log-likelihood function for this sample is

ℓt(σt, µt) =
n

∑
t=1

log
(

σt

yt

)
+

n

∑
t=1

log
[

log(1 − τ)

yt − 1

]
+

n

∑
t=1

log
[

yt(1 − µt)

µt(1 − yt)

]σt

+ log(1 − τ)
n

∑
t=1

[
yt(1 − µt)

µt(1 − yt)

]σt

, (6)

where µt = g−1
1 (η1t), and σt = g−1

2 (η2t), with η1t and η2t given in (4) and (5), respectively.
The score function is obtained by U = (Uβ(β, γ)⊤, Uγ(β, γ)⊤)⊤, where

Uβ(θ) = ∂ℓ(θ)/∂β⊤ = X⊤Tw,

with X is a n × k matrix whose tth row is x⊤t , T = diag{1/g′1(µ1), . . . , 1/g′1(µn)}, w =
(w1, . . . , wn) wherein

wt =
σt

µt(µt − 1)
[
1 + log(1 − τ)kσt

t
]
,

kt = yt(µt − 1)/µt(yt − 1), and g′1(µt) is the differentiating of g1(µt) with respect to µt, and

Uγ(θ) = ∂ℓ(θ)/∂γ⊤ = Z⊤Su,

wherein Z is a n × l matrix whose tth row is z⊤t , S = diag{1/g′2(σ1), . . . , 1/g′2(σn)},
u = (u1, . . . , un) with

ut =
1
σt

+ log(kt)
[
1 + log(1 − τ)kσt

t
]
,

and g′2(σt) is the differentiating of g2(σt) with respect to σt.
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The Hessian matrix is given by

K(θ) =
∂2ℓ(θ)

∂θ∂θ⊤
=

 ∂2ℓ(θ)

∂β2
∂2ℓ(θ)
∂β∂γ⊤

∂2ℓ(θ)

∂γ∂β⊤
∂2ℓ(θ)

∂γ2

,

where

∂2ℓ(θ)

∂β2 = X⊤MX,

∂2ℓ(θ)

∂γ2 = Z⊤BZ,

∂2ℓ(θ)

∂β∂γ⊤ =
∂2ℓ(θ)

∂γ∂β⊤ = Z⊤DX,

and M = diag{m1, . . . , mn}, B = diag{b1, . . . , bn}, D = diag{d1, . . . , dn}, wherein

mt =
σt

µ2
t (µt − 1)2

[
1 − 2µt + kσt

t log(1 − τ)(1 − 2µt + σt)
][ 1

g′1(µt)

]2
,

bt =

[
kσt

t log2(kt) log(1 − τ)− 1
σ2

t

][
1

g′2(σt)

]2

and

dt =
1

µt(µt − 1)
{

1 + kσt
t log(1 − τ)[1 + σt log(kt)]

}[ 1
g′1(µt)

][
1

g′2(σt)

]
.

Under regularity conditions, the asymptotic normality property of EMVs ensures that
when the sample size is large,(

β̂
γ̂

)
∼ Nk+l

((
β
γ

)
, [−K(θ)]−1

)
,

approximately. Moreover, [−K(θ)]−1 is the asymptotic variance–covariance matrix of θ̂,
and −K(θ) is the observed information matrix.

To determine the MLEs of θ, denoted as θ̂ = (β̂, γ̂)⊤, is necessary to maximize (6)
by setting the score vector components at zero and solving the system of equations
simultaneously. However, that is a non-linear system, and numerical methods must
be used. Since the proposed model resembles the Generalized Additive Models for
Location, Scale, and Shape (GAMLSS) approach [14,19], we implement the URW regression
as a gamlss class object in R programming language, which is available in the gamlss
package [20,21] and uses the RS algorithm for maximizing the log-likelihood given in (6).
The computational codes for the URW model and the simulation and application studies
can be downloaded from https://github.com/Fernando-code8/URW-Unit-Ratio-Weibull-
Regression- (accessed on 18 October 2024). The cdf (1), pdf (2), and qf (3) can be computed
using the dURW, pURW, and qURW functions, respectively. Samples of the URW model
can be generated using the rURW function.

https://github.com/Fernando-code8/URW-Unit-Ratio-Weibull-Regression-
https://github.com/Fernando-code8/URW-Unit-Ratio-Weibull-Regression-
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2.2. Diagnostic Measures and Model Selection

Diagnostic measures are customarily adopted to check if a fitted regression model
adequately represents the data dynamics. To that end, we perform residual analysis using
the quantile residuals introduced by [22]. For the URW regression, such a residual is given
by rt = Φ−1[F(yt|σ̂t, µ̂t)], where F(·|σ̂t, µ̂t) is obtained from the URW cdf (1) evaluated
at µ̂t = g−1

1

(
x⊤t β̂

)
and σ̂t = g−1

2
(
z⊤t γ̂

)
. In the literature, several authors have been

considering the quantile residuals since they are standard normally distributed when the
model is correctly specified [22]. See [17,23,24] for instance.

We also consider the worm plot of the residuals to verify whether the assumed
distribution fits properly for the dependent variable [25]. We expect that 100(1 − α)% of
the points to be inside the two elliptic curves in the middle of the figure. A large proportion
of points outside this region and the occurrence of any specific shape in the points indicate
that the fitted model is inadequate.

The generalized coefficient of determination (R2
G) is considered to measure the

predictive capacity of URW-fitted regressions. Defined by [26], the R2
G is given by

R2
G = 1 − exp{−2/n[ℓ(θ̂)− ℓ(θ̂0)]}, where ℓ(θ̂) is the log-likelihood of the fitted model,

and ℓ(θ̂0) is the log-likelihood of the model without covariates, i.e., the null model. The
higher the R2

G, the better the fitted model to explain the variability of the response variable.
Finally, Akaike information criteria (AIC) are suggested for model selection. The

AIC is widely used to select the more suitable model among a class of candidate models
and is defined by [27] as AIC = 2[m − ℓ(θ̂)], where m = k + l is the number of estimated
parameters. The better model is the one with a smaller AIC.

The model performance was assessed using leave-one-out cross-validation (LOOCV);
see [28] for details. This methodology involves sequentially partitioning the dataset into
two parts. Consider a dataset {(y1, x1), . . . , (yn, xn)} consisting of responses Y and their
associated vectors of k covariates, xi = (xi1, . . . , xik), where i = 1, . . . , n. Let ŷ∗i be the
estimate of the value yi, obtained by excluding the i–th observation from the fit.
Specifically, this involves fitting a regression model to the dataset
{(y1, x1), . . . , (yi−1, xi−1), (yi+1, xi+1), . . . , (yn, xn)} and then substituting xi into the
fitted regression structure to compute the estimate of yi, denoted by ŷ∗i . This procedure is
repeated for all observations in the dataset to obtain y∗1 , . . . y∗n.

To compare the predicted values of the fitted models, we use the mean absolute error
(MAE), defined as MAE = 1

n ∑n
i=1 |yi − ŷ∗i |. MAE quantifies the absolute difference

between observed and predicted values. Therefore, a lower MAE indicates better
model performance.

3. Numerical Evidence

In what follows, we report Monte Carlo experiments to explore the performance of
the maximum likelihood method and the assumptions on the empirical distribution of
rt for the proposed methodology. We generate 10, 000 replications of a URW regression
with the systematic components given by (4) and (5) for the quantile and shape parameters,
respectively. The logit link function is used for µ, logit(µ) = log[µ/(1 − µ)], and the log
link function is used for σ. The sample sizes are set at n ∈ {10, 15, 30, 70, 150, 300} and
the values of the covariates are generated from the standard uniform distribution. For the
parameter values, two different scenarios are considered, namely:

• Scenario 1: β1 = −3.75, β2 = 0.25, γ1 = 1.5, and γ2 = 1.5;
• Scenario 2 :β1 = −5, β2 = 1.75, γ1 = 2, and γ2 = 1.25.

For brevity, we will present the results with τ = 0.5, which represents the median of the
response variable. The numerical evidence for other quantiles was quite similar and is
reported in the Appendix A.

The measurements calculated to evaluate the point estimators are the percentage
relative bias (RB%), mean square error (MSE), coefficient of skewness (CS), and kurtosis (K).
We also compute the coverage rate (CR%) for the interval estimators with a nominal level
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at 0.95. The results are summarized in Table 1. Notice the point estimators become more
accurate and precise as the sample size increases; for example, when n = 300, the MSE is
less than 0.15 for all parameter estimates and scenarios. The CS and K coefficients are in
line with the expected since they get closer to 0 and 3, respectively, as n increases. When
analyzing the CR%, we verify values close to the nominal level. The largest difference, of
only 0.1248, occurs for β̂1 with the smallest sample size of n = 10 in Scenario 1. This still
represents a minor discrepancy, particularly given the small sample size.

We evaluate the mean, variance, CS, and K measures to study the empirical distribution
of the quantile residuals. We expect those statistics to be close to 0, 1, 0, and 3, respectively,
since the quantile residual distribution is expected to be approximately standard normal.
In this sense, we also compute the null rejection rates for the Shapiro–Wilk normality test
at the 10%, 5%, and 1% significance levels, which are referred to as NRR10%, NRR5%, and
NRR1%, respectively. Table 2 reports the results for the residual simulations. The calculated
statistics show that the distribution of rt is approximated by its reference distribution. The
normality test corroborates this result since the null rejection rates are close to the test
nominal level for all scenarios.

Table 1. Results of simulation of URW regression with τ = 0.5.

Measures n
Scenario 1 Scenario 2

β̂1 β̂2 γ̂1 γ̂2 β̂1 β̂2 γ̂1 γ̂2

RB%

10 0.4321 −9.4939 66.3225 −13.6220 0.1536 −2.2519 55.3137 −17.9652
15 0.0532 −5.1174 27.2422 17.6428 0.6361 1.9085 28.6735 7.1978
30 0.0342 −1.0949 13.7665 4.5770 0.0308 −0.0859 13.5165 2.1807
70 0.0036 −0.1549 3.9841 5.0650 0.0000 −0.0153 3.9081 5.8399

150 −0.0048 −0.3322 1.7043 2.5107 −0.0033 −0.0404 1.7326 2.7387
300 −0.0055 −0.5761 1.0077 0.8726 −0.0044 −0.0708 0.9927 0.8967

MSE

10 0.0858 0.4924 9.8697 22.0775 0.0644 0.3705 13.0225 28.6075
15 0.0691 0.2481 1.2178 5.1895 0.1011 0.1814 2.2252 5.8772
30 0.0429 0.1130 0.4112 1.3282 0.0306 0.0827 0.6725 1.8748
70 0.0130 0.0326 0.1368 0.5958 0.0097 0.0246 0.2164 0.8274
150 0.0055 0.0181 0.0391 0.1932 0.0041 0.0134 0.0637 0.2644
300 0.0027 0.0072 0.0232 0.1047 0.0020 0.0054 0.0370 0.1441

CS

10 −0.4821 0.0163 1.3254 −0.0668 −0.4807 0.0217 1.3911 −0.0769
15 −0.3653 −0.0450 1.6770 0.1168 −0.4961 0.2488 1.8602 −0.2006
30 −0.2080 0.0287 1.4250 −0.0677 −0.2165 0.0293 1.2909 −0.1013
70 −0.1485 0.0161 0.6854 0.0520 −0.1490 0.0167 0.6490 0.0402

150 −0.1197 0.0100 0.4637 0.0724 −0.1187 0.0134 0.4418 0.0514
300 −0.1205 0.0032 0.3357 0.0099 −0.1185 0.0037 0.3177 −0.0048

K

10 3.7022 3.4739 6.1684 4.0920 3.6177 3.4202 6.9478 4.2937
15 3.4778 3.3128 7.2405 4.4532 3.6312 3.4633 8.6702 4.8173
30 3.1766 3.2517 6.8859 4.0104 3.1935 3.2596 6.0387 3.9389
70 3.1527 3.1266 3.9511 3.4472 3.1691 3.1243 3.8532 3.4277
150 3.0272 2.9784 3.3380 3.2861 3.0159 2.9739 3.2966 3.2884
300 3.0321 3.0402 3.1597 3.0193 3.0371 3.0379 3.1356 3.0045

CR%

10 0.8371 0.8252 0.9327 0.9308 0.8420 0.8303 0.9334 0.9324
15 0.8709 0.8659 0.9365 0.9261 0.8661 0.8647 0.9404 0.9378
30 0.9101 0.9128 0.9433 0.9374 0.9077 0.9131 0.9443 0.9375
70 0.9360 0.9404 0.9487 0.9475 0.9378 0.9396 0.9474 0.9467
150 0.9446 0.9408 0.9537 0.9505 0.9443 0.9409 0.9531 0.9497
300 0.9479 0.9488 0.9476 0.9467 0.9474 0.9471 0.9482 0.9479
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Table 2. Simulation results for the quantile residuals of the URW regression with τ = 0.5.

Scenario n Mean Variance CS K NRR10% NRR5% NRR1%

1

10 0.0086 1.1376 −0.0801 2.2805 0.0747 0.0316 0.0059
15 0.0022 1.0920 −0.0668 2.3691 0.0877 0.0379 0.0036
30 −0.0011 1.0464 −0.0298 2.6328 0.0874 0.0391 0.0050
70 −0.0005 1.0203 −0.0146 2.8228 0.0902 0.0436 0.0073

150 −0.0003 1.0097 −0.0090 2.9047 0.0848 0.0405 0.0075
300 0.0004 1.0050 −0.0054 2.9518 0.0909 0.0420 0.0077

2

10 0.0068 1.1398 −0.0871 2.2747 0.0745 0.0296 0.0047
15 0.0032 1.0946 −0.0764 2.3614 0.0816 0.0340 0.0036
30 −0.0015 1.0471 −0.0304 2.6306 0.0869 0.0389 0.0051
70 −0.0008 1.0206 −0.0148 2.8220 0.0900 0.0428 0.0075

150 −0.0003 1.0099 −0.0091 2.9042 0.0842 0.0410 0.0072
300 0.0003 1.0051 −0.0054 2.9518 0.0904 0.0418 0.0079

4. An Analysis of COVID-19 Mortality Rate

The current section outlines the data preparation employed to investigate the
COVID-19 mortality rate. We consider data from 19 Latin American countries: Argentina,
Belize, Bolivia, Brazil, Chile, Colombia, Costa Rica, Ecuador, El Salvador, Guatemala,
Honduras, Mexico, Nicaragua, Panama, Paraguay, Peru, Suriname, Uruguay, and
Venezuela. For comparative purposes, the response variable is defined as the initial
mortality rate (MR) per thousand people 90 days after the 20th detected case. We fit the
URW regression concurrently with the Kumaraswamy [29] (KW) and unit Weibull [17]
(UW) quantile regressions. Those are well-known unit regressions that may be alternatives
when the interest lies in modeling the impact of explanatory variables in a quantile of the
mortality rate.

We analyze the impact of pre-existing country characteristics such as social,
demographic, and health indicators in the MR. To this aim, we consider the data from the
most recent year available, which were collected from [30]. The selected explanatory
variables are presented in Table 3. The rest of the section presents a descriptive summary
and correlation analysis for the considered variables and the regression models’ results.
This information can be helpful to reveal epidemiological differences across Latin
American countries, identify the covariates with larger influence in the response variable,
and understand their impact on the initial COVID-19 mortality rate. Finally, the results
may contribute to shaping a direction for predicting regional or national infections and
mortality in future research.

Table 3. Definition of the variables.

Variable Description

CHE Current health expenditure: Level of current health expenditure expressed as a
percentage of the gross domestic product in the year. It includes healthcare goods and
services consumed during each year 2017. This indicator does not include capital health
expenditures such as buildings, machinery, and stocks of vaccines for emergencies
or outbreaks.

DGGHE Domestic general government health expenditure: Public expenditure on health from
domestic sources as a share of the economy as measured by the percentage of the gross
domestic product in 2017.

DP Diabetes prevalence: percentage of people ages 20–79 who have type 1 or type 2 diabetes
in the year 2019.

GDP Gross domestic product per capita: gross domestic product divided by midyear
population in 2019. The exceptions are Cuba and Venezuela, which the more recent
information was for 2018 and 2014, respectively.

HDI Human development index in 2018.
UP Urban population: percentage of the total population of people living in urban areas

in 2019.
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4.1. Descriptive Summary and Correlation Analysis

The COVID-19 mortality rate had an asymmetrical and dispersed behavior among the
Latin American countries; see its skewness and percentage coefficient of variation (CV%)
in Table 4. From Figure 1, notice the MR is mostly concentrated on the left tail, indicating
a right-skewed and decreasing shape on the histogram. Thus, the MR is heterogeneous
among the Latin American countries, which is a typical feature for these kind of data. For
example, [12] reported that the COVID-19 mortality rate varies greatly and has a right-
skewed distribution across countries, and [3] verified that this disease manifests differently
among the various regions of Latin America.

(a) Histogram
0
.0

0
0
.1

0
0
.2

0

M
R

(b) Box plot

Figure 1. Histogram and box plot of the MR.

Table 4 also shows a descriptive summary for the explanatory variables. The highest
variability is observed for the GDP, which has CV% around 240 and also presents the highest
positive value of skewness. [31] highlights, through the Gini Index, how inequality among
Latin American countries in relation to GDP has persisted over time. The HDI presents
the lower CV% and most of the countries are classified with high, between 0.7–0.799 [32],
or very high, between 0.8–1 [32]. Variables CHE, DGGHE, HDI, and UP have negative
skewness. The variables MR, UP, and HDI, given their negative kurtosis, have light-tailed
distributions. The variables with the heaviest-tailed distributions are PD and GDP.

Table 4. Descriptive summary for the response variable and covariates.

Variable Mean Median Skewness Kurtosis Min. Max. CV (%)

CHE 7.0112 7.2276 −1.1365 1.5606 1.1812 9.4675 28.0252
DGGHE 4.0354 4.3616 −0.4765 0.4420 0.1883 6.6089 37.1126

DP 9.0789 8.6000 1.1076 0.6581 5.5000 17.1000 32.1934
GDP 3.2553 0.0226 2.3576 4.6840 0.0039 29.7482 239.1504
HDI 0.7405 0.7580 −0.2021 −0.9595 0.6230 0.8470 8.4062
MR 0.0793 0.0422 0.7314 −1.0656 0.0014 0.2473 109.1801
UP 72.9568 72.7460 −0.1786 −1.1724 45.8660 95.4260 19.4462

Table 5 presents the correlation matrix for the studied variables. The correlations
presented are those corresponding to the Spearman method. We can observe negative
correlations between the response variable (MR) and the GDP and DP variables. On the
other hand, the highest positive correlation is that associated with the HB variable. Figure 2
displays scatterplots of the MR versus other covariates and provides a visual inspection of
the correlation measure.
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Table 5. Spearman’s correlation coefficient between all variables.

Variables DGGHE DP GDP HDI MR UP

CHE 0.6895 −0.1676 0.8939 0.3549 0.0947 0.2930
DGGHE −0.2255 0.7924 0.4207 −0.1351 0.3842

DP 0.4178 −0.2241 −0.2159 −0.3668
GDP 0.2143 0.3130 0.2143
HDI 0.1880 0.7668
MR 0.0211

(a) MR vs CHE (b) MR vs DGGHE
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Figure 2. Dispersion plots of MR as a function of CHE, DGGHE, DP, GDP, HDI and UP.

4.2. Regression Results and Discussion

The COVID-19 mortality rate analysis is performed by taking the MR as the response
variable in the proposed regression. Two competitor unit models are considered and
compared to the URW regression. The Kumaraswamy and UW quantile regressions have
their random components given by the pdfs

f (y|σ, µ) =
log(1 − τ)

σ log(1 − µ1/σ)
y1/σ−1(1 − y1/σ)log(1−τ)/ log(1−µ1/σ)−1,

and

f (y|σ, µ) =
σ

y

(
log τ

log µ

)(
log y
log µ

)σ−1
τ(log y/ log µ)σ

,

respectively, where µ ∈ (0, 1) is the τth quantile, τ ∈ (0, 1) is assumed known, and σ > 0
is a shape parameter. For both competitor models, we define systematic components
analogous to those in Equations (4) and (5) and set τ = 0.5 to model the median of the
response variable.
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After evaluating all possible subsets of regressions through the significance of the
predictors, AIC, and residual analysis, the systematic components for all classes of
regressions are defined by

logit(µt) = β1 + β2GDPt + β3HDIt + β4DPt + β5DGGHEt,

and

log(σt) = γ1 + γ2GDPt + γ3UPt,

where logit(µt) = log[µt/(1 − µt)] is the logit link function.
The final fitted regressions and their goodness-of-fit measures are reported in

Tables 6 and 7, respectively. Table 6 presents the parameter estimates and corresponding
p-values for the KW, URW, and UW models. In the case of the UW regression, many
p-values were not statistically significant at the 5% level, capturing only the effects of UP
on the response variable MR. The adjusted KW and URW models proved competitive, with
all estimates significant at the 5% level, except for the GDP predictor, which was significant
at the 10% level. Table 7 shows the results of the Anderson-Darling (AD) test, which we
performed to verify the null hypothesis that the quantile residuals are normally distributed.
For the UW regression, the AD test rejects the normality hypothesis at the 1% significance
level, suggesting that this model is not adequate to the current data. The URW and KW
remain as competitive regressions. However, it is noteworthy that our model outperforms
the KW for all goodness-of-fit measures. The AIC of the URW regression is the lowest, and
the R2

G is also in favor of the proposed model, indicating that the URW-fitted model is able
to explain about 72.78% of the total variability in the MR. The URW regression model
produced the lowest MAE; however, this difference is minimal when considering the scale
of MR. To address this limitation and derive a unit-independent metric, the MAE-M̄R ratio
was employed, calculated as the quotient of the MAE and the mean MR. The results of this
ratio more distinctly demonstrate the advantage of the URW model over the others,
underscoring its superiority in terms of predictive accuracy.

Figures 3 and 4 present the diagnostic plots based on the quantile residuals for the
fitted URW and KW regressions, respectively. Both fitted regression models, URW and
KW, demonstrate suitable results in the graphical analysis of residuals. In the residual plot,
the quantile residuals are randomly distributed around zero. In the worm plot, all points
lie within the confidence bands and remain close to the central line, with no visible trend.
The QQ plot indicates that the sample quantiles are within the limits of the confidence
envelopes, suggesting an adequate fit to the data.

Overall, these analyses indicate that the URW regression provides superior fit quality,
as evidenced by the lower MAE and MAE-M̄R statistics shown in Table 7, based on the
LOOCV approach. These results suggest that the URW regression yields more accurate
predictions compared to the KW regression. Therefore, we confirm that the URW model is
appropriate and provides better fit quality.

Table 6. Summary of the final fitted regressions for the MR.

KW URW UW

Coefficients Estimate p-Value Estimate p-Value Estimate p-Value

Intercept (for µ) −5.9618 0.0421 −6.0836 0.0332 −5.9614 0.6237
GDP −0.1539 0.0004 −0.1515 0.0006 −0.1520 0.6028
HDI 10.2217 0.0069 10.4728 0.0042 10.4197 0.4536
CHE 0.4216 0.0462 0.4023 0.0468 0.3899 0.6049
DP −0.3115 0.0000 −0.3082 0.0001 −0.3097 0.1822

DGGHE −1.0982 0.0004 −1.0861 0.0003 −1.0808 0.3560
Intercept (for σ) 7.0900 0.0000 6.4348 0.0000 6.4599 0.0013

GDP −0.0431 0.0680 −0.0379 0.0875 −0.0388 0.3108
UP −0.0718 0.0000 −0.0643 0.0001 −0.0641 0.0014
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Table 7. Goodness-of-fit measures for the final fitted regressions.

Regression AIC R2
G p-Value (AD) MAE MAE-MR

KW −69.4907 0.7258 0.7321 0.0556 0.7013
URW −69.9176 0.7286 0.8473 0.0480 0.6054
UW −41.4766 −0.1750 0.0002 0.0401 0.5058
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Figure 3. Residuals plots for the fitted URW regression.
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Figure 4. Residuals plots for the fitted KW regression.

The URW model for the median mortality rate due to COVID-19 revealed positive
estimated coefficients for HDI (10.4728) and CHE (0.4023) and negative coefficients for GDP
(−0.1515), DP (−0.3082), and DGGHE (−1.0861). In terms of variation, a one-unit increase
in GDP per capita reduces the median mortality rate by 14.26, while an increase in DGGHE
reduces this rate by 66.2%. The DP variable reduces the median rate by 26.5%. On the other
hand, an increase in HDI is associated with a significant increase in the median mortality
rate, suggesting complex relationships with other factors, while a one-unit increase in
the CHE index is associated with a 49.5% increase in the median mortality rate. For the
submodel, negative estimated coefficients were found for GDP (−0.0379) and UP (−0.0643).
This means that a one-unit increase in GDP per capita and in UP is associated with a
reduction of approximately 3.7% and 6.2% in the value of the parameter σ, respectively.

Based on the fitted URW regression, relevant observations were identified regarding
the modeling of the median mortality rate due to COVID-19 in Latin American countries.
The variables GDP and DGGHE showed negative coefficients, suggesting that increases in
GDP and government spending on health infrastructure are associated with a significant
reduction in the median mortality rate due to COVID-19. That is, a more robust economy
and higher public spending on health seem to enhance resilience against mortality from
the disease.

On the other hand, the variable DP showed unexpected results, indicating a negative
effect on the response variable. The variables HDI and CHE, also yielding unexpected
results, presented positive coefficients, suggesting that increases in the HDI and DGGHE
indicators of countries are associated with a higher median mortality rate due to
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COVID-19. This counterintuitive interpretation suggests more complex interactions,
possibly influenced by other variables such as GDP and DGGHE, which also tend to
correlate with economic development, health investment, and diabetes prevalence
across countries.

In interpreting the coefficients of the submodel for the parameter σ, both GDP and UP
exhibited negative signs, suggesting that increases in GDP and urbanization are associated
with a reduction in σ. This indicates that in regions with higher GDP and urbanization,
the mortality rate due to COVID-19 tends to accelerate less and stabilize more quickly
over time. These results indicate that in areas of higher urban density, the probability
of transmission is naturally greater. However, more developed regions with structured
economies quickly require the implementation of strict measures, such as social distancing,
mask use, and interventions to control the spread of the virus.

5. Concluding Remarks

This article presents a new regression model that explores the relationship between
demographic indicators, economic variables, and public health measures with the COVID-
19 mortality rate among Latin American countries, a region heavily impacted and regarded
as one of the pandemic’s epicenters. It is introduced based on the unit ratio-Weibull
distribution, which is a helpful tool for modeling random variables in the interval (0, 1),
such as rates, proportions, and indices. A general and useful quantile parameterization is
introduced to define the new regression model for double-bounded epidemiological data
modeling. We defined a systematic structure for the two parameters of the distribution:
one represents the quantile of the distribution, and the other, the shape parameter. The
parameters were estimated by maximum likelihood, and the performance of the estimators
was evaluated through Monte Carlo simulations under different scenarios, considering
varying quantile values and finite sample sizes. The URW model was compared with the
Kumaraswamy and unit Weibull regressions, proving to be competitive and providing
the best fit across various selection criteria and predictive accuracy measures. From the
adjusted regression, it was identified that factors such as economic development, Human
Development Index, percentage of the urban population, and government investment in
health infrastructure are associated with lower COVID-19 mortality rates in Latin American
countries. The results indicate that investments in public health and economic infrastructure
are essential to reducing the impact of future pandemics and improving public health
response policies. The URW regression offers a more robust alternative for capturing
the asymmetric and bounded characteristics of mortality rates. This approach provides
valuable insights for more effective public policies, helping to understand the impacts of
economic and demographic variables on mortality. The ability to apply this methodology
to a wide range of fields underscores its versatility, with potential applications in areas
such as health, economics, and engineering. Future research could explore its use in
analyzing mortality rates from diseases like measles in health, inequality indices like the
Gini index and poverty rates in economics, and failure rates or equipment efficiency in
engineering. Furthermore, comparing the performance of the proposed model with other
approaches across these diverse fields would provide valuable insights into its effectiveness
and adaptability.
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The following abbreviations are used in this manuscript:

COVID-19 Coronavirus Disease 2019
URW Unit Ratio-Weibull
SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2
GLM Generalized Linear Models
GAMLSS Generalized additive Models for Locarion, Scale, and Shape
MLE Maximum Likelihood Estimators
AIC Akaike information criteria
LOOCV Leave-One-Out Cross-Validation
MAE Mean Absolute Error
RB% Relative Bias
MSE Mean Square Error
CS Coefficient of Skewness
K Kurtosis
CR% Coverage Rate
NRR Null Rejection Rates
MR Mortality Rate
KW Kumaraswamy
UW unit Weibull
CHE Current Health Expenditure
DGGHE Domestic General Government Health Expenditure
DP Diabetes Prevalence
GDP Gross Domestic Product per capita
HDI Human Development Index
UP Urban Population
CV% Coefficient of Variation
AD Anderson-Darling

Appendix A

In the appendix, we provide supplementary results to Section 3. The numerical results
of the Monte Carlo simulations for other quantiles of the proposed URW regression are
explored below.

Table A1. Results of simulation of URW regression with τ = 0.25.

Measures n
Scenario 1 Scenario 2

β̂1 β̂2 γ̂1 γ̂2 β̂1 β̂2 γ̂1 γ̂2

RB%

10 0.8955 −12.3577 26.1715 −3.9051 0.9435 −0.9402 17.1284 −3.2589
15 0.7920 13.0612 19.6379 −2.8108 0.2532 −0.9762 8.6795 17.4380
30 −0.1949 −2.4211 10.1151 2.8109 0.0268 −0.2949 8.6986 −2.0248
70 −0.1938 −0.6672 3.1095 4.9114 −0.0034 0.1235 2.9153 3.1665

150 −0.0813 −0.2715 1.5041 2.1208 −0.0151 −0.0103 1.6613 0.6487
300 −0.0333 −0.2937 0.6905 1.1025 −0.0036 −0.0082 0.6089 1.0906

https://github.com/Fernando-code8/URW-Unit-Ratio-Weibull-Regression-
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Table A1. Cont.

Measures n
Scenario 1 Scenario 2

β̂1 β̂2 γ̂1 γ̂2 β̂1 β̂2 γ̂1 γ̂2

MSE

10 0.1127 0.5730 3.4659 9.2046 0.0905 0.4523 4.1580 10.6474
15 0.0980 0.2119 0.6815 2.0895 0.0738 0.1989 0.5999 2.7986
30 0.0515 0.1199 0.2082 0.6609 0.0371 0.0894 0.3144 0.8253
70 0.0140 0.0333 0.0522 0.2487 0.0145 0.0271 0.1081 0.3871
150 0.0069 0.0151 0.0228 0.1185 0.0057 0.0118 0.0399 0.1478
300 0.0038 0.0085 0.0103 0.0524 0.0027 0.0057 0.0195 0.0765

CS

10 −0.4748 −0.0204 1.1914 0.0696 −0.4858 −0.0093 1.1418 0.1661
15 −0.4204 0.1240 1.5304 −0.0829 −0.3588 0.0110 1.2062 0.4756
30 −0.2306 0.0049 1.1835 0.0575 −0.2294 0.0056 0.9943 0.0051
70 −0.1365 −0.0526 0.6925 0.2627 −0.1321 0.0130 0.6636 0.0908

150 −0.0336 −0.0321 0.4305 0.2132 −0.1298 −0.0123 0.3829 0.1229
300 −0.0537 −0.0328 0.2891 0.1429 −0.0664 0.0068 0.3245 0.0706

K

10 3.6347 3.8061 6.3411 4.5570 3.7019 3.8261 6.2545 4.8212
15 3.4237 3.3723 7.6680 4.4074 3.3342 3.2400 6.0103 4.6433
30 3.2373 3.3288 5.4315 3.7133 3.2729 3.3480 4.6430 3.4521
70 3.0450 3.0384 4.0062 3.3648 3.0745 3.1062 3.8198 3.3480
150 2.9745 2.9595 3.3899 3.1429 3.1177 3.1842 3.3017 3.1480
300 2.9697 2.9734 3.1233 3.0300 3.0000 3.0280 3.2266 3.1211

CR%

10 0.9000 0.8699 0.9627 0.9622 0.9031 0.8740 0.9597 0.9668
15 0.9081 0.9019 0.9715 0.9597 0.9229 0.9130 0.9575 0.9632
30 0.9262 0.9216 0.9552 0.9562 0.9329 0.9272 0.9629 0.9601
70 0.9363 0.9358 0.9507 0.9505 0.9400 0.9384 0.9558 0.9524
150 0.9436 0.9446 0.9518 0.9493 0.9499 0.9487 0.9547 0.9525
300 0.9482 0.9480 0.9505 0.9521 0.9484 0.9499 0.9511 0.9500

Table A2. Simulation results for the quantile residuals of the URW regression with τ = 0.25.

Scenario n Mean Variance CS K NRR10% NRR5% NRR1%

1

10 0.0044 1.1585 −0.2039 2.1817 0.0984 0.0390 0.0046
15 0.0071 1.1059 −0.1692 2.3633 0.1034 0.0451 0.0058
30 0.0059 1.0488 −0.0759 2.6334 0.0953 0.0435 0.0059
70 0.0028 1.0210 −0.0354 2.8241 0.0920 0.0442 0.0066

150 0.0018 1.0092 −0.0158 2.9108 0.0824 0.0407 0.0072
300 0.0017 1.0043 −0.0098 2.9532 0.0892 0.0427 0.0078

2

10 0.0020 1.1650 −0.2231 2.1788 0.1058 0.0407 0.0048
15 0.0082 1.1011 −0.1475 2.3926 0.1024 0.0446 0.0061
30 0.0043 1.0514 −0.0816 2.6208 0.0956 0.0447 0.0065
70 0.0029 1.0217 −0.0379 2.8211 0.0950 0.0467 0.0060

150 0.0022 1.0096 −0.0189 2.9110 0.0875 0.0416 0.0081
300 0.0021 1.0038 −0.0095 2.9534 0.0921 0.0440 0.0087

Table A3. Results of simulation of URW regression with τ = 0.75.

Measures n
Scenario 1 Scenario 2

β̂1 β̂2 γ̂1 γ̂2 β̂1 β̂2 γ̂1 γ̂2

RB%

10 1.5139 7.0198 59.4137 −15.7750 1.0066 1.0272 50.3627 −15.8088
15 0.9394 −5.5294 10.4376 58.9365 0.5469 −0.4434 20.8548 19.1723
30 0.5489 2.1688 12.8607 3.8494 0.3910 0.4465 11.7262 0.5419
70 0.1713 −0.8342 4.3563 3.9296 0.1220 −0.0153 2.9261 8.5480
150 0.0951 0.1653 2.2395 1.1441 0.0606 −0.0033 1.8062 2.2326
300 0.0569 0.2216 0.9944 0.7903 0.0251 −0.0434 0.8836 1.1722
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Table A3. Cont.

Measures n
Scenario 1 Scenario 2

β̂1 β̂2 γ̂1 γ̂2 β̂1 β̂2 γ̂1 γ̂2

MSE

10 0.0762 0.4276 8.8373 19.6653 0.0576 0.3214 12.0601 26.4214
15 0.0596 0.2170 0.9523 8.5802 0.0470 0.1831 1.9961 8.4663
30 0.0388 0.1069 0.4495 1.4973 0.0277 0.0780 0.7014 2.0920
70 0.0097 0.0389 0.1595 0.6060 0.0099 0.0255 0.2353 0.9759
150 0.0048 0.0139 0.0708 0.2595 0.0040 0.0125 0.0886 0.3329
300 0.0027 0.0082 0.0250 0.1098 0.0020 0.0062 0.0406 0.1717

CS

10 −0.5182 0.1293 1.3932 −0.1506 −0.4724 0.0761 1.3552 −0.0990
15 −0.3864 −0.0399 1.1578 0.8260 −0.3172 −0.0624 1.5891 0.0852
30 −0.1942 0.0519 1.2827 −0.1398 −0.2190 0.0562 1.1600 −0.1521
70 −0.1104 −0.0524 0.6154 0.0133 −0.1763 0.0369 0.4554 0.1434

150 −0.1260 0.0217 0.5416 −0.0837 −0.0893 −0.0071 0.4727 0.0027
300 −0.0580 0.0006 0.2772 0.0145 −0.0400 0.0247 0.3023 0.0043

K

10 3.7395 3.5907 6.7588 4.1142 3.6278 3.5253 6.5626 4.1212
15 3.5437 3.3600 5.6210 4.9085 3.3445 3.2608 7.9806 4.1577
30 3.1248 3.1764 6.1000 3.6655 3.2356 3.2399 5.5435 3.6156
70 3.1267 3.1935 3.6814 3.2058 3.1825 3.1104 3.2776 3.2182
150 2.9852 2.9519 3.5492 3.1539 3.0646 2.9997 3.3876 3.1305
300 2.9573 2.9404 3.0739 3.0106 2.9913 3.0221 3.1717 3.0464

CR%

10 0.8427 0.8475 0.9389 0.9402 0.8391 0.8450 0.9386 0.9413
15 0.8503 0.8496 0.9033 0.9073 0.8815 0.8780 0.9191 0.9157
30 0.9100 0.9174 0.9410 0.9389 0.9104 0.9190 0.9408 0.9375
70 0.9372 0.9387 0.9429 0.9465 0.9357 0.9361 0.9443 0.9458
150 0.9393 0.9389 0.9495 0.9474 0.9417 0.9393 0.9462 0.9450
300 0.9494 0.9498 0.9523 0.9526 0.9479 0.9495 0.9504 0.9489

Table A4. Simulation results for the quantile residuals of the URW regression with τ = 0.75.

Scenario n Mean Variance CS K NRR10% NRR5% NRR1%

1

10 −0.0089 1.1467 −0.1145 2.2479 0.0909 0.0422 0.0058
15 −0.0023 1.0776 0.0049 2.4589 0.0862 0.0372 0.0037
30 −0.0034 1.0386 0.0069 2.6568 0.0846 0.0385 0.0053
70 −0.0007 1.0166 0.0052 2.8431 0.0878 0.0398 0.0066

150 −0.0005 1.0080 0.0016 2.9171 0.0863 0.0400 0.0061
300 −0.0003 1.0042 −0.0001 2.9565 0.0921 0.0450 0.0078

2

10 −0.0078 1.1472 −0.1131 2.2581 0.0886 0.0411 0.0061
15 −0.0055 1.0830 −0.0146 2.4164 0.0852 0.0372 0.0043
30 −0.0035 1.0399 0.0018 2.6503 0.0854 0.0374 0.0050
70 −0.0009 1.0173 0.0022 2.8406 0.0879 0.0388 0.0075

150 −0.0004 1.0079 0.0026 2.9179 0.0873 0.0402 0.0071
300 −0.0002 1.0043 −0.0005 2.9567 0.0899 0.0402 0.0071
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