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Abstract: We consider a two-layer biological object consisting of layers with different thermophysical
characteristics and subjected to laser radiation. Using the method of separation of variables and
methods of control theory for finite-dimensional systems, we developed a constructive approach
to constructing a control function for the thermal effect of a laser beam on a two-layer biomaterial.
Under the controlled thermal influence of a laser beam, the distribution of the temperature state in a
two-layer biomaterial transitions from the initial state to the final one during a given time period.
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1. Introduction

The study of problems in multilayer physical systems that are under the influence
of concentrated or distributed sources requires considering appropriate and adequate
mathematical models. At the same time, both mathematical models and research methods
must be adequate.

The work in [1] presents a review of the literature on biomedical applications of lasers.
It is impossible to imagine modern medicine without lasers [2,3]. The field of applying
laser radiation goes far beyond the classical concepts of a laser, in particular in energy and
electronics [4–7]. One of the many areas of biomedical application of lasers is their use as
a tool to influence biological objects. Lasers provide the ability to precisely deliver large
amounts of energy to limited areas of a material to achieve the desired response. Laser
therapy can have a positive effect on the regeneration of periodontal tissues and improve
the postoperative period due to its anti-inflammatory properties. Promising technical
solutions and deeper knowledge about the interaction of lasers with tissues should allow
the safe and effective use of laser exposure.

With the advent of new areas for applying laser radiation for the processing of biolog-
ical materials, it has become necessary to develop methods for its influence and criteria
for the parameters of laser emitters. Therefore, various mathematical models are being
developed to solve various problems of laser influence and evaluate the results [1], in
particular, the problem of choosing the modes of thermal impact of a laser beam on a
biological environment. Following the authors of [1], we note that the mechanism of the
effect of a laser beam on a biological environment has not yet been sufficiently studied.
So, it is necessary to carry out further diversified studies on the search for laser radiation
modes to develop the possibilities of laser influence and increase the effectiveness of the
impact on the biological environment.
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Laser therapy is increasingly recognized as a cancer treatment method due to the localized
delivery of energy to tumor tissue [8]. Thermal effects on tissue, as well as damage to
adjacent tissue, are still a potential problem. Therefore, mathematical modeling of laser-
tissue interaction is a necessary part of clinical treatment planning. In [8], the temperature
distribution during laser-induced thermotherapy in the treatment of cancer is studied using
the example of a multilayer skin with an embedded tumor model. The work in [9] presents a
theoretical model that simulates the thermal effects of laser radiation incident on biological
tissue. The process of thermal diffusion (as well as scattering and absorption of the laser
beam) in tissue is assessed using a numerical method. The work in [10] provides a theoretical
analysis of thermal damage in biological tissues caused by laser irradiation. The obtained
distribution of absorbed laser energy is included in the heat transfer equation in biological
tissue to solve the temperature response. The influence of laser power, exposure time and
beam size, as well as tissue absorption and scattering coefficients on the process of thermal
damage, is considered.

This paper considers a multilayer biological material that is exposed to laser radiation.
Such an object is a system with distributed parameters [11–18]. The mathematical model
of the process of laser beam action on a multilayer biological material is described using
partial differential heat conduction equations with boundary conditions for the beginning
and end of laser heating, boundary conditions for the interaction of the outer layer of
biological material and the environment and conjugation conditions between layers. The
mathematical models of these objects are characterized as heterogeneous composite systems
with distributed parameters; therefore, it is advisable to use methods for investigating the
control problems of composite systems (of variable structure), which are addressed, in
particular, in [19–22]. The scientific area of modeling the processes of laser beam impact on
a multilayer biomaterial and the study of control problems for such models have not yet
been sufficiently investigated in scientific publications.

This paper considers, as a multilayer system, an object consisting of two biological
layers that are inhomogeneous in their thermophysical characteristics and subjected to
laser radiation. It is assumed that the process of thermal action of a laser beam on a
two-layer biomaterial is controlled as follows: by changing the temperature intensity of
the laser beam at the upper (left) boundary of the two-layer biomaterial, we influence
the thermal state in the two-layer biomaterial. This study aims to develop an analytical
approach to constructing a control function for the thermal effect of a laser beam on a
two-layer biomaterial under the influence of which the distribution of the temperature
state transitions from a given initial state to a given final state at a given time interval. The
work is related to the research carried out in [21].

2. Mathematical Model of a Two-Layer Biomaterial and Problem Statement

Let us consider a two-layer biological material infinite in coordinates x and y (Figure 1)
with different thermophysical characteristics (thermal conductivity coefficients, mass density
and heat capacity) of the layers.

Figure 1. Block diagram of the impact of a laser beam on a two-layer biological material.
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According to the multilayer structure of the biomaterial [15–18], in the case when
the thermal conductivity coefficients are constant, the differential equation of thermal
conductivity is transformed into the system of the following differential equations of
thermal conductivity:

ρ1c1
∂T1(z, t)

∂t
= K1

∂2T1(z, t)
∂z2 , z ∈ [0, l1],

ρ2c2
∂T2(z, t)

∂t
= K2

∂2T2(z, t)
∂z2 , z ∈ [l1, l1 + l2],

(1)

where ρj—mass density coefficient for the j-th layer of the biological material, j = 1, 2 (kg/m3);
cj—heat capacity coefficient for the j-th layer of the biological material (J/(kg·K)); Tj(z, t)—
temperature field for the j-th layer of the biological material (K); z—penetration depth of
laser radiation in biological material (m); t—thermal exposure time (s); and Kj—thermal
conductivity factor for the j-th layer of the biological material (W/(m·K)).

Let us assume that the boundary conditions of the thermal effect on a two-layer
biological material, respectively, are as follows

T1(z, t)|z=0 = u(t), T2(z, t)
∣∣z=l1+l2 = P(t), (2)

where u(t)—the temperature of the laser beam on the upper border of the two-layer
biomaterial, which varies over time; P(t)—the temperature of the laser beam on the lower
border of the two-layer biological material, which is considered known.

Let us introduce the layers matching conditions, which express the equalities of the
continuity of the temperature fields along the time coordinate, and the conditions for the
ideal thermal contact of the layers as follows:

T1(z, t)|z=l1−0 = T2(z, t)|z=l1+0, K1
∂T1(z, t)

∂z

∣∣∣∣
z=l1−0

= K2
∂T2(z, t)

∂z

∣∣∣∣
z=l1+0

, t ∈ [t0, t2]. (3)

It is assumed that the initial condition (at t = t0)

T1(z, t)|t=t0 = TH(z) (4)

and final condition (at t = t2)
T2(z, t)|t=t2 = TK(z) (5)

are set.
The thermal effect of a laser beam on a two-layer biomaterial is controlled as follows:

by changing the intensity (temperature) of the laser beam on the upper border of the
two-layer biomaterial, we influence the thermal state of the two-layer biomaterial. The
boundary function u(t) is a control action (boundary control).

It is assumed that the admissible control u(t) belongs to L2(t0, t2). The function
Tj(z, t) ∈ L2(Ω), j = 1, 2, where we set Ω = {(z, t) : z ∈ [0, l1 + l2], t ∈ [t0, t2]}, and the
functions TH(z), TK(z) belong to L2(0, l1 + l2). It is also assumed that all functions are such
that the following matching conditions are satisfied:

u(t0) = TH(0), P(t0) = TH(l1 + l2), u(t2) = TK(0), P(t2) = TK(l1 + l2). (6)

The control problem of the thermal effect of a laser beam on a two-layer biomaterial
can be formulated as follows: find a control law u(t), t ∈ [t0, t2] of the thermal effect of a
laser beam on a two-layer biomaterial under the influence of which the distribution of the
thermal state (1) at the time t = t0 transitions from the initial state (4) to the specified end
state (5) on a given time interval [t0, t2].
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3. Reduction of the Problem to a Problem with Zero Boundary Conditions

We introduce the notation a2
j =

Kj

cjρj
, j = 1, 2. To solve the problem posed, we consider

it expedient to introduce a new variable [21]

ξ =

 z, z ∈ [0, l1],
a1

a2
z + l1

(
1 − a1

a2

)
, z ∈ [l1, l1 + l2].

(7)

The replacement of variable (7) leads to the expansion or contraction of the segment
[l1, l1 + l2] with respect to point z = l1. In this case, instead of segment [l1, l1 + l2], we

consider segment [l1, L], where L = l1 +
a1

a2
l2.

Note that, for convenience, after the replacement of variable (7), we keep all the above
functions in their original notation. Thus, Equation (1) can be written in the form

∂T1(ξ, t)
∂t

= a2
1

∂2T1(ξ, t)
∂ξ2 , ξ ∈ [0, l1],

∂T2(ξ, t)
∂t

= a2
1

∂2T2(ξ, t)
∂ξ2 , ξ ∈ [l1, L].

(8)

Denote

T(ξ, t) =
{

T1(ξ, t), ξ ∈ [0, l1],
T2(ξ, t), ξ ∈ [l1, L].

(9)

Therefore, two identical Equations (8) with the function T(ξ, t), ξ ∈ [0, L], t ∈ [t0, t2]
introduced in (9) will be written with the equation

∂T(ξ, t)
∂t

= a2
1

∂2T(ξ, t)
∂ξ2 , ξ ∈ [0, L], t ∈ [t0, t2], (10)

with corresponding boundary conditions

T(0, t) = u(t), T(L, t) = P(t), t0 ⩽ t ⩽ t2, (11)

with initial conditions
T(ξ, t0) = TH(ξ), ξ ∈ [0, L], (12)

with final conditions
T(ξ, t2) = TK(ξ), ξ ∈ [0, L], (13)

and with matching conditions at joining point ξ = l1 of the areas

T1(ξ, t)|ξ=l1−0 = T2(ξ, t)|ξ=l1+0,

a2K1
∂T1(ξ, t)

∂ξ

∣∣∣∣
ξ=l1−0

= a1K2
∂T2(ξ, t)

∂ξ

∣∣∣∣
ξ=l1+0

,
(14)

t ∈ [t0, t2].
Given the inhomogeneity of the boundary conditions (11), the solution to Equation (10)

will be in the form of the sum

T(ξ, t) = V(ξ, t) + W(ξ, t), (15)

where V(ξ, t) is a function with homogeneous boundary conditions

V(0, t) = V(L, t) = 0 (16)
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to be determined, and the function W(ξ, t) is the solution to (8), subject to

W(0, t) = u(t), W(L, t) = P(t), (17)

which has the form
W(ξ, t) = u(t) +

ξ

L
[P(t)− u(t)]. (18)

To find the function V(ξ, t), from Formulas (8), (15) and (18), we obtain

∂V(ξ, t)
∂t

= a2
1

∂2V(ξ, t)
∂ξ2 + F(ξ, t), ξ ∈ [0, L], t ∈ [t0, t2], (19)

where
F(ξ, t) =

ξ

L
[
u̇(t)− Ṗ(t)

]
− u̇(t). (20)

Function V(ξ, t) satisfies the matching condition corresponding to (14) at joining point
ξ = l1 of the areas. Note that, according to (7), from condition (6), we have

TH(l1 + l2) = TH(L), TK(l1 + l2) = TK(L). (21)

Using the approaches given in [21,22], from the initial (12) and final (13) conditions,
following the matching conditions, we obtain that the function V(ξ, t) should meet the
following initial:

V(ξ, t0) = TH(ξ)− u(t0)−
ξ

L
[P(t0)− u(t0)], (22)

and final
V(ξ, t2) = TK(ξ)− u(t2)−

ξ

L
[P(t2)− u(t2)] (23)

conditions.
Given conditions (6) and (21), conditions (22) and (23) are written, respectively, as follows:

V(ξ, t0) = TH(ξ)− TH(0)−
ξ

L
[P(t0)− TH(0)], (24)

V(ξ, t2) = TK(ξ)− TK(0)−
ξ

L
[P(t2)− TK(0)]. (25)

Solving the original problem is reduced to solving the problem of controlling the
thermal effect of a laser beam on a two-layer biomaterial, which is defined by Equation (19)
with homogeneous boundary conditions (16). The resulting problem is formulated as
follows: find a control law u(t), t ∈ [t0, t2] under the influence of which the distribution of
the thermal state defined by Equation (19) with boundary conditions (16) transitions from
the given initial state (24) to the final state (25) at a given time interval [t0, t2].

4. Solving the Problem

The solution to Equation (19), subject to the boundary conditions (16) and the consis-
tency condition, is sought in the form

V(ξ, t) =
∞

∑
k=1

Vk(t) sin
πkξ

L
, Vk(t) =

2
L

L∫
0

V(ξ, t) sin
πkξ

L
dξ. (26)

By presenting the functions F(ξ, t), V(ξ, t0), V(ξ, t2) in the form of Fourier series
in the basis

{
sin πkξ

L

}
(k = 1, 2, . . .), and substituting their values together with V(ξ, t)

in Equations (19) and (20) and in conditions (21) and (22), we obtain that the Fourier
coefficients Vk(t) satisfy a countable number of systems of ordinary differential equations
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V̇k(t) + λkVk(t) = Fk(t), λk =

(
a1

πk
L

)2
, k = 1, 2, . . . , (27)

Fk(t) =
2

πk

[
(−1)k Ṗ(t)− u̇(t)

]
, (28)

Vk(t0) = T(H)
k − 2

πk

[
TH(0)−(−1)kP(t0)

]
, (29)

Vk(t2) = T(K)
k − 2

πk

[
TK(0)−(−1)kP(t2)

]
. (30)

Here, the Fourier coefficients of functions F(ξ, t), V(ξ, t0), V(ξ, t2), TH(ξ) and TK(ξ)

are denoted by Fk(t), Vk(t0), Vk(t2), T(H)
k and T(K)

k , respectively.
The general solution to Equation (27) with initial condition (29) has the form [12]

Vk(t) = Vk(t0)e−λk(t−t0) +

t∫
t0

Fk(τ)e−λk(t−τ)dτ. (31)

Now, taking into account the final conditions (30), we obtain that the functions Fk(τ),
τ ∈ [t0, t2] for each k = 1, 2, . . . must meet the following relation:

t2∫
t0

Fk(τ)e−λk(t2−τ)dτ = Vk(t2)− Vk(t0)e−λk(t2−t0). (32)

Using the approaches given in [18–20], we obtain that the control function u(t) for
each k = 1, 2, . . . must satisfy the integral relation:

t2∫
t0

u(τ)eλkτdτ = Ck, (33)

Ck =
1

λk

πk
2

[
Vk(t2)eλkt2 − Vk(t0)eλkt0

]
+ TK(0)eλkt2 − TH(0)eλkt0 − (−1)k

t2∫
t0

Ṗ(τ)eλkτdτ

.

In practice, the first few n (k = 1, 2, . . . , n) relations (33) are usually chosen and
the problem of control synthesis is solved using methods of control theory for finite-
dimensional systems [23,24]. We will solve the problem following this approach. Therefore,
for the first n relations, from (33), we will have

t2∫
t0

Hn(τ) un(τ)dτ = ηn, (34)

Hn(τ) =
(

eλ1τ eλ2τ . . . eλnτ
)T , ηn =

(
C1 C2 . . . Cn

)T .

Here and below, “n” in the lower index of the letter means “for the first n” modes.
Relation (34) implies the validity of the following statement about complete controlla-

bility [23,24].

Proposition 1. The first n modes of the dynamic process described by equality (27) with
Equations (28)–(30) are completely controllable if and only if for any vector ηn one can find control
un(t), t ∈ [t0, t2], which meets condition (34).
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The control action un(t) satisfying the integral relation (34) can be represented in the
form [22–24]

un(t) = HT
n (t)Q

−1
n ηn + fn(t), (35)

where HT
n (t) is transposed matrix, fn(t) is vector function for which

t2∫
t0

Hn(t) fn(t)dt = 0, Qn =

t2∫
t0

Hn(t)HT
n (t)dt. (36)

Here,

Qn =

t2∫
t0


e2λ1τ e(λ1+λ2)τ . . . e(λ1+λn)τ

e(λ1+λ2)τ e2λ2τ . . . e(λ2+λn)τ

...
...

...
e(λ1+λn)τ e(λ2+λn)τ . . . e2λnτ

dτ

is a symmetric matrix for which det Qn ̸= 0. It follows from Formula (35) that there are
many control functions that solve the boundary control problem.

Having function expressions un(t), t ∈ [t0, t2], from (28) and (31), we obtain an explicit
expression for the function Vk(t) in the form

Vk(t) =

= Vk(t0)e−λk(t−t0) +
2(−1)k

πk

t∫
t0

Ṗ(τ)e−λk(t−τ)dτ − 2
πk

t∫
t0

ḢT
n (τ)e

−λk(t−τ)dτQ−1
n ηn,

k = 1, 2, . . . , n, (37)

where
ḢT

n (τ) =
(

λ1eλ1τ λ2eλ2τ . . . λneλnτ
)
.

Note, in order not to use more cumbersome formulas, it is assumed that the vector
function fn(t) = 0. However, in the case fn(t) ̸= 0, from Formulas (35), (28) and (31), we
obtain a formula similar to (37), which differs only in one term associated with the function
fn(t). We believe that the case fn(t) ̸= 0 differs from the one considered only in a technical
sense, and the obtained formulas have more cumbersome notations. Therefore, all further
conclusions are given under the assumption fn(t) = 0.

From (26), we obtain an explicit expression for the function Vn(ξ, t), t ∈ [t0, t2].
Further, with the help of (15) and (18), the oscillation function Qn(ξ, t), 0 ⩽ ξ ⩽ L for

the first n harmonics will be written as

Tn(ξ, t) =
n

∑
k=1

Vk(t) sin
πkξ

L
+ un(t) +

ξ

L
[P(t)− un(t)], ξ ∈ [0, L], t ∈ [t0, t2]. (38)

Given the notation (9) for the functions T(ξ, t), at ξ ∈ [0, L], t ∈ [t0, t2], we will have

T1n(ξ, t) =
n

∑
k=1

Vk(t0)e−λk(t−t0) +
2(−1)k

πk

t∫
t0

Ṗ(τ)e−λk(t−τ)dτ−

− 2
πk

t∫
t0

ḢT
n (τ)e

−λk(t−τ)dτQ−1
n ηn

 sin
πkξ

L
+ un(t) +

ξ

L
[P(t)− un(t)], ξ ∈ [0, l1],
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T2n(ξ, t) =
n

∑
k=1

Vk(t1)e−λk(t−t1) +
2(−1)k

πk

t∫
t1

Ṗ(τ)e−λk(t−τ)dτ−

− 2
πk

t∫
t1

ḢT
n (τ)e

−λk(t−τ)dτQ−1
n ηn

 sin
πkξ

L
+ un(t) +

ξ

L
[P(t)− un(t)], ξ ∈ [l1, L],

where

Vk(t1) = Vk(t0)e−λk(t1−t0)+
2(−1)k

πk

t1∫
t0

Ṗ(τ)e−λk(t1−τ)dτ− 2
πk

t1∫
t0

ḢT
n (τ)e

−λk(t1−τ)dτQ−1
n ηn.

Taking into account notation (7), the functions T1n(z, t) at z ∈ [0, l1], t ∈ [t0, t1] and
T2n(z, t) at z ∈ [l1, l1 + l2], t ∈ [t1, t2] are presented in the following form:

T1n(z, t) =
n

∑
k=1

Vk(t0)e−λk(t−t0) +
2(−1)k

πk

t∫
t0

Ṗ(τ)e−λk(t−τ)dτ−

− 2
πk

t∫
t0

ḢT
n (τ)e

−λk(t−τ)dτQ−1
n ηn

 sin
πkz

L
+ un(t) +

z
L
[P(t)− un(t)], z ∈ [0, l1],

(39)

T2n(z, t) =
n

∑
k=1

Vk(t1)e−λk(t−t1) +
2(−1)k

πk

t∫
t1

Ṗ(τ)e−λk(t−τ)dτ−

− 2
πk

t∫
t1

ḢT
n (τ)e

−λk(t−τ)dτQ−1
n ηn

 sin
πk
L

[
a1

a2
z + l1

(
1 − a1

a2

)]
+

+un(t) +
1
L
[P(t)− un(t)]

[
a1

a2
z + l1

(
1 − a1

a2

)]
, z ∈ [l1, l1 + l2].

(40)

Note that if we assume that under boundary conditions (2), the known function of the
temperature field P(t) is constant, then Formulas (39) and (40) take a simpler form.

5. Problem Solving for n = 2

Let us illustrate the above for n = 2. In this case, assuming that f2(t) = 0 from (35), it
follows that

u2(t) = HT
2 (t)Q

−1
2 η2,

where
H2(τ) =

(
eλ1τ eλ2τ

)T , ηn =
(

C1 C2
)T ,

Q2 =

(
q11 q12
q21 q22

)
=

t2∫
t0

(
e2λ1τ e(λ1+λ2)τ

e(λ1+λ2)τ e2λ2τ

)
dτ, Q−1

2 =

(
q̂11 q̂12
q̂21 q̂22

)
.

Note that det Q2 = q11q22 − q12q21 ̸= 0, where

qj j =
1

2λj

(
e2λjt2 − e2λjt0

)
, j = 1, 2; q12 = q21 =

1
λ1 + λ2

(
e(λ1+λ2)t2 − e(λ1+λ2)t0

)
.

The elements of the inverse matrix Q−1
2 have the following explicit form:

q̂11 =
1

det Q
1

2λ2

(
e2λ2t2 − e2λ2t0

)
, q̂22 =

1
det Q

1
2λ1

(
e2λ1t2 − e2λ1t0

)
,
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q̂12 = q̂21 = − 1
det Q

· 1
λ1 + λ2

(
e(λ1+λ2)t2 − e(λ1+λ2)t0

)
.

Thus, we obtain

u2(t) = (C1q̂11 + C2q̂12)eλ1t + (C1q̂21 + C2q̂22)eλ2t,

C1 =
1

λ1

π

2

[
V1(t2)eλ1t2 − V1(t0)eλ1t0

]
+ TK(0)eλ1t2 − TH(0)eλ1t0 +

t2∫
t0

Ṗ(τ)eλ1τdτ

,

C2 =
1

λ2

π
[
V2(t2)eλ2t2 − V2(t0)eλ2t0

]
+ TK(0)eλ2t2 − TH(0)eλ2t0 −

t2∫
t0

Ṗ(τ)eλ2τdτ

.

T2(ξ, t) = V1(t) sin
πξ

L
+ V2(t) sin

2πξ

L
+ u2(t) +

ξ

L
[P(t)− u2(t)], ξ ∈ [0, L], t ∈ [t0, t2].

Vk(t) = Vk(t0)e−λk(t−t0) +

t∫
t0

Fk(τ)e−λk(t−τ)dτ, k = 1, 2,

Fk(t) =
2

πk

[
(−1)k Ṗ(t)− λ1(C1q̂11 + C2q̂12)eλ1t − λ2(C1q̂21 + C2q̂22)eλ2t

]
.

Given (39) and (40), function T2(z, t) has the following form:

T2(z, t) =
{

T12(z, t), z ∈ [0, l1],
T22(z, t), z ∈ [l1, l1 + l2],

where functions T12(z, t) at z ∈ [0, l1] and T22(z, t) at z ∈ [l1, l1 + l2] are presented as follows:

T12(z, t) = V1(t) sin
πz
L

+ V2(t) sin
2πz

L
+ u2(t) +

z
L
[P(t)− u2(t)], z ∈ [0, l1],

T22(z, t) = V1(t) sin
π

L

[
a1

a2
z + l1

(
1 − a1

a2

)]
+ V2(t) sin

2π

L

[
a1

a2
z + l1

(
1 − a1

a2

)]
+

+u2(t) +
1
L
[P(t)− u2(t)]

[
a1

a2
z + l1

(
1 − a1

a2

)]
, z ∈ [l1, l1 + l2].

Thus, using the proposed approach, we constructed explicit expressions for the control
function of the thermal process for n = 2, which solves the problem posed, and an explicit
expression for the corresponding temperature distribution functions in the two-layer
biomaterial.

6. Computational Experiment

Let, at t = t0 = 0 and t = t2, the corresponding initial condition

TH(z) =


z
2

, 0 ≤ z ≤ l1,

1
2

(
4l1
5

+
1
5

z2

l1

)
, l1 ≤ z ≤ l1 + l2,

and final condition

TK(z) =


l1
3
+

z
2

, 0 ≤ z ≤ l1,
l1
2
+ (z − l1)

2, l1 ≤ z ≤ l1 + l2,

be specified.
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Assume that the values l1 = 0.02 (m), l2 = 0.03 (m) are given. Then, we have
TH(0) = 0, TK(0) = 6.6667 × 10−3, TH(L) = 0.0205, TK(L) = 0.0109. Let us choose P(t) in
the form

P(t) = 0.0205 − αt. (41)

As can be seen from the above formulas, in particular (39) and (40), they are applicable
for both linear and nonlinear forms of the function P(t). For simplicity of numerical
calculations, we take the function P(t) in the form (41).

We carry out calculations in two cases (for different parameter values α1 and α2).

6.1. Case 1

For a1 = 0.001 (m2/s), a2 = 0.02 (m2/s), we have L = l1 +
a1

a2
l2 = 0.0215 (m). The

values a1 and a2 were chosen for mathematical reasons as test ones. After performing
variable substitution for the functions

TH(ξ) =


ξ

2
, 0 ≤ ξ ≤ l1,

2l1
5

+
1

10l1

(
a2

a1

)2(
ξ − l1

(
1 − a1

a2

))2
, l1 ≤ ξ ≤ L,

and

TK(ξ) =


l1
3
+

ξ

6
, 0 ≤ ξ ≤ l1,

l1
2
+

(
a2

a1

(
ξ − l1

(
1 − a1

a2

))
− l1

)2
, l1 ≤ ξ ≤ L,

Fourier coefficients (at n = 2) are equal T(H)
1 = 3.4409 × 10−3, T(H)

2 = −1.7488 × 10−3,

T(K)
1 = 5.3852 × 10−3, T(K)

2 = −5.7132 × 10−4. Then

λ1 =
( a1π

L

)2
= 0.0214, λ2 =

(
2a2π

L

)2
= 0.0854,

The control function is

u2(t) = −β1e0.0214t + β2e0.0854t, (42)

and
F1(t) = γ11 + γ21e0.0214t − γ31e0.0854t, (43)

F2(t) = −γ12 + γ22e0.0214t − γ32e0.0854t, (44)

V1(t) = χ11 − χ21e−0.0214t + χ31e0.0214t + χ41e0.0854t, (45)

V2(t) = −χ12 + χ22e−0.0854t + χ32e0.0214t − χ42e0.0854t. (46)

For a comparative analysis of the results obtained, further calculations are carried out
for different time periods of laser exposure.

Calculations were performed for the values t = 30 (c), t = 60 (c), and t = 90 (c). The
values of the main parameters obtained as a result of calculations are given in Appendix A.

The behavior of the obtained temperature distribution function T22(t, L) and the given
function P(t) for the values of time instants t2 is presented in Figure 2.
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Figure 2. Graph of functions P(t) (red line) and T22(t, L) (green line): (a) Case of t2 = 30 (s). (b) Case
of t2 = 60 (s). (c) t2 = 90 (s).

To estimate the deviation modulus of the functions T22(t, L) and P(t), we denote

ε(t2) = max
0≤t≤t2

|T22(t, L)− P(t)|.

A comparative analysis of the results obtained is given in the Table 1.

Table 1. Values ε(t2).

t2 (s) 30 60 90

ε(t2) 7.3684 × 10−3 4.0699 × 10−3 3.3119 × 10−3

Thus, the results of the numerical experiment show (see Table 1) that the value of the
error ε(t2) decreases when the duration (t2) of laser exposure increases.

6.2. Case 2

Leaving the same values for l1, l2, we chose a1 = 4.96 × 10−4 (m2/s),
a2 = 4.40 × 10−4 (m2/s). For the calculations, the following values of the initial parameters
were specified: c1 = 2.4 × 103, c2 = 1.9 × 103, ρ1 = 2.2 × 103, ρ2 = 1.9 × 103, K1 = 1.3,
K2 = 0.7, l1 = 0.4, l2 = 0.7. These values were chosen to be close to the values from [25].
Then, L = 0.0538 (m). The Fourier coefficients for the functions TH(ξ) and TK(ξ) in this
case are

T(H)
1 = 7.1190 × 10−3, T(H)

2 = −2.7900 × 10−3, T(K)
1 = 6.2227 × 10−3, T(K)

2 = −4.7874 × 10−4.

Then, we obtain

λ1 =
( a1π

L

)2
= 8.3939 × 10−4, λ2 =

(
2a2π

L

)2
= 3.3576 × 10−3.

The control function is

u2(t) = β1e8.3939×10−4t + β2e3.3576×10−3t, (47)

and
F1(t) = γ11 + γ12e3.3576×10−3t − γ13e8.3939×10−4t, (48)
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F2(t) = −γ12 + γ22e3.3576×10−3t − γ32e3.3576×10−3t, (49)

V1(t) = χ11 − χ21e−8.3939×10−4t + χ31e3.3576×10−3t − χ41e8.3939×10−4t, (50)

V2(t) = −χ12 − χ22e8.3939×10−4t + χ32e3.3576×10−3t − χ42e−3.3576×10−3t. (51)

In this case, calculations were performed for values t = 180 (c) and t = 210 (c). The
obtained values of the main parameters are given in Appendix B.

The behavior of the obtained temperature distribution function T22(t, L) and the given
function P(t) is presented in Figure 3.

0

0.02

30 60 90 120 150 180

t

(a)

0

0.02

35 70 105 140 175 210

t
(b)

Figure 3. Graph of functions P(t) (red line) and T22(t, L) (green line): (a) Case of t2 = 180 (s). (b) Case of
t2 = 210 (s).

Note that in this case, all calculations were also performed for the values 30, 60, 90. We
do not give the parameter values for them so as not to overload the article with numerical
values. A comparative analysis for these cases was performed and is given below.

Using the previously introduced notation ε(t2), we choose t2 ∈ [30, 210] and conduct
a comparative analysis of the results. Some of the values ε(t2) for the selected range t2 are
presented in Table 2. We found that the value of ε(t2) decreases with increasing t2 = 30, 60,
90, 180, 210.

Table 2. Values ε(t2).

t2 (s) 30 60 90 180 210

ε(t2) 1.0522 0.2235 8.0783 × 10−2 4.1035 × 10−3 2.0224 × 10−3

In addition, calculations showed that it is advisable to further develop work related to
the search for the value of t2 that provides the minimum deviation of T22(t, L) from P(t) at a
fixed value of t = t2. We do not consider this extremal problem; this requires a separate study.

Thus, using the proposed approach, at n = 2, a comparative analysis was carried
out for the constructed control function for the thermal process of laser exposure and
some selected numerical values of the biomaterial parameters. A comparison of the results
of a computational experiment showed that, under the found law of laser action, the
value of the resulting temperature distribution function T22(t, L) at the end of a two-layer
biological material is quite close to the values of the given function P(t). The computational
experiment also showed that with increasing duration of laser exposure, the maximum
modulus of deviation of the functions T22(t, L) and P(t) decreases.

7. Conclusions

This paper considers the process of the effect of a laser beam on a two-layer biological
material, the mathematical model of which is described using differential equations of
thermal conductivity. Such a model is characterized as a composite dynamic system (of vari-
able structure) with distributed parameters. By performing some substitution of variables,
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and then using the method of separation of variables and methods of the control theory
for finite-dimensional systems, we developed a constructive approach to constructing a
control function for the thermal effect of a laser beam on a two-layer biomaterial. Under the
constructed controlled thermal effect of a laser beam, the distribution of the temperature
state of a two-layer biomaterial transitions from the initial state to the final state at a given
time interval. The constructiveness of the developed approach is illustrated by a specific
example with a performed computational experiment and subsequent analysis of the re-
sults. The results obtained, even for the first two modes, show that under the influence of
the constructed boundary controls of the thermal effect of the laser beam on a two-layer
biomaterial, the distribution function of the temperature state at the border of the two-layer
biological material is quite close to the given desired function. The proposed approach,
using the Fourier method, can be extended to other non-one-dimensional processes.
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Appendix A

For t2 = 30 (s), we obtain C1 = −0.5966, C2 = 1.8454, q11 = 60.8982, q22 = 978.0206,
q12 = q21 = 221.0502.

Therefore, the matrix Q−1
2 has the form

Q−1
2 =

(
9.1433 × 10−2 −2.0666 × 10−2

−2.0666 × 10−2 5.6933 × 10−3

)
.

The constants in (41)–(46) have the following values:

α = 3.2 × 10−4, β1 = 9.2684 × 10−2, β2 = 2.2835 × 10−2, γ11 =
6.4 × 10−4

π
,

γ21 = 1.2589 × 10−3, γ31 = 1.2416 × 10−3, γ12 =
3.2 × 10−4

π
, γ22 = 6.2991 × 10−4,

γ32 = 6.2078 × 10−4, χ11 = 9.5413 × 10−3, χ21 = 3.0816 × 10−2, χ31 = 2.9502 × 10−2,
χ41 = 1.1630 × 10−2, χ12 = 1.1927 × 10−3, χ22 = 5.9956 × 10−3, χ32 = 5.9004 × 10−3,
χ42 = 3.6343 × 10−3.

For t2 = 60 (s), the values of C1, C2 are C1 = −1.0740, C2 = 21.5196, the elements of
matrix Q2 are equal q11 = 280.1624, q22 = 1.6534 × 105, q12 = q21 = 5.6585 × 103, and the
matrix Q−1

2 has the following form:

Q−1
2 =

(
1.1560 × 10−2 −3.9562 × 10−4

−3.9562 × 10−4 1.9588 × 10−5

)
.

In this case, the constants from (41)–(46) have the following values: α = 1.6 × 10−5,
β1 = 2.0929 × 10−2, β2 = 8.4641 × 10−4, γ11 = 3.2×10−4

π , γ21 = 2.8448 × 10−4,

γ31 = 4.6020 × 10−5, γ12 =
1.6 × 10−4

π
, γ22 = 1.4224 × 10−4, γ32 = 2.3010 × 10−5,
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χ11 = 4.7706 × 10−3, χ21 = 1.4404 × 10−2, χ31 = 6.6618 × 10−3, χ41 = 4.3107 × 10−4,
χ12 = 5.9633 × 10−4, χ22 = 1.0717 × 10−3, χ32 = 1.3324 × 10−3, χ42 = 1.3471 × 10−4.

At the value of t2 = 90 (s), the calculations showed the following results: C1 = −1.8953,
C2 = 264.0481, q11 = 1.6962 × 103, q22 = 2.7787 × 107, q12 = q21 = 1.3941 × 105,

Q−1
2 =

(
2.7015 × 10−3 −1.3554 × 10−5

−1.3554 × 10−5 1.0399 × 10−7

)
,

α = 1.0667 × 10−4, β1 = 8.6987 × 10−3, β2 = 5.3145 × 10−5, γ11 =
2.12 × 10−4

π
,

γ21 = 2.7689 × 10−3, γ31 = 2.7067 × 10−5, γ12 =
1.07 × 10−4

π
, γ22 = 5.9119 × 10−5,

γ32 = 1.4448 × 10−6, χ11 = 3.1804 × 10−3, χ21 = 9.3250 × 10−3, χ31 = 2.7689 × 10−3,
χ41 = 2.7067 × 10−5, χ12 = 3.9755 × 10−4, χ22 = 1.5252 × 10−3, χ32 = 5.5378 × 10−4,
χ41 = 8.4584 × 10−6.

Appendix B

For t2 = 180 (s), we have C1 = 4.8224, C2 = 3.6465, q11 = 210.1558, q22 = 349.8378,
q12 = q21 = 268.9029.

The inverse matrix Q−1
2 has the following form:

Q−1
2 =

(
2.8872 × 10−1 −2.2193 × 10−1

−2.2193 × 10−1 1.7344 × 10−1

)
.

The constants in (41), (47)–(51) have the following values:

α = 5.3 × 10−5, β1 = 5.8309 × 10−1, β2 = −4.3777 × 10−1, γ11 =
1.67 × 10−4

π
,

γ21 = 9.3572 × 10−4, γ31 = 3.1159 × 10−4, γ12 =
5.3 × 10−5

π
, γ22 = 4.6786 × 10−4,

γ32 = 1.4698 × 10−4, χ11 = 4.0450 × 10−2, χ21 = 8.7808 × 10−2, χ31 = 2.2295 × 10−1,
χ41 = 1.8560 × 10−1, χ12 = 5.0562 × 10−3, χ22 = 3.7120 × 10−2, χ32 = 6.9673 × 10−2,
χ42 = 2.1723 × 10−2.

For t2 = 210 (s), the calculations showed the following results: C1 = 4.6219,
C2 = 4.4147, q11 = 251.7793, q22 = 461.1499, q12 = q21 = 336.9543,

Q−1
2 =

(
1.7945 × 10−1 −1.3112 × 10−1

−1.3112 × 10−1 9.7977 × 10−2

)
.

α = 4.57 × 10−5, β1 = 2.5055 × 10−1, β2 = −1.7350 × 10−1, γ11 = 9.14×10−5

π ,
γ21 = 3.7085 × 10−4, γ31 = 1.3389 × 10−4, γ12 = 4.57×10−5

π , γ22 = 1.8543 × 10−4,
γ32 = 6.6943 × 10−5, χ11 = 3.0467 × 10−2, χ21 = 5.3289 × 10−2, χ31 = 8.8362 × 10−2,
χ41 = 7.9752 × 10−2, χ12 = 4.3334 × 10−3, χ22 = 1.5950 × 10−2, χ32 = 2.7613 × 10−3,
χ42 = 1.5555 × 10−3.
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