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Abstract: Induction machines have become the standard for highly demanding industrial appli-
cations. This has led to the utilization of modern discrete-time control techniques (such as model
predictive control) that require the estimation of internal variables that are not subject to measurement
(such as the rotational velocity in sensorless applications). From this point of view, it is fundamental
to have accurate discrete-time models of induction machines, particularly given their nonlinear
nature, so that control techniques perform according to design requirements. In spite of the above,
the modeling of induction machines has not received much attention in the literature, even though
more powerful machines and faster microcontrollers are currently being used. To better understand
induction machine models for control, in this paper, we develop and compare various discrete-time
models of induction machines based on Euler, Taylor, and Runge–Kutta methods. In addition, we
compare the Extended Kalman Filter and Unscented Kalman Filter for state estimation in terms
of accuracy and computational burden. The models are derived and compared through extensive
Monte Carlo simulations and the state estimation techniques are compared in terms of root mean
squared error, execution time, and maximum absolute error. Our simulations show that, in general,
the Taylor method yields more accurate models than both the Runge–Kutta and Euler methods. In
particular, the Taylor method results in a root mean square error that is one order of magnitude
smaller than the Euler method for stator current and rotor flux linkages. For rotor angular speed, the
Runge–Kutta methods are more accurate than both the Taylor and Euler methods, resulting in a root
mean square error that is two orders of magnitude smaller than the Euler method. On the other hand,
the Extended Kalman Filter results in smaller execution time than the Unscented Kalman Filter, up to
two orders of magnitude. In terms of root mean squared error and maximum absolute error, both
filtering algorithms perform similarly.

Keywords: induction machine; Bayesian filtering; discretization

MSC: 37M10; 93C55; 93C57; 60G35

1. Introduction

Induction machines (IM) are basically an alternating current (AC) polyphase machine
connected to an AC power source, either in the stator or in the rotor. The winding arrange-
ment on the stator produces a rotating magnetic field in the machine airgap, which induces
circulating currents that result in an induced rotating magnetic field in the rotor [1].

Induction machines have become the standard for highly demanding industrial appli-
cations. This is due to the simplicity in their construction and working principle, robustness,
and wide speed range operation [2]. On the other hand, control strategies such as Field
Oriented Control or Direct Torque Control are today’s industrial standard control schemes,
since they allow for high energy efficiency, i.e., they develop high torque per Ampere
ratio [1,2]. Among modern control methods, Model Predictive Control (MPC) has been
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widely studied in the literature [3,4]. Moreover, technological advances have allowed for
the implementation of MPC strategies, see, e.g., [5,6]. It is important to note that power
converters play a key role in driving the machine, delivering the necessary input voltage
according to the control requirements. In general, one of the practical limitations in machine
drives is the switching frequency of the power converter, which in turn limits the maximum
sampling rate. This limitation arises from the fact that the higher the voltage the power
converter handles, the lower the switching frequency it can withstand [7]. This sampling
rate restriction may limit the performance of the controller since a low sampling rate could
result in an inaccurate discrete-time model.

In variable-speed drives, speed is conventionally measured using a sensor, which is
susceptible to electromagnetic noise; it requires maintenance and it is unsuitable for abra-
sive environments [8,9]. For these reasons, speed sensors are not used today. Instead, the
rotor speed is estimated using an observer. In addition, the benefits of speed estimation en-
compass diminished hardware complexity and costs, reduced physical space requirements
for the drive, and decreased maintenance demands, to name a few [8,9]. On the other hand,
modern control techniques typically require knowledge of the rotor magnetic flux position.
Given the cost implications and challenges associated with integrating electromagnetic flux
sensors directly into the machine, the flux position is commonly estimated. Therefore, only
the stator currents are measured whilst rotor speed and magnetic fluxes are estimated. This
kind of drive is known as sensorless [8].

To estimate the rotor speed and rotor flux linkages, model-based methods are typi-
cally used, such as model adaptive systems [10,11], full-order observers [12], Luenberger
observers [13], and sliding mode observers [14,15], among others. The methods previously
mentioned are based on a deterministic formulation of the system. However, determin-
istic models do not take into account parameter offset from the nominal value, friction,
lubricant ageing, or the effects of increased temperature (under normal operation) on the
windings, all of which can be understood as model uncertainties. These uncertainties
are typically modeled using random variables [16–19]. In this framework, the unknown
variables are estimated using Bayesian filtering. In linear systems, the Kalman Filter (KF) is
used, whereas for addressing nonlinear state estimation, the Extended Kalman Filter (EKF)
and the Unscented Kalman Filter (UKF) are typically used [20–24].

The well-known Kalman Filter has been used in state estimation of induction machines
in several works under the assumption of constant speed, see, e.g., [25–27]. This assumption
results in a linear system, and since the Kalman Filter is the optimal linear filter [28,29], it is
the best option in this case. However, in our problem of interest, the speed is not constant,
particularly in the numerical examples where we have considered direct start and load
application. This non-constant speed results in a nonlinear system, which in turn requires
the utilization of nonlinear state estimation techniques. To the best of our knowledge,
the Extended Kalman Filter is the most widely used technique for state estimation in
induction machines, see, e.g., [30–34]. Additionally, the Euler method is typically used for
the attainment of discrete-time induction machine models, and whilst at high sampling
rates it can yield adequate models, our work suggests that higher-order methods yield
more accurate models that result in more accurate state estimation in terms of root mean
square error.

On the other hand, the state estimation using UKF for an induction machine is pre-
sented in [35–37], where it is compared with EKF. In [35,37], it is determined that UKF
has a slightly better performance than EKF in state estimation for the induction machine.
Conversely, in [36] it is reported that the EKF yields a slightly better performance than
UKF. Moreover, UKF has been used in sensorless control [37–40]. In [38], in addition to
estimating the states, the rotor resistance and the load torque are also estimated. In [40],
UKF is compared with EKF, and UKF provides slightly better estimation. However, in
terms of execution time, the UKF algorithm takes six times longer than the EKF algorithm.

Currently, due to the digital nature of controllers and processors, it has become
necessary to discretize continuous-time models for their implementation. Historically,
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in machine drives, the Euler method was widely adopted in the literature to obtain a
discrete-time model of the machine due to its simplicity, see, e.g., [41–43]. In fact, in
Bayesian filtering applications on IM drives using EKF [27,32–34] and UKF [35,37–40], Euler
discretization methods are typically considered. Higher-order methods like the Taylor or
Runge–Kutta, which involve greater computational costs and usually yield more complex
systems, are not commonly utilized. The implementation of Taylor discretization, for
instance, requires explicit calculations of higher-order derivatives. In contrast, Runge–Kutta
employs estimated intermediate points between each sample to construct the model’s
evolution [44]. Notably, Runge–Kutta methods are chosen to solve the nonlinear differential
equations that define the machine behavior, resulting in “approximate” continuous-time
currents, magnetic fluxes, and rotor speed. Moreover, Runge–Kutta methods are extensively
utilized in simulation software such as Simulink and Plecs [45,46].

The contribution of this article is twofold: (i) a formulation and comparison of discrete-
time models for induction machines using Euler, Taylor, and Runge–Kutta methods are
presented, and (ii) a thorough comparison of EKF and UKF applied to the induction
machine using the different discrete-time models is presented. Our analysis shows that the
Euler method accurately represents the machine’s dynamics, but at very high sampling
rates. On the other hand, at lower sampling rates, various discrete-time models based on
the Taylor and Runge–Kutta methods can accurately represent the machine model. Finally,
for the different discrete-time models, EKF and UKF algorithms are compared through
extensive Monte Carlo simulations, in terms of root mean squared error (RMSE), execution
time, and maximum absolute error.

The reminder of this article is organized as follows. In Section 2, the continuous-
time model of the induction machine is described. In Section 3, the Euler, Taylor, and
Runge–Kutta discrete-time models of the induction machine are formulated and compared
with the continuous-time model in terms of RMSE. In Section 4, EKF and UKF algorithms
are presented based on a stochastic model of the machine. In Section 5, EKF and UKF
algorithms using different discrete-time models are compared in terms of execution time,
RMSE, and maximum absolute error. Finally, we present our conclusions in Section 6.

2. Continuous-Time Induction Machine Model

The main parts of the induction machine are the stator and the rotor. The stator is
made up of three symmetrically distributed coils. On the other hand, the rotor consists of
aluminum bars shorted at the ends forming a cylinder. The three-phase coils are represented
on a complex space, whose axes are named α-β. The stator space vectors are

vαβ
s = vα

s + j vβ
s =

2
3

(
a0 va + a vb + a2 vc

)
(1)

iαβ
s = iα

s + j iβ
s =

2
3

(
a0 ia + a ib + a2 ic

)
(2)

ψ
αβ
s =ψα

s + j ψ
β
s =

2
3

(
a0 ψa + a ψb + a2 ψc

)
(3)

where vαβ
s is the stator voltage space vector on the stationary reference frame α-β; in the

same way, iαβ
s and ψ

αβ
s are the stator current and flux linkage, respectively, on the α-β

reference frame. The unit space vector a = ej 2π
3 denotes the position of the coil on the space.

The subscript a, b, c denotes the three-phase component.
The stator electrical equation on the α-β reference frame is

vαβ
s = Rs iαβ

s +
d
dt

ψ
αβ
s (4)

where Rs is the stator resistance.
Similarly, the rotor electrical equation is

0 = Rr iαβ
r +

d
dt

ψ
αβ
r + j p ωr ψ

αβ
r (5)
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where iαβ
r and ψ

αβ
r are the rotor current and flux linkage, respectively, on the α-β reference

frame; Rr is the rotor resistance; p is the number of pole pairs; and ωr is the rotor shaft
angular speed.

The flux linkages of the stator and rotor are

ψ
αβ
s = Ls iαβ

s + Lm iαβ
r (6)

ψ
αβ
r = Lr iαβ

r + Lm iαβ
s (7)

where Ls and Lr are the stator and rotor self-inductances, respectively, while Lm is the
mutual inductance between stator and rotor.

On the other hand, the mechanical equation at the rotor shaft is

J
d
dt

ωr = Td − Tl (8)

where J is the inertia; Td is the machine developed torque; and Tl represents the load torque.
The machine developed torque is

Td =
3
2

pRe
{

j ψ
αβ
r i(αβ)∗

s

}
(9)

where the superscript ∗ denotes the complex conjugate and Re{·} denotes the real part of a
complex number.

State-Space Representation

A state-space representation is used to analyze the IM model given in (2)–(9). For
convenience, the selected state variables are the stator current iαβ

s , the rotor flux linkage ψ
αβ
r ,

and the rotor shaft speed ωr. By manipulating these variables, torque and speed control is
achievable [2]. Furthermore, in sensorless drives only the stator current is measured.

Typically, the state vector is expanded and the load torque dynamics is modeled as
well [32,39,40]. Including the load torque as a state variable, the IM dynamic equations are

d
dt

iα
s = −a1 iα

s + a2 ψα
r + a3 ωr ψ

β
r + b1 vα

s (10)

d
dt

iβ
s = −a1 iβ

s + a2 ψ
β
r − a3 ωr ψα

r + b1 vβ
s (11)

d
dt

ψα
r = a4 iα

s − a5 ψα
r − a6 ωr ψ

β
r (12)

d
dt

ψ
β
r = a4 iβ

s − a5 ψ
β
r + a6 ωr ψα

r (13)

d
dt

ωr = a7

[
ψα

r iβ
s − ψ

β
r iα

s

]
− a8 Tl (14)

d
dt

Tl = g(Tl , ωr) (15)

where a and b coefficients are

a1 =
Rσ

σ Ls
a2 =

Lm

σ Ls τr Lr
a3 =

Lm

σ Ls Lr
p

a4 =
Lm

τr
a5 =

1
τr

a6 = p

a7 =
3
2

1
J

p
Lm

Lr
a8 =

1
J

b1 =
1

σ Ls
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The above coefficients are in terms of already-named machine parameters and additionally by

Rσ = Rs + Rr
L2

m
L2

r
σ = 1 − L2

m
Ls Lr

τr =
Lr

Rr

where Rσ is known as the stator dynamic transient resistance; σ as the leakage coefficient;
and τr as the rotor time constant. The function g(Tl , ωr) represents any load torque function.
The load torques that are generally found in electric drives are given in Table 1, where K is
a proportional constant.

The dynamic equations are depicted in the block diagrams shown in Figure 1, where
the α-β components of the space vectors are jointly represented. The states are obtained by
integrating the right-hand side of Equations (10)–(15). Specifically, Figure 1a illustrates the
joint behavior of the α-β stator current, while Figure 1b captures the joint dynamic behavior
of the α-β rotor flux linkages. Figure 1c represents the dynamic behavior of the rotor shaft
angular speed, with ⊗ representing the cross product of the rotor flux linkages and stator
currents (ψαβ

r × iαβ
s ); finally, Figure 1d illustrates the dynamic behavior of the load torque.

Figure 1. Block diagrams of IM continuous-time model. (a) α-β Stator currents dynamic. (b) α-β

Rotor flux linkages dynamic. (c) Rotor shaft angular speed dynamic. (d) Load torque dynamic.

Table 1. Typical load torque functions [47].

Load Torque Model

Constant Tl = Tl0

Linear Tl = K ωr

Quadratic Tl = K ω2
r

Inverse Tl = K ω−1
r

In compact form, the representation of the IM model in state-space is

d
dt

x = f (x, u) (16)

y =H x (17)
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Equation (16) is given by (10)–(15); x is the state vector and u is the input vector, in
this case vαβ

s . The output (17) is related to the state vector by the matrix H. Since it is a
sensorless drive, only the stator current iαβ

s is measured, hence

H =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
Note that the state variables depend implicitly on time t (i.e., x = x(t)). Also, note that

the IM state Equation (16) exhibits a nonlinear behavior.

3. Discrete-Time Induction Machine Model

Due to the discrete nature of controllers, mostly discrete signals are processed today.
In order to achieve a precise and accurate discretization, the discrete-time model must be as
close as possible to the continuous-time model; hence, the error between continuous-time
and discrete-time models must be close to zero. The discrete-time model is described in
the form

xk+1 = f d(xk, uk) (18)

yk =H xk (19)

where xk = x(k Ts) and xk+1 = x(k Ts + Ts); Ts is the time interval between samples. The
input uk is considered as a zero-order hold (ZOH) sinusoidal wave.

The goal is to approximate numerically the IM dynamic model. There are several
methods to numerically approximate differential equations. In this section, three methods
are discussed: Euler, Taylor, and Runge–Kutta.

3.1. Euler Method

The Euler method is intuitive and straightforward, and is the basis of the two other
methods. It approximates the solution to the differential equation as follows

xk+1 ≈ xk + Ts
d
dt

x
∣∣∣∣
xk

(20)

The IM model (16) approximated by the Euler Method is

iα
s, k+1 = iα

s, k + Ts

(
−a1 iα

s, k + a2 ψα
r, k + a3 ωr, k ψ

β
r, k + b1 vα

s, k

)
(21)

iβ
s, k+1 = iβ

s, k + Ts

(
−a1 iβ

s, k + a2 ψ
β
r, k − a3 ωr, k ψα

r, k + b1 vβ
s, k

)
(22)

ψα
r, k+1 = ψα

r, k + Ts

(
a4 iα

s, k − a5 ψα
r, k − a6 ωr, k ψ

β
r, k

)
(23)

ψ
β
r, k+1 = ψ

β
r, k + Ts

(
a4 iβ

s, k − a5 ψ
β
r, k + a6 ωr, k ψα

r, k

)
(24)

ωr, k+1 = ωr, k + Ts

(
a7

[
ψα

r, k iβ
s, k − ψ

β
r, k iα

s, k

]
− a8 Tl, k

)
(25)

Tl, k+1 = Tl, k + Ts g(Tl, k, ωr, k) (26)

For the Euler method, the local truncation error (i.e., the error committed at each time
step) is of the order O(T2

s ).

3.2. Taylor Method

The derivative of a function is approximated using Taylor series expansions

xk+1 ≈ xk + Ts
d
dt

x
∣∣∣∣
xk

+
T2

s
2

d2

dt2 x
∣∣∣∣
xk

+
T3

s
3!

d3

dt3 x
∣∣∣∣
xk

+ · · · (27)
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The more terms in the series considered for the approximation, the more accurate
the model. According to [48], in order to capture completely the effect of a ZOH-input at
the next sampling instant, the input must appear explicitly in the state equations, that is,
a discrete-time relative degree ≥ 1. As simply as possible, the discretization of relative
degree = 1 is achieved by expanding by second-order Taylor series the rotor flux, speed,
and load torque given in (12)–(15). The discrete-time IM model with relative degree = 1 is
given by

iα
s, k+1 = iα

s, k + Ts

(
−a1 iα

s, k + a2 ψα
r, k + a3 ωr, k ψ

β
r, k + b1 vα

s, k

)
(28)

iβ
s, k+1 = iβ

s, k + Ts

(
−a1 iβ

s, k + a2 ψ
β
r, k − a3 ωr, k ψα

r, k + b1 vβ
s, k

)
(29)

ψα
r, k+1 =ψα

r, k + Ts

(
a4 iα

s, k − a5 ψα
r, k − a6 ωr, k ψ

β
r, k

)
+

T2
s

2

[
a4

(
−a1 iα

s, k + a2 ψα
r, k + a3 ωr, k ψ

β
r, k + b1 vα

s, k

)]
+

T2
s

2

{
−a6

[
ωr, k

(
a4 iβ

s, k − a5 ψ
β
r, k + a6 ωr, k ψα

r, k

)
+ ψ

β
r, k

(
a7

(
ψα

r, kiβ
s, k − ψ

β
r, kiα

s, k

)
− a8 Tl, k

)]}
− T2

s
2

[
a5

(
a4 iα

s, k − a5 ψα
r, k − a6 ωr, k ψ

β
r, k

)] (30)

ψ
β
r, k+1 =ψ

β
r, k + Ts

(
a4 iβ

s, k − a5 ψ
β
r, k + a6 ωr, k ψα

r, k

)
+

T2
s

2

[
a4

(
−a1 iβ

s, k + a2 ψ
β
r, k − a3 ωr, k ψα

r, k + b1 vβ
s, k

)]
+

T2
s

2

{
a6

[
ωr, k

(
a4 iα

s, k − a5 ψα
r, k − a6 ωr, k ψ

β
r, k

)
+ ψα

r, k

(
a7

(
ψα

r, kiβ
s, k − ψ

β
r, kiα

s, k

)
− a8 Tl, k

)]}
− T2

s
2

[
a5

(
a4 iβ

s, k − a5 ψ
β
r, k + a6 ωr, k ψα

r, k

)] (31)

ωr, k+1 =ωr, k + Ts

(
a7

[
ψα

r, k i,skβ − ψ
β
r, k iα

s, k

]
− a8 Tl, k

)
+

T2
s

2

[
a7 iβ

s, k

(
a4iα

s, k − a5ψα
r, k − a6 ωr, k ψ

β
r, k

)]
+

T2
s

2

[
a7 ψα

r, k

(
−a1 iβ

s, k + a2 ψ
β
r, k − a3 ωr, k ψα

r, k + b1 vβ
s, k

)]
− T2

s
2

[
a7 iα

s, k

(
a4 iβ

s, k − a5 ψ
β
r, k + a6 ωr, k ψα

r, k

)]
− T2

s
2

[
a7 ψ

β
r, k

(
−a1 iα

s, k + a2 ψα
r, k + a3 ωr, k ψ

β
r, k + b1 vα

s, k

)]
− T2

s
2

a8 g(Tl, k, ωr, k)

(32)

Tl, k+1 =Tl, k + Ts g(Tl, k, ωr, k) +
T2

s
2

ġ(Tl, k, ωr, k) (33)

For a second-order Taylor series expansion, the local truncation error is O(T3
s ).

3.3. Runge–Kutta Method

The Runge–Kutta (RK) method approximates the solution of the differential equation
based on estimates of the solution at different points. In this subsection, two RK methods
are taken into account: RK 2 and RK 4. The RK 2 approximation considers two estimates,
whereas RK 4 considers four. The advantage that Runge–Kutta has over Taylor is that it is
not necessary to explicitly calculate higher-order derivatives of f (x, u).

3.3.1. Runge–Kutta 2

Runge–Kutta 2 is a second-order approximation. This method requires two evaluations
of f (x, u) at each time step. The IM model (16) is approximated by

xk+1 = xk +
Ts

2
(r1 + r2) (34)
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where

r1 = f (xk, uk) (35)

r2 = f (xk + Ts r1, u(tk + Ts)) (36)

and tk = k Ts. Note that r2 estimation requires future input values. Since the system is
assumed to be causal and future inputs are unknown, uk is used instead. For the IM, r1 and
r2 are found in Appendix A.1.

3.3.2. Runge–Kutta 4

Runge–Kutta 4 is a fourth-order method that requires four evaluations of f (x, u) in
one sample period. The approximation of IM model (16) by RK 4 is

xk+1 = xk +
Ts

6
(r1 + 2 r2 + 2 r3 + r4) (37)

where

r1 = f (xk, uk) (38)

r2 = f
(

xk +
Ts

2
r1, u(tk +

Ts

2
)

)
(39)

r3 = f
(

xk +
Ts

2
r2, u(tk +

Ts

2
)

)
(40)

r4 = f (xk + Ts r3, u(tk + Ts)) (41)

Since the input is ZOH and no future input values are taken into account, uk is used in r2,
r3, and r4. For the IM, the estimate points r1, r2, r3, and r4 are found in Appendix A.2.

3.4. Comparison between Models

The previously mentioned discrete-time IM models were contrasted with each other
and with a continuous-time model. The simulations were carried out in Matlab. To
compare the discrete-time models with the continuous-time one, the latter was obtained
using a fifth-order Dormand–Prince (DOPRI 5) method with the same discretization time
as the discrete-time models. More information about this method is given in Appendix B.
For the simulations, Ts = 200µs and a 4 kW IM was used; its nominal parameters are
V = 380 V; I = 8.6 A; f = 50 Hz; two pole pairs; Rs = 1.32 Ω; Rr = 2.63 Ω; Lm = 0.1889 H;
Ls = 0.1972 H; Lr = 0.2012 H; and J = 0.528 kg·m2.

To illustrate the differences between discrete-time and continuous-time models, two
scenarios are taken into account. First, the IM is directly started from the grid. Second, a
15 Nm step-type load impact occurs suddenly at 4 s. The total simulation time was 6 s.

Table 2 contrasts the discrete-time models with the continuous-time model by present-
ing the computed root mean squared error (RMSE) between them, calculated as follows

RMSE(x) =

√√√√ 1
N

N

∑
i=1

(xi, cont − xi, disc)
2 (42)

To begin with, in Table 2, the best approximation for the stator current and rotor
flux linkage is obtained by Taylor. The RK 2 and RK 4 models are not as accurate as
Taylor, due to the fact that RK 2 and RK 4 do not take into account future input estimation
for the approximation. Conversely, for the rotor speed RK 4 and RK 2 provide the best
approximation. Finally, Euler results in the worst approximation as expected.
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Table 2. Models’ root mean squared error.

State Euler Taylor RK 2 RK 4

iα
s 2.3288 0.3743 0.5830 0.4188

iβ
s 2.3286 0.3723 0.5985 0.4177

ψα
r 0.0567 0.0091 0.0245 0.0191

ψ
β
r 0.0567 0.0089 0.0286 0.0190

ωr 21.6914 11.3117 1.9997 0.1401
Tl 0.0046 0.0046 7.0356 × 10−5 7.0171 × 10−9

Figure 2 shows the α-β stator currents and rotor flux linkages for the discrete-time
and continuous-time models with no load condition at steady state. Figure 2a shows that
the Taylor and RK 4 methods yield discrete-time values that are almost identical to the
continuous-time values. In the same figure, we can observe that the RK 2 method yields a
larger difference since the amplitude of the currents is smaller than the continuous-time
currents, whilst the Euler method results in even larger errors since the resulting currents
have a much smaller amplitude. In Figure 2b, the rotor flux linkages for each method are
shown. The Taylor, RK 2, and RK 4 signals resemble the continuous-time signals. However,
the Euler method results in a slightly larger difference from the continuous-time flux than
the Taylor and RK methods. On the other hand, Figure 3 illustrates the rotor angular
speed and zero load torque for all models described. As shown, both the Taylor and Euler
models are less accurate under no-load conditions than the RK methods. In particular, RK
4 provides the most accurate speed approximation, followed by RK 2.
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Figure 2. No-load machine. (a) Stator α-β current. (b) Rotor α-β flux linkage.
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Figure 3. No-load machine. (a) Rotor shaft speed. (b) Load torque.

On the other hand, notice that after the sudden step-type load torque impact occurs,
stator current increases while rotor speed decreases. Figure 4 shows the stator currents and
rotor flux linkages for the discrete-time and continuous-time models after the torque impact
occurs. In this case, the Euler method yields a bad approximation, since the resulting
currents not only exhibit a smaller amplitude but also a large phase error. In contrast, the
Taylor, RK 2, and RK 4 models resemble the continuous-time model. Figure 5 illustrates
the rotor angular speed and the load torque impact for all models. We can observe that,
once the speed reaches the steady state, RK 4 and Taylor result in a very similar curve to
the continuous-time model, followed by RK 2 and finally Euler. In addition, since load
torque does not depend on rotor angular speed or any other state variable, the differences
between the discrete-time models and the continuous-time model are, in general, small, as
shown in Figure 5b.

In general, accurate models are desired since, in modern industrial systems, modern
control techniques are applied. If the model is not accurate, model-based observers may
fail to represent the actual behavior of the states, providing inaccurate feedback to the
controller, hence resulting in poor control performance. Since with the Euler method the
model error is reflected not only in the magnitude but also in the phase of the signals of
interest, the overall control loop’s performance decreases greatly. This situation is naturally
avoided in order to satisfy control system performance and requirements.
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Figure 4. Torque impact. (a) Stator α − β current. (b) Rotor α − β flux linkage.
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Figure 5. Torque impact. (a) Rotor shaft speed. (b) Load torque.
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Changes in Sample Time

In this section, the behavior of the RMSE between the discrete-time models and the
continuous-time model is observed as the discretization time varies. The discretization time
is adjusted until the error of the model discretized by Euler is nearly zero. Two scenarios
are considered; first, the IM is directly started, and then a sudden load impact occurs at 4 s.
This follows the same approach as the previous section.

Figure 6 illustrates how RMSE varies according to Ts for α-β stator currents, α-β rotor
flux linkages, and rotor shaft speed. Since the error between the α and β components
of the stator current and rotor flux linkage components is similar, the average value is
used in this figure. As expected, as the sampling time decreases, error decreases as well.
In particular, the Taylor discrete-time model is better than RK 2 and RK 4 in terms of
stator current and rotor flux linkage RMSE. Conversely, RK 2 and RK 4 are more accurate
for speed approximation. Regarding the load torque approximation, RK 2 and RK 4 are
better; nevertheless, Euler and Taylor are near zero. On the other hand, Euler RMSE
rises dramatically as Ts increases. Thus, using Euler for approximating the IM model is
not advisable when the Ts exceeds 50 µs. To conclude, Taylor is the best approximation,
prioritizing stator currents and rotor flux linkage approximations.
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Figure 6. Variation of RMSE as a function of sampling time. (a) α-β Stator current RMSE. (b) α-β

Rotor flux linkage RMSE. (c) Rotor shaft speed RMSE. (d) Load torque RMSE.
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4. Filtering

The continuous-time deterministic model of the IM was described in (16) and (17).
Even so, those equations do not include model uncertainties or unknown disturbances,
such as winding temperature rises, mechanical vibrations, switching noise, etc. All these
uncertain effects can be represented by adding Gaussian noise in the state Equation (16)
and output Equation (17) [16–19]. Also, considering the discrete nature of the measurement
and control, a discrete-time representation of the model is used. Therefore, the discrete-time
stochastic model of the IM is as follows

xk+1 = f d(xk, uk) + wk (43)

yk = H xk + vk (44)

where wk and vk are Gaussian noise with zero mean and covariance matrix Q and R,
respectively. The term wk is associated with model uncertainties, while vk represents
measurement noise.

Under a stochastic point of view, the state estimation is obtained from noisy measure-
ments. In Bayesian inference, the estimation corresponds to calculating the joint probability
density function (pdf) of the states given the measurements P(x0:T | y1:T), which incorpo-
rates all the statistical information about the state P(x0:T) that is contained in the available
observationP(y1:T | x0:T) and the initial conditionP(x0:T) [19,21]. Using the Bayes theorem,
the joint pdf is

P(x0:T | y1:T) =
P(y1:T | x0:T) P(x0:T)

P(y1:T)
(45)

where the denominator P(y1:T) is a normalization constant. It is necessary to mention that
x0:T and y1:T are the time series of the state vector {x0, . . . , xT} and of the measurements
{y1, . . . , yT} vector, respectively. For real-time applications, it is unnecessary and compu-
tationally inefficient to compute the full joint distribution. For this reason, the marginal
distribution of the current state given all the measurements P(xk | y1:k), also known as
posterior, is computed instead. Additionally, assuming the IM model to be Markovian, it is
possible to compute the posterior recursively [19,21]. The recursion is based on calculating
the posterior distribution in two steps, starting from an initial prior distribution P(x0).

• First: predict. The prediction of the distribution of the states at the current time k is
computed from the dynamic model by means of the Chapman–Kolmogorov equation

P(xk | y1:k−1) =
∫
P(xk | xk−1)P(xk−1 | y1:k−1) dxk−1 (46)

• Second: update. Given the measurement yk at time k, the posterior distribution is
calculated by solving

P(xk | y1:k) =
1

Zk
P(yk | xk)P(xk | y1:k−1) (47)

where Zk is a normalization constant.

Unfortunately, since the IM model is nonlinear, it is not possible to solve the filtering
Equations (46) and (47) in closed form. Nevertheless, there exist state estimation methods
for nonlinear models; two of the classic methods are based on the Kalman Filter (KF): the
Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). Both are addressed in
this section.

4.1. Extended Kalman Filter

The most well-known nonlinear filtering method is the Extended Kalman Filter, which
propagates the mean and covariance through a linearization of the system resulting in a
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Gaussian posterior pdf. However, EKF does not ensure the convergence of the estimation,
since it depends on the linearization of the model around an operating point that is also
estimated [20–24]. The implementation steps of EKF for N samples are summarized in
Algorithm 1, where x̂ is the state estimate and P is its covariance matrix. The subscript k
denotes the posterior and k|k − 1 the prior. K is the Kalman gain; I is the identity matrix;
and Fk|k−1 is the Jacobian matrix of f d(x , u) evaluated at k − 1.

Algorithm 1: EKF Algorithm

1 Input: Prior distribution mean and covariance x(0), P0.
2 for k = 1 to N do

Prediction Step :
3 Compute the prior estimate using the discrete-time model

x̂k|k−1 = f d

(
x̂k−1|k−1 , uk

)
(48)

Pk|k−1 = Fk|k−1 Pk−1|k−1 F⊤
k|k−1 + Q (49)

Update Step :
4 Compute the Kalman gain

K = Pk|k−1 H⊤
[

H Pk|k−1 H⊤ + R
]−1

(50)

5 Compute the state estimation and covariance

x̂k = x̂k|k−1 + K
(

yk − H x̂k|k−1

)
(51)

Pk = (I − K H)Pk|k−1 (52)

6 end
7 Output: The state estimate x̂k and the covariance matrix Pk, for k = 1, . . . , N

4.2. Unscented Kalman Filter

On the other hand, there is the Unscented Kalman Filter, which by means of the
Unscented Transform (UT) propagates representative points of the pdf through the non-
linearity of the system to estimate the state. The advantage that UKF has over EKF is
that the representative points are adjustable by the user, attaining in general a better
estimation [20–24]. These representative points, named Sigma Points (SPs), ensure the
propagation of the mean and the covariance [49]. A total of 2n + 1 SP are required, with
n = dim{y}. The SPs are computed as follows

X (0) = x (53)

X (i) = x +
√
(n + λ)

(√
P
)

i
i = 1, ..., n (54)

X (i) = x −
√
(n + λ)

(√
P
)

i
i = n + 1, ..., n (55)

where λ is a scale factor that modifies the dispersion of the SP around the mean. The term√
Pi is computed using Cholesky factorization. Also, weight factors W(m)

i and W(c)
i are

associated to the mean and covariance, defined as
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W(m)
0 =

λ

n + λ
W(c)

0 =
λ

n + λ
+ (1 − α2 + β)

W(m)
i ̸=0 =

λ

2(n + λ)
W(c)

i ̸=0 =
λ

2(n + λ)

where typically, β = 2 for Gaussian distributions; 0 ≤ α ≤ 1; λ = α2(n − κ) − n with
κ = 3 − n.

The steps to implement the UKF are summarized in Algorithm 2. Sk is the covari-
ance matrix of the measurement; Ck is the cross-covariance between the state and the
measurement; and Kk is the filter gain.

Algorithm 2: UKF algorithm

1 Input: Prior distribution mean and covariance x(0), P0. The constants α, β, and κ
2 for k = 1 to N do

Prediction Step :
3 Compute the Sigma Points Xk−1 using Equations (53)–(55).
4 Propagate the Sigma Points through the discrete-time model and compute its

mean and covariance

Xk|k−1 = f d(Xk−1, uk) (56)

x̂k|k−1 =
2n

∑
i=0

W(m)
i X (i)

k|k−1 (57)

Pk|k−1 =
2n

∑
i=0

W(c)
i

(
X (i)

k|k−1 − x̂k|k−1

)(
X (i)

k|k−1 − x̂k|k−1

)⊤
+ Q (58)

Update Step :
5 Propagate the Sigma Points though the measurement model and compute its

mean and covariance

Yk|k−1 = H Xk|k−1 (59)

ŷk|k−1 =
2n

∑
i=0

W(m)
i Y (i)

k|k−1 (60)

Sk =
2n

∑
i=0

W(c)
i

(
Y (i)

k|k−1 − ŷk|k−1

)(
Y (i)

k|k−1 − ŷk|k−1

)⊤
+ R (61)

6 Compute the cross-covariance and the filter gain

Ck =
2n

∑
i=0

W(c)
i

(
X̂ (i)

k|k−1 − x̂k|k−1

)(
Y (i)

k|k−1 − ŷk|k−1

)⊤
(62)

Kk = Ck S−1
k (63)

7 Compute the state estimate and the covariance

x̂k = x̂t−1 + Kk

[
yk − ŷk|k−1

]
(64)

Pk = Pk|k−1 − Kk Sk K⊤
k . (65)

8 end
9 Output: The state estimate x̂k and the covariance matrix Pk, for k = 1, . . . , N
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5. Numerical Examples

In this section, EKF and UKF were implemented for each IM discrete-time model
discussed above. The simulations were carried out in Matlab. For the simulations,
all the initial condition are zero; the discretization time is Ts = 200µs; the noise co-
variance matrices are Q = diag

{
2.12 × 10−2, 2.12 × 10−2, 10−6, 10−6, 10−3, 9.64 × 10−4}

and R = diag{1/9, 1/9}. The SP coefficients were selected empirically as in [40], where
α = 10−1, β = 2, and κ = −3. The same noise covariance matrices were used for EKF and
UKF. To test the IM models in filtering, a thousand Monte Carlo simulations were carried
out, which is equivalent to measuring the same event a thousand times, in this case a direct
start from a 50 Hz grid. All models in both filtering algorithms were compared in terms of
execution time RMSE, where the actual system was simulated using DOPRI 5. Additionally,
the maximum absolute error for each model using EKF and UKF was acquired to compare
the maximum deviation from the actual value for each state, particularly at startup and
after starting.

Tables 3 and 4 show the average RMSE from the Monte Carlo simulations in filtering
using EKF and UKF, respectively. Both tables consider the Euler, Taylor, and Runge–Kutta
IM models. From the tables, for the same IM model a considerable similarity between
EKF and UKF is seen. In regard to IM models in both algorithms, there was a significant
improvement in state estimation with the Taylor and Runge–Kutta models as expected.
In currents and flux linkages, Taylor has less error than Runge–Kutta, due to the fact that
RK models do not take into account future values of the input since they are unknown.
Nevertheless, Runge–Kutta speed estimation is better than Taylor. Finally, load torque
estimation is nearly the same in all discrete-time models.

On the other hand, Table 5 shows average execution time per sample of the EKF and
UKF algorithms for different IM models. This analysis is of particular interest in practical
applications since IMs are usually coupled with modern control techniques that rely on
state estimation, among other things. Hence, a low execution time allows for carrying out
other computing tasks, such as optimization in a Model Predictive Control setup [6]. From
Table 5, we can observe that as the complexity of the model increases, so does the execution
time when utilizing both EKF and UKF. In particular, when utilizing UKF, apart from Euler,
RK 2 has the smallest execution time followed by Taylor and finally RK 4. As for EKF and
UKF, clearly the former requires much less execution time than the latter, no matter which
discretization technique is used. In fact, our results show that UKF requires more than
half of the sampling interval during the execution of the algorithm. This could leave not
enough time for other tasks. However, more research is needed in this area in a practical
setup since filtering can be implemented in different computing platforms with different
architectures, such as a microcontroller or a field programmable gate array.

Table 3. EKF average root mean squared error.

State
EKF

Euler Taylor RK 2 RK 4

iα
s 0.3612 0.1977 0.2029 0.2026

iβ
s 0.3577 0.1967 0.2017 0.2013

ψα
r 0.0777 0.0377 0.0433 0.0433

ψ
β
r 0.0784 0.0379 0.0456 0.0456

ωr 28.4063 27.2101 24.2762 24.5003
Tl 0.1038 0.1038 0.1042 0.1042
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Table 4. UKF average root mean squared error.

State
UKF

Euler Taylor RK 2 RK 4

iα
s 0.3611 0.1978 0.2029 0.2026

iβ
s 0.3575 0.1966 0.2016 0.2012

ψα
r 0.0777 0.0412 0.0431 0.0429

ψ
β
r 0.0784 0.0425 0.0441 0.0443

ωr 28.7982 28.0307 24.6992 24.8631
Tl 0.1038 0.1038 0.1042 0.1042

Table 5. EKF and EKF average execution times per time step.

Method EKF Execution Time UKF Execution Time

Euler 6.9456 × 10−6 s 9.9939 × 10−5 s
Taylor 7.4185 × 10−6 s 1.3481 × 10−4 s
RK 2 8.0369 × 10−6 s 1.1440 × 10−4 s
RK 4 9.7486 × 10−6 s 1.4439 × 10−4 s

Tables 6 and 7 show the maximum absolute error at the startup of each state for each
model using EKF and UKF algorithms, respectively, at startup. The maximum error is not
symmetric, especially in the α-β components of stator currents and rotor flux linkages. This
asymmetry is primarily due to the high uncertainty of the rotor angular speed. At the start,
all initial conditions are zero; therefore, obtaining an accurate approximation is challenging.
Notice that the maximum absolute errors are similar for all the discretization methods and
both EKF and UKF. By themselves, these values only show what the maximum deviation
is but not the overall behavior of each technique. However, they show what to expect in
terms of the worst estimation in a single experiment. Moreover, if we also consider the
average root mean squared error from Tables 3 and 4, we can conclude that the Taylor
and RK methods exhibit a reduced spread around the mean when compared to the Euler
method. On the other hand, Tables 8 and 9 illustrate the maximum absolute error after
the startup of each state for each model using EKF and UKF algorithms, respectively. For
the Euler, Taylor, and RK 2 models, EKF and UKF’s maximum absolute error are similar;
in particular, UKF RK 4 is slightly less than EKF RK 4. Once the rotor speed reaches the
steady state, the estimation shows better performance compared to the startup.

Table 6. Max absolute error EKF at startup.

State
EKF

Euler Taylor RK 2 RK 4

iα
s 3.1673 3.1673 3.1673 3.1673

iβ
s 1.3279 1.3279 1.3280 1.3280

ψα
r 6.3224 6.3765 6.6773 6.6699

ψ
β
r 5.8992 5.8999 5.9002 5.9041

ωr 103.6 104.44 97.951 98.636
Tl 0.3806 0.3804 0.3805 0.3805
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Table 7. Max absolute error UKF at startup.

State
UKF

Euler Taylor RK 2 RK 4

iα
s 3.1673 3.1673 3.1673 3.1673

iβ
s 1.3279 1.3279 1.3280 1.3239

ψα
r 6.3166 6.3211 6.6758 6.4512

ψ
β
r 5.8992 5.9000 5.9001 5.8696

ωr 103.92 105.17 98.554 99.191
Tl 0.3806 0.3804 0.3805 0.3805

Table 8. Max absolute error EKF after starting.

State
EKF

Euler Taylor RK 2 RK 4

iα
s 1.4441 1.0330 1.0395 1.0388

iβ
s 1.4868 1.0503 1.0483 1.0443

ψα
r 0.1287 0.0413 0.0682 0.0683

ψ
β
r 0.1297 0.0377 0.0620 0.0621

ωr 23.818 11.507 14.465 13.498
Tl 0.5516 0.5519 0.5518 0.5518

Table 9. Max absolute error UKF after starting.

State
UKF

Euler Taylor RK 2 RK 4

iα
s 1.4440 1.0356 1.0395 0.7169

iβ
s 1.4866 1.0514 1.0484 0.5494

ψα
r 0.1286 0.0406 0.0682 0.0344

ψ
β
r 0.1296 0.0357 0.0620 0.0049

ωr 23.812 11.784 14.459 3.116
Tl 0.5516 0.5519 0.5518 0.0867

6. Conclusions

In this article, we formulated and compared different discretization techniques, namely,
Euler. The results show that the Taylor method exhibits slightly lower RMSE compared
to RK methods for stator currents and rotor flux linkages. This is mainly because, in the
RK methods, it was assumed that the future values of the input were equal to the input at
the current time instant. Since a direct start from the grid was simulated, the retention of
the input does not fully reflect the continuous-time sinusoidal input behavior. However,
when implementing these methods with an input provided by an inverter, input retention
is fulfilled at every time instant. Therefore, a more accurate representation of the system is
expected in practical setups.

Overall, Taylor exhibits the smallest α-β stator current and rotor flux linkage RMSE,
followed by RK 4 and then RK 2. Conversely, the RK 4 model demonstrates the smallest
rotor shaft speed error, followed by the RK 2 and Taylor models. The Taylor method
resulted in a similar rotor shaft speed error to the Euler method under no-load conditions;
however, when a load torque was applied, the Taylor method exhibited a performance
similar to RK models and signals that resembled the continuous-time signals. Regarding
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the load torque, all models performed similarly. These behaviors persisted as Ts varied.
Also, it was demonstrated that the Euler method can only accurately represent the machine
at very high sampling rates.

We also compared state estimation techniques, namely, EKF and UKF, utilizing the
discrete-time models from the Euler, Taylor, and RK methods. EKF and UKF show similar
RMSE; however, in terms of execution time, EKF required fewer computations. In most
cases, as the complexity of the model increases, the execution time increases as well.
Nonetheless, for the UKF algorithm, the RK 2 model is faster than the Taylor model. The
execution time required for one iteration of the EKF and UKF utilizing the Taylor and
RK methods is less than the sampling period. Therefore, these techniques are suitable
for implementation in modern control techniques. In contrast, when utilizing the Euler
method at high sampling rates, both filtering techniques result in an execution time per
iteration that exceeds the sampling period. Finally, in terms of the maximum error, EKF
and UKF are similar; therefore, both algorithms are similar in the maximum deviation from
the actual state. Particularly, UKF RK 4 is slightly better than EKF RK 4.
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Appendix A. Runge–Kutta Estimate Points

In this appendix section, Runge–Kutta estimate points of the evaluation of the IM
model are presented. As discussed, future estimation points of the input are not possible;
therefore, input values at the actual sample instant k are taken into account instead.
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Appendix A.1. RK 2

For Runge–Kutta 2, the two estimate points are
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where r(i) is the i-th row of the vector r.

Appendix A.2. RK 4

For Runge–Kutta 4, the first estimate point r1 is equal to (A1); the other three are
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where r(i) is the i-th row of the vector r.

Appendix B. DOPRI 5

Dormand–Prince (DOPRI) belongs to the family of Runge–Kutta methods; however, it
is generally employed as an adaptive method, adjusting the sampling time by comparing
the error between a fourth- and fifth-order approximation, with the latter being deemed
more accurate. In this particular case, given the fixed sampling time, only the fifth-order
approximation is utilized.
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DOPRI requires evaluating the function six times, resulting in a longer execution
time compared to the methods presented earlier. However, DOPRI aims to emulate the
continuous-time model; hence, the execution time is not taken into account.

The DOPRI equations are
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