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Abstract

:

In this paper, we consider the numerical solution of a large complex linear system with a saddle-point form obtained by the discretization of the time-harmonic eddy-current optimal control problem. A new Schur complement is proposed for this algebraic system, extending it to both the block-triangular preconditioner and the structured preconditioner. A theoretical analysis proves that the eigenvalues of block-triangular and structured preconditioned matrices are located in the interval [1/2, 1]. Numerical simulations show that two new preconditioners coupled with a Krylov subspace acceleration have good feasibility and effectiveness and are superior to some existing efficient algorithms.
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1. Introduction


The mathematical theory of optimal control has rapidly evolved over the last few decades into an important and distinct field of applied mathematics, as shown in [1]. J. L. Lions was the first to propose partial differential equation (PDE)-constrained optimization [2,3]. Eddy-current problems are a unique kind of electromagnetic field problem that appear in computational electromagnetism when at least one of the electromagnetic fields is changing very slowly over time. It is an application of Maxwell’s equations, which appears in many practical situations, such as in the numerical modeling of transformers, relays and electric motors [1,4].



We focus on the solution method of the complex-valued linear system obtained after the discretization of the time-harmonic eddy-current optimal control problem by the finite element method (FEM). At present, the main methods for solving large-scale linear systems are iterative methods and preconditioners. In 2001, Golub et al. extended the SOR iterative method to the generalized saddle-point problem and proposed the SOR-like method [5]. In 2002, Benzi et al. extended the HSS iterative method to the saddle-point problem [6,7]. Since then, numerous iterative solutions have emerged based on the HSS iterative method [8,9,10,11,12].



Because the coefficient matrix of the discrete linear equations has a special structure, the efficiency of the Krylov subspace method can be improved by constructing efficient preconditioners. In 2013, Krendl et al. [13] proposed a block diagonal preconditioner to accelerate the MINRES method. In 2016, Zheng and Zhang et al. [14] introduced a parameter on this basis and proposed a generalized block-diagonal preconditioner. In 2018, Liang et al. [15] proposed an efficient structured preconditioner to accelerate the GMRES method. In 2021, Liang et al. [16] proposed an exact complex decomposition technique of the Schur complement to accelerate the GMRES method [17,18,19,20,21,22,23,24,25,26,27,28,29]. In 2022, Luo et al. [30] proposed two new block preconditioners   P  D E    and   P  V D E    for solving saddle-point problems. In 2023, Luo et al. [31] used the block preconditioner   P  D E    for solving general block two-by-two linear systems by expanding the dimensions of the coefficient matrix.



We propose a new Schur complement based on [13,16] to obtain a new block-triangular preconditioner   P  T r i    and a new structured preconditioner   P  S t r    and theoretically prove the eigenvalue distribution interval of their preconditioned matrices. Numerical simulation results show that   P  T r i    and   P  S t r    exhibit stable numerical performance. When compared with the block-diagonal preconditioner   P  B D    and the algorithm EI-GMRES, the two newly proposed preconditioners can reduce iteration time and steps.



The paper is structured as follows. We introduce the background of the problem in Section 1. Some details and discretization processes of eddy-current problems are introduced in Section 2. We summarize the existing preconditioner and propose two new preconditioners   P  T r i    and   P  S t r    in Section 3. The algorithm of   P  T r i    is derived, and the eigenvalue interval of its preconditioned matrix is proved in Section 4. The algorithm of   P  S t r    is derived, and the eigenvalue interval of its preconditioned matrix is proved in Section 5. Numerical results of the preconditioners   P  T r i    and   P  S t r    are presented and discussed in Section 6. We summarize the work and look to the future in Section 7.




2. Eddy Current Problem


The problem originates from the magneto quasi-static model, which is the application of Maxwell’s equations in slowly changing electric fields [17,18]. We consider the following linearized eddy-current problem: find a time-varying magnetic vector potential   p ( x , t )   such that


     σ  ∂  ∂ t   p  ( x , t )  + curl  (  v curl   ( p  ( x , t )  )  )      = j         in   Q T  ,       p ( x , t ) × n     = 0         on   Σ T  ,       p ( x , t )     = p ( x , 0 )         in   Σ 0  ,     



(1)




where    Q T  = Ω ×  ( 0 , T )    is the space-time cylinder, and    Σ T  = Γ ×  ( 0 , T )    is its extracellular surface,    Σ 0  = Γ ×  { 0 }   .  Ω  is a bounded region in   R 3   with a Lipschitz continuous boundary  Γ , and   Γ n   is the outer normal vector of  Ω . j denotes the impressed current density,  σ  denotes the electrical conductivity, and v denotes the magnetic reluctivity. The time-harmonic field is an important type of time-varying electromagnetic field, whose solution is a sine function of a single frequency. According to [19], the following problem is considered: find the state   p ( x , t )   and the control   u ( x , t )   to minimize the cost function


     J ( p , u )     =  1 2   ∫  0  T   ∫ Ω   | p  ( x , t )  −   p d     ( x , t )  |  2  d x d t +  β 2   ∫  0  T   ∫ Ω    |  u ( x , t )  |  2  d x d t ,     



(2)




subject to the time-harmonic problem


     σ  ∂  ∂ t   p  ( x , t )  + curl  ( v curl  ( p  ( x , t )  )  )  + ε p  ( x , t )      = u ( x , t )         in   Q T  ,       p ( x , t ) × n     = 0         on   Σ T  ,       p ( x , 0 )     = p ( x , T )         in  Ω ,       u ( x , 0 )     = u ( x , T )         in  Ω .     



(3)




where    p d   ( x , t )    is a function of the given target.   β > 0   is a regularization parameter, and   ε > 0   is an extra regularization parameter, but in some cases,   ε = 0   can be chosen. The conductivity is a constant, and the magnetic reluctivity   σ ∈  L ∞   ( Ω )    is consistently positive and independent of   p ( x , t )  .



In Ref. [20], it is deduced and proved that the vector-potential formulation method is used to solve the time-harmonic eddy-current optimal control problem. The external current density is a harmonic relation with time in alternating currents. According to the special case of a linear material law, we obtain a time-harmonic expression of the target state:


      p d   ( x , t )      = Re    p ^  d   ( x )   e  i  ω ^  t    ,     



(4)




with angular frequency    ω ^  =   2 π k  T  , k ∈ Z  ;     p ^  d   ( x )    is a complex amplitude. For the original problems (2) and (3), the time-harmonic solutions are


  p  ( x , t )  = Re   p ^   ( x )   e  i  ω ^  t      and   u  ( x , t )  = Re   u ^   ( x )   e  i   ω t  ^     ,  



(5)




where    p ^   ( x )    and    u ^   ( x )    are the solutions of the optimal control problems:


      min   p ^  ,  u ^     1 2   ∫ Ω   |   p ^   ( x )  −   p ^  d     ( x )  |  2  d x +  β 2   ∫ Ω    |  u ^   ( x )  |  2  d x ,     



(6)




subject to


     i  ω ^  σ  p ^   ( x )  + curl  ( v curl  p ^   ( x )  )  + ε  p ^   ( x )      =  u ^   ( x )          in  Ω ,        p ^   ( x )  × n     = 0         on  Γ .     



(7)







Therefore, the problem changes from the time domain to the frequency domain, and the time variation problem becomes a complex time-independent problem.



Since the operators in the problem are Hermitian, the same coefficient matrix can be obtained by using two approaches: the discretize-then-optimize or optimize-then-discretize approach. In order to solve problems (6) and (7), we choose to use the former. The FEM is used to discretize the problem, and the following finite-dimensional optimal control problems are obtained:


      min  p , u    1 2    p −  p d   ∗  M  p −  p d   +  β 2   u ∗  M u ,     








subject to


     i σ  ω ^  M p + K p − M u     = 0 ,     








where   M =   M  i j      is the mass matrix,   K =   K  i j      is the stiffness matrix, with 


   M  i j   =  ∫ Ω   φ i   φ j  d x   and    K  i j   =  ∫ Ω  v curl   φ i   curl   φ j   + ε  φ i   φ j  d x ,  








and    ( · )  ∗   denotes the conjugate transposition vector,    p d  , p  and  u   are the discrete forms of     p ^  d   ( x )  ,  p ^   ( x )   and   u ^   ( x )   , respectively.    φ i   ( 1 ≤ i ≤ N )    is the linear Nédélec−I edge basis function [21,22]. This constrained optimization problem is solved by constructing the Lagrange function


     L ( p , u , z )     =  1 2    p −  p d   ∗  M  p −  p d   +  β 2   u ∗  M u +  z ∗   ( i σ  ω ^  M p + K p − M u )  ,     



(8)




where  z  represents the Lagrange multiplier. In order to obtain stationarity, the following first-order necessary optimality conditions must be satisfied


     ∇ L ( p , u , z )     = 0 .     











The linear system is derived:


      M   0    K − i ω M      0    β M     − M       K + i ω M     − M    0         p     u     z     =      M  p d       0     0     ,  



(9)




where   ω = σ  ω ^   . We simplify the system by eliminating variables. According to the system of Equation (9), we have   z = β u  , eliminating the Lagrange multiplier  z  to obtain the system of equations:


         M    β ( K − i ω M )       K + i ω M     − M          p     u         =      M  p d       0     .     



(10)







By scaling    u ˜  =  β  u  or   u ¯  = −  β  u  , Equation (10) is simplified to


      A 1      p      u ˜      =      M  p d       0     ,  with    A 1  =     M     β   ( K − i ω M )         β   ( K + i ω M )      − M      ,      



(11)




or


      A 2      p      u ¯      =      M  p d       0     ,  with    A 2  =     M    −  β   ( K − i ω M )         β   ( K + i ω M )     M     .     



(12)







The matrix   A 1   in linear system (11) has the Hermitian property, and the matrix   A 2   in linear system (12) has the positive-definite property. According to the different properties of the coefficient matrix, different Krylov subspace solvers such as the MINRES and GMRES methods are used to solve it [23,24].




3. The Preconditioners


Since the Krylov subspace method converges slowly when applied to large and sparse complex linear systems, an ideal preconditioner is required in order to achieve fast convergence. Since the coefficient matrix   A 1   is Hermitian and it is more convenient to design the efficient preconditioning techniques when we consider the discretized linear system (12), we solve the discretized linear system (11) in this paper. For the discrete linear equations of the time-harmonic eddy-current optimal control problem, many papers have proposed and studied various preconditioners [13,14,15,16,25].



In 2013, Krendl et al. [13] designed the block-diagonal preconditioner for the Hermitian matrix   A 1  


     P  B D      =      M +  β   ( K + ω M )     0     0    M +  β   ( K + ω M )       .     



(13)







In 2016, according to the approximation Schur complement of the coefficient matrix   A 1   [26]


     S 1     =    1 +  ω 2  β   M +  β  K   M  − 1      1 +  ω 2  β   M +  β  K  ,     



(14)







Zheng et al. [14], on the basis of [13], proposed a generalized block-diagonal preconditioner


     P  B D − 1      =      α   1 +  ω 2  β   M +  β  K    0     0    α   1 +  ω 2  β   M +  β  K      ,      



(15)




and applied the approximate Schur complement (14) to a block-triangular preconditioner


     P  T r i − 1      =     M   0       β   ( K + i ω M )      −  S 1       .     



(16)







In 2018, Liang et al. [15] applied the approximate Schur complement (14) to the block two-by-two preconditioner and proposed the highly active structured preconditioner


     P  S t r − 2      =     M    −  β   ( K − i ω M )         β   ( K + i ω M )      M + 2   β  1 + β  ω 2     K      .     



(17)







In Ref. [15], it is proved that the structured preconditioned matrix    P  S t r − 2   − 1    A 2    and the block-triangular preconditioned matrix    P  T r i − 1   − 1    A 1    have the same eigenvalue distribution as    1 2  , 1  . In 2021, Liang et al. [16] proposes an exact Schur complement form


     S 2     =    1 +  ω 2  β   M − i  β  K   M  − 1      1 +  ω 2  β   M + i  β  K  ,     



(18)




which is inspired by [27]. The exact Schur complement (18) is used to accelerate the GMRES method to obtain the algorithm EI-GMRES.



Using the exact decomposition of (18), the article gives a practical expression for the inverse of the matrix   A 1  :


   A  1   − 1   =       β ω   H 1  − 1   +  β ω   H 2  − 1   −  β ω 2   H 2  − 1   M  H 1  − 1       − i  ( I −  β ω   H 2  − 1   M )   H 1  − 1         i  H 2  − 1    ( I −  β ω  M  H 1  − 1   )      −  H 2  − 1   M  H 1  − 1        ,  



(19)




where


   H 1  =   1 +  ω 2  β   M − i  β  K ,  H 2  =   1 +  ω 2  β   M + i  β  K  



(20)




and


   β ω  =   1 +  ω 2  β   − ω  β  .  



(21)







Secondly, matrix (19) is applied to the preconditioned Krylov subspace method, and the following linear system needs to be solved:


   A 1      p      u ˜      =      M  p d       0     ⇔     p      u ˜      =  A  1   − 1        M  p d       0     .  



(22)







Combining Equations (19) and (22), the following algorithm is obtained.



According to Algorithm 1, the solution of the complex valued linear system (11) is equivalently transformed into the solution of two complex-valued linear systems with coefficient matrices   H 1   and   H 2  . For Steps 1 and 2, the article [16] first uses the C-to-R method to transform them into real-valued linear systems, respectively, and then the corresponding preconditioned square blocks (PRESB)-type preconditioners are used, i.e.,


   P 1  =        1 +  ω 2  β   M      β  K       −  β  K       1 +  ω 2  β   M + 2  β  K       



(23)




and


   P 2  =        1 +  ω 2  β   M     −  β  K        β  K       1 +  ω 2  β   M + 2  β  K      .  



(24)












	Algorithm 1 Computation of    [ p ,  u ˜  ]  H   of system (11)



	
	
Solve    (   1 +  ω 2  β   M − i  β  K )  h =  β ω  M  p d  ;  



	
Solve    (   1 +  ω 2  β   M + i  β  K )   u ˜  = i M  (  p d  − h )  ;  



	
Compute   p = h − i  β ω   u ˜  .  











This leads to Algorithms 2 and 3 below:






	Algorithm 2 Computation of  z  from    P 1  z = r   with   z =   [  z 1  ,  z 2  ]  T   ,   r =   [  r 1  ,  r 2  ]  T   



	
	
Solve    (   1 +  ω 2  β   M +  β  K )  h =  r 1  −  r 2  ;  



	
Solve    (   1 +  ω 2  β   M +  β  K )   z 2  =  r 2  +  β  K h ;  



	
Compute    z 1  = h +  z 2  .  


















	Algorithm 3 Computation of  z  from    P 2  z = r   with   z =   [  z 1  ,  z 2  ]  T   ,   r =   [  r 1  ,  r 2  ]  T   :



	
	
Solve    (   1 +  ω 2  β   M +  β  K )  h =  r 1  +  r 2  ;  



	
Solve    (   1 +  ω 2  β   M +  β  K )   z 2  =  r 2  −  β  K h ;  



	
Compute    z 1  = h −  z 2  .  











Algorithms 2 and 3 implement steps 1 and 2 of Algorithm 1, respectively. The preconditioners   P 1   and   P 2   are such that the eigenvalue distributions of the preconditioned matrices is in the interval   [  1 2  , 1 ]  .



The advantage of algorithm EI-GMRES is that it retains the true Schur complement form and increases the accuracy of the calculation. However, there are two shortcomings in the exact Schur complement (18). The first is that the exact decomposition causes the first and third factors to be different, which increases the amount of computation. The second is that the exact decomposition introduces complex numbers, which increases computational complexity.



This paper focuses on how to overcome the shortcomings of the EI-GMRES algorithm. According to [13,14], matrices    ( 1 + ω  β  )  M +  β  K   and     1 +  ω 2  β   M +  β  K   have the same structure except for the different coefficient before  M . Note


      lim  β → 0     1 + ω  β     1 +  ω 2  β        = 1 ,     



(25)




which means that the two matrices are almost the same when the regularization parameter  β  approaches 0.



In this paper, we propose a new approximate Schur complement


     S ˜     =  [  ( 1 + ω  β  )  M +  β  K ]   M  − 1    [  ( 1 + ω  β  )  M +  β  K ]  ,     



(26)




based on the Schur complement (14), and extend it to a block-triangular preconditioner and a block two-by-two preconditioner. A new block-triangular preconditioner


     P  T r i      =     M   0       β   ( K + i ω M )      −  S ˜       ,     



(27)




and a new structured preconditioner


     P  S t r      =     M     β   ( K − i ω M )         β   ( K + i ω M )      − [  ( 1 + 2 ω  β  )  M + 2  β   ( 1 + ω  β  )  K ]          



(28)




are proposed for the Hermitian matrix   A 1  . We prove that the distribution intervals of the eigenvalues of preconditioned matrices    P  T r i   − 1    A 1    and    P  S t r   − 1    A 1    are both    1 2  , 1   when  β  tends to 0. The block-triangular preconditioner   P  T r i    and structured preconditioner   P  S t r    proposed in this paper avoid the different decomposition factors and the calculation of complex numbers, which improves the efficiency of the calculation.




4. Block-Triangular Preconditioner


In this section, the algorithm of the preconditioner   P  T r i    is presented through the expression of the inverse of the block-triangular preconditioner   P  T r i   , and the eigenvalue interval of the preconditioned matrix    P  T r i   − 1    A 1    is proved.



The preconditioner   P  T r i    is applied to the preconditioned Krylov subspace method, and the linear systems need to be solved:


      P  T r i        x 1       x 2      =      r 1       r 2      ⇔      r 1       r 2      =  P  T r i   − 1        x 1       x 2      ,     



(29)




where  r  denotes the current residual vector, and  x  denotes the generalized residual vector.



Let


    D    = [  ( 1 + ω  β  )  M +  β  K ] ;     



(30)




then, the approximate Schur complement (26) can be written as


     S ˜     = D  M  − 1   D .     



(31)







Thus, the exact inverse   P  T r i    can be written in the form


     P  T r i   − 1      =      M  − 1     0       I −  δ 1   D  − 1   M   D  − 1       −  D  − 1   M  D  − 1        ,     



(32)




where    δ 1  =  ( 1 + ω  β  )  − i ω  β   . Based on (32), we can implement (29) by the following Algorithm 4.






	Algorithm 4 Computing the solution x of    P  T r i   x = r   with   x =   [  x 1  ,  x 2  ]  T    and   r =   [  r 1  ,  r 2  ]  T   



	
	
Let   r =    M  p d  , 0   H  ;  



	
Solve the h form    [  ( 1 + ω  β  )  M +  β  K ]  h =  [  ( 1 + ω  β  )  − i ω  β  ]   r 1  +  r 2  ;  



	
Solve the   x 2   form    [  ( 1 + ω  β  )  M +  β  K ]   x 2  =  r 1  − M h ;  



	
Solve the   x 1   form   M  x 1  =  r 1  ;  



	
Set the iteration termination condition to residuals less than   10  − 6   .













In the above steps, the equations to be solved in Steps 2–4 have coefficient matrices that are all real, symmetric, positive-definite matrices. We chose to use the conjugate gradient (CG) method to solve them.



Next, we consider the eigenvalue expressions of the preconditioned matrix    P  T r i   − 1    A 1   .



Theorem 1. 

Set    A 1  ∈  C  2 n × 2 n     as the coefficient matrix for linear system (11), defined in Equation (27). Then, the eigenvalues of the preconditioned matrix are 1 with algebraic multiplicity n, and the rest of the eigenvalues are given by


       λ j  =   1 +  ω 2  β + β  μ  j  2     1 + ω  β  +  β   μ j   2   , j = 1 , 2 , … , n      



(33)




where   β > 0   is a regularization parameter, and   ω =   2 π k  T    is a frequency parameter.





Proof of Theorem 1. 

Define   H = blkdiag ( M , M )  . Then, the preconditioned matrix    P  T r i   − 1    A 1    is similar to the following matrix


      H  1 2    P  T r i   − 1    A 1   H  −  1 2        =    H  −  1 2     P  T r i    H  −  1 2      − 1     H  −  1 2     A 1   H  −  1 2              =      I   0       β   (  K ˜  + i ω I )      −   [  ( 1 + ω  β  )  I +  β   K ˜  ]  2        − 1       I     β   (  K ˜  − i ω I )         β   (   K ˜  + i ω I     − I      ,     








with    K ˜  =  M  −  1 2    K  M  −  1 2     . Since  M  and  K  are symmetric positive-definite matrices, there exists a positive diagonal matrix   Σ = diag   μ 1  ,  μ 2  , … ,  μ n     and an orthogonal matrix Q such that    K ˜  =  Q T  Σ Q  . Thus, we have


      H  1 2    P  Tri    − 1    A 1   H  −  1 2    =      Q T    0     0    Q T          I     β   ( Σ − i ω I )       0      [  ( 1 + ω  β  )  I +  β  Σ ]   − 2     1 +  ω 2  β  I + β  Σ 2            Q   0     0   Q     .      








According to the eigenvalue determinant


     |     I − λ      β   ( Σ − i ω I )       0      [  ( 1 + ω  β  )  I +  β  Σ ]   − 2     1 +  ω 2  β  I + β  Σ 2   − λ     |     = 0 ,     








the following equation


       1 + ω  β  +  β   μ j    − 2    1 +  ω 2  β + β  μ  j  2   − λ = 0 , j = 1 , 2 , … , n .     








is obtained. The eigenvalues of the preconditioned matrix    P  T r i   − 1    A 1    are solved to be 1 or


      λ j  =   1 +  ω 2  β + β  μ  j  2     1 + ω  β  +  β   μ j   2   , j = 1 , 2 , … , n .     








 □





Theorem 2. 

Assume that  M  and  K  are both symmetric positive-definite matrices. When the regularization parameter β tends to 0, the eigenvalues of the preconditioned matrix    P  T r i   − 1    A 1    are equal to 1 or Equation (33), which lies in the interval


      λ ∈   1 2  , 1  .      



(34)









Proof of Theorem 2. 

When the regularization parameter  β  tends to 0, according to Equations (25) and (33), we can obtain


      λ j  =   1 +   μ ^   j  2     1 +   μ ^  j   2   ,  with    μ ^  j  =   β    1 +  ω 2  β     μ j  > 0 .     








Therefore


      λ j  ∈   1 2  , 1  .     








In summary, the eigenvalues of the preconditioned matrix    P  T r i   − 1    A 1    are found to lie in the interval    1 2  , 1  .  □






5. Structured Preconditioner


In this part, we decompose the structured preconditioner   P  S t r   , deduce the algorithm of preconditioner   P  S t r   , and prove the eigenvalue distribution interval of the preconditioned matrix    P  S t r   − 1    A 1   .



Firstly, the structured two-by-two preconditioner   P  S t r    is applied to the preconditioned Krylov subspace method, and the following linear system need to be solved:


      P  S t r        x 1       x 2      =      r 1       r 2      ,     



(35)




where  r  denotes the current residual vector, and  x  denotes the generalized residual vector.



Secondly, based on [16] and Equation (28), the structured preconditioner   P  S t r    can be decomposed into


      P  S t r   =     M   0       β   ( K + i ω M )      − D           M  − 1     0     0    M  − 1           M     β   ( K − i ω M )       0   D     ,      



(36)




with   D = [  ( 1 + ω  β  )  M +  β  K ]  . According to the Equations (35) and (36), the linear system we solve becomes


         I     β   M  − 1    ( K − i ω M )       0     M  − 1   D           x 1       x 2      =      M   0       β   ( K + i ω M )      − D       − 1        r 1       r 2      ,     








thus obtaining the following two equations


      x 1  +  β   M  − 1    ( K − i ω M )   x 2  =  M  − 1    r 1  ,     



(37)




and


      M  − 1   D  x 2  =  D  − 1    β   ( K + i ω M )   M  − 1    r 1  −  D  − 1    r 2  .     



(38)







Because of    β  K = D −  ( 1 + ω  β  )  M  , Equation (38) can be written as


     D  x 2  =  r 1  − M h ,     



(39)




with   h =  D  − 1     δ 1   r 1  +  r 2   ,  δ 1  =  ( 1 + ω  β  )  − i ω  β   . Similarly, Equation (37) can be written as


      x 1  = h −  δ 2   x 2  ,     



(40)




where    δ 2  =  ( 1 + ω  β  )  + i ω  β  .  



Finally, based on Equations (39) and (40), we can get the following Algorithm 5 to implement (35).






	Algorithm 5 Computing the solution x of    P  S t r   x = r   with   x =   [  x 1  ,  x 2  ]  T    and   r =   [  r 1  ,  r 2  ]  T   



	
	
Let   r =    M  p d  , 0   H  ;  



	
Solve the h form    [  ( 1 + ω  β  )  M +  β  K ]  h =  [  ( 1 + ω  β  )  − i ω  β  ]   r 1  +  r 2  ;  



	
Solve the   x 2   form    [  ( 1 + ω  β  )  M +  β  K ]   x 2  =  r 1  − M h ;  



	
Solve the   x 1   form    x 1  = h −  [  ( 1 + ω  β  )  + i ω  β  ]   x 2  ;  



	
Set the iteration termination condition to residuals less than   10  − 6   .













In the above execution steps, the equations to be solved in Steps 2 and 3 have real, symmetric, positive-definite coefficient matrices. We chose to use the conjugate gradient (CG) method to solve them. Step 4 only requires direct computation and does not require any additional solving.



Next, we consider the eigenvalue expressions of the preconditioned matrix    P  S t r   − 1    A 1   .



Lemma 1. 

Suppose that  M  and  K  are positive-definite symmetric matrices. The true Schur complement of   A 1   is   § =  1 + β  ω 2   M + β K  M  − 1   K  , and the eigenvalues τ of the matrix     S ˜   − 1   S   satisfy


      τ =   1 +  σ 2     ( 1 + σ )  2   ∈   1 2  , 1  ,      



(41)




where   σ > 0   is an eigenvalue of    K ^  =  γ   M  −  1 2    K  M  −  1 2      with   γ =  β   ( 1 + ω  β  )  2   .  





Proof of Lemma 1. 

Assume that   γ =  β   ( 1 + ω  β  )  2    { χ , m }    is an eigenpair of  τ  of the matrix     S ˜   − 1   S  ; thus,


     S m = τ  S ˜  m   with  m ≠ 0 .     











Then, it is evident that   τ > 0   such that S and   S ˜   are both positive-definite symmetric matrices. We obtain the equality


       1 + β  ω 2   M + β K  M  − 1   K  m = τ    ( 1 + ω  β  )  2  M + β K  M  − 1   K + 2  β   ( 1 + ω  β  )  K  m .     



(42)




Divide both sides of Equation (42) by the coefficient    ( 1 + ω  β  )  2   to obtain


      M + γ K  M  − 1   K  m = τ  M + γ K  M  − 1   K + 2  γ  K  m ,     



(43)




with    γ  =   β   1 + ω  β     . Multiply   M  − 1    at both ends of Equation (43) to obtain


      M  −  1 2     I +   K ^  2    m ^  = τ  M  −  1 2      ( I +  K ^  )  2   m ^  ,     








where    K ^  =  γ   M  −  1 2    K  M  −  1 2      is a symmetric positive-definite matrix,    m ^  =  M  1 2   m  . The eigenvalues  τ  of the matrix     S ˜   − 1   S   can be obtained as


     τ =   1 +  σ 2     ( 1 + σ )  2   ,     








where   σ > 0   is the eigenvalue of   K ^  . Therefore, the eigenvalue interval of matrix     S ˜   − 1   S   is


     τ ∈   1 2  , 1  .     








 □





In the following, we prove the eigenvalue interval of the preconditioned matrix    P  S t r   − 1    A 1   .



Theorem 3. 

Suppose that  M  and  K  are positive-definite symmetric matrices. When the regularization parameter β tends to 0, the eigenvalues of the preconditioned matrix    P  S t r   − 1    A 1    are equal to 1 or Equation (41), which lies in the interval


      λ ∈   1 2  , 1  .      













Proof of Theorem 3. 

Firstly, according to the decomposition form (36) of the structured preconditioner   P  S t r   − 1   ,


      P  S t r   − 1   =      I     β   M  − 1    ( K − i ω M )       0   I      − 1        M   0       β   ( K + i ω M )      −  S ˜        − 1       








can be obtained, where   S ˜   is an approximate Schur complement (26). Then, the inverse of the preconditioned matrix   P  S t r    is


      P  S t r   − 1   =       M  − 1   −  M  − 1    β   ( K − i ω M )    S ˜   − 1    β   ( K + i ω M )   M  − 1        M  − 1    β   ( K − i ω M )    S ˜   − 1           S ˜   − 1    β   ( K + i ω M )   M  − 1       −   S ˜   − 1        ·     



(44)




Let    δ 1  =  ( 1 + ω  β  )  − i ω  β  ,  δ 2  =  ( 1 + ω  β  )  + i ω  β   ; then, Equation (44) can be written in the following form


      P  S t r   − 1   =        δ 1  +  δ 2    D  − 1   −  δ 1   δ 2   D  − 1   M  D  − 1        I −  δ 2   D  − 1   M   D  − 1          D  − 1    I −  δ 1  M  D  − 1        −  D  − 1   M  D  − 1        ,     








with   D = [  ( 1 + ω  β  )  M +  β  K ]  .



Secondly, the preconditioned matrix    P  S t r   − 1    A 1    is calculated. Denote


      R  S t r   =     0   0     0    − [ 2 ω  β  M + 2  β   ( 1 + ω  β  )  K ]      ;      








thus, we have


      P  S t r   − 1   A = I −  P  S t r   − 1    R  S t r t   =     I     I −  δ 2   D  − 1   M   D  − 1    [ 2 ω  β  M + 2  β   ( 1 + ω  β  )  K ]       0    I −  D  − 1   M  D  − 1    [ 2 ω  β  M + 2  β   ( 1 + ω  β  )  K ]       ,     








where


            I −  D  − 1   M  D  − 1    [ 2 ω  β  M + 2  β   ( 1 + ω  β  )  K ]         =   S ˜   − 1    (  S ˜  −  [ 2 ω  β  M + 2  β   ( 1 + ω  β  )  K ]  )         =   S ˜   − 1   S     .     











Finally, we can obtain the eigenvalues of the preconditioned matrix    P  S t r   − 1   A   located in the interval     1 2  , 1  .   □






6. Numerical Experiments


In this part, we solve linear system (11) using the new preconditioners   P  T r i    and   P  S t r   , and compare them with the preconditioner   P  B D    and the algorithm EI-GMRES. In Table 1, the numerical experiment method and corresponding abbreviations are shown.



Example 1. 

The problem of optimal control of time-harmonic eddy-current Equations (2) and (3) was considered, with   Ω =   [ 0 , 1 ]  3    and   σ = 1 , v = 1  . The target state is of the form defined as in Equation (2), with


        p ^  d   ( x )  =     0     0      sin  π  x 1   sin  π  x 2        .      













In the experiment, the CG method [28] was used in the inner iteration. The initial vector of the iteration method was assumed to be    x  ( 0 )   = 0  , the maximum number of iteration steps was    k max  = 1000  , and the stopping tolerance was      b − A  x  ( k )    2    ∥ b ∥  2   ≤  10  − 6    , where   x  ( k )    is the kth iteration. Similarly, the external iteration adopts the MINRES method or GMRES method. The initial vector of the iteration method was assumed to be    x  ( 0 )   = 0  , the maximum number of iteration steps was    k max  = 1000  , and the stopping tolerance was      b − A  x  ( k )    2    ∥ b ∥  2   ≤  10  − 6    . In Table 2, we show the relationship between the degree of mesh refinement and the orders of the matrices  M  and  K .



In Refs. [21,22], two classes of linear Nédélec edge finite element spaces were proposed. Here, we discretized the equations using the first class of Nédélec edge finite element spaces. The 3D problem used a tetrahedral dissection to discretize state variables and control variables. In order to construct the relevant matrices, we used the MATLAB package of [29]. All results were calculated in MATLAB with an Intel Xeon Gold 6258R Processor (38.5 M Cache, 2.70 GHz) FC-LGA14B, Tray.



We used the iteration step (denoted by “IT”) and CPU time in seconds (denoted by “CPU”) to illustrate the performance of the algorithm. For the additional regularization parameter  ε , we chose two values as   10  − 2    and   10  − 4   .



In Table 3 and Table 4, the iteration time and iteration steps of different tested methods are shown with a mesh refinement degree of one in 3D.



In Table 5 and Table 6, the iteration time and iteration steps of different tested methods are shown with a mesh refinement degree of two in 3D.



In Table 7 and Table 8, the iteration time and iteration steps of different tested methods are shown with a mesh refinement degree of three in 3D.



Based on Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8, we can draw the following conclusions:




	
With the increase in mesh refinement degree and matrix dimension, preconditioners   P  T r i    and   P  S t r    reduce the iteration steps and shorten the iteration time compared with preconditioner   P  B D    and the EI-GMRES algorithm.



	
The algorithm is robust. Preconditioners   P  T r i    and   P  S t r    still have better numerical performance as parameters  β  and  ω  change.



	
As parameter  β  decreases and tends to zero, the iteration time of preconditioners   P  T r i    and   P  S t r    also decreases. It shows that the assumption that  β  tends to zero is reasonable.








Finally, the eigenvalue distribution images of    P  T r i   − 1   A   and    P  S t r   − 1   A   are given. Here, the case where the mesh refinement degree is one and   ε =  10  − 2     in 3D was tested.



In Figure 1, the eigenvalue distribution image of preconditioned matrix    P  T r i   − 1   A   with   ε =  10  − 2     is displayed.



In Figure 2, the eigenvalue distribution image of preconditioned matrix    P  S t r   − 1   A   with   ε =  10  − 2     is shown.



According to Figure 1 and Figure 2, the eigenvalues of the preconditioned matrices    P  T r i   − 1   A   and    P  S t r   − 1   A   are closer to one for smaller  β ’s. This partly explains the reason for the shorter iteration time for smaller  β ’s in the numerical calculations. As seen from Figure 1 and Figure 2, all the eigenvalues of the preconditioned matrices are indeed located in the interval    1 2  , 1  , which is consistent with our spectral analyses in Section 4 and Section 5.




7. Conclusions


The purpose of this paper was to construct and analyze the block-triangular preconditioner and structured preconditioner of the discrete linear system of the time-harmonic eddy-current optimal control problem. It was proved that the eigenvalues of their corresponding preconditioned matrices were all located in the interval    1 2  , 1  . Numerical experiments showed that both newly proposed algorithms were robust to the parameters involved in the problem and ran faster than some existing algorithms.



In the future, an extension of our work is to apply new block-triangular preconditioners and structured preconditioners to solve other problems arising in practice, such as the optimal control problem involving the heat equation in [15]. We can further apply this method to compute additional Hermitian operators, addressing problems as referenced in [32]. In addition, we can try to use the newly proposed preconditioners to solve more general algebraic problems with non-Hermite matrices, etc.
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Figure 1. Eigenvalue distribution of preconditioned matrix    P  T r i   − 1   A  . 






Figure 1. Eigenvalue distribution of preconditioned matrix    P  T r i   − 1   A  .



[image: Mathematics 12 00375 g001]







[image: Mathematics 12 00375 g002] 





Figure 2. Eigenvalue distribution of preconditioned matrix    P  S t r   − 1   A  . 
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Table 1. The abbreviated names of the method being tested.






Table 1. The abbreviated names of the method being tested.





	Abbreviation
	Description





	   P  B D    
	MINRES with a block-diagonal preconditioner (13)



	EI-GMRES
	GMRES with the exact Schur complement (18)



	   P  T r i    
	GMRES with a block-triangular preconditioner (27)



	   P  S t r    
	GMRES with a structured preconditioner (28)










 





Table 2. Sizes of the matrix for the three-dimensional problem.






Table 2. Sizes of the matrix for the three-dimensional problem.





	Level
	Size of   M   and   K  





	1
	1854



	2
	13,428



	3
	102,024










 





Table 3. IT and CPU of different methods with a mesh refinement degree of 1 (  ε =  10  − 2    ).






Table 3. IT and CPU of different methods with a mesh refinement degree of 1 (  ε =  10  − 2    ).





	
Method

	
   β   

	
    ω =  10  − 2      

	
    ω =  10  − 1      

	
    ω = 1    

	
    ω = 10    

	
    ω = 100    




	
IT

	
CPU

	
IT

	
CPU

	
IT

	
CPU

	
IT

	
CPU

	
IT

	
CPU






	
   P  B D    

	
   10  − 2    

	
14

	
0.4314

	
14

	
0.3827

	
14

	
0.3755

	
16

	
0.4547

	
16

	
0.4343




	
   10  − 4    

	
14

	
0.3775

	
14

	
0.3883

	
15

	
0.3949

	
16

	
0.4670

	
18

	
0.4868




	
   10  − 6    

	
13

	
0.4047

	
14

	
0.4034

	
14

	
0.3722

	
14

	
0.4268

	
13

	
0.3587




	
   10  − 8    

	
11

	
0.3078

	
11

	
0.3022

	
11

	
0.3339

	
11

	
0.3017

	
11

	
0.3040




	
EI-GMRES

	
   10  − 2    

	
36

	
0.3453

	
37

	
0.3453

	
38

	
0.3527

	
47

	
0.3612

	
285

	
1.3114




	
   10  − 4    

	
207

	
0.9442

	
208

	
0.9415

	
215

	
0.9721

	
229

	
1.0480

	
303

	
1.3246




	
   10  − 6    

	
74

	
0.2320

	
75

	
0.2450

	
76

	
0.2413

	
79

	
0.2496

	
93

	
0.2838




	
   10  − 8    

	
12

	
0.0692

	
12

	
0.0642

	
13

	
0.0670

	
14

	
0.0738

	
15

	
0.0739




	
   P  T r i    

	
   10  − 2    

	
10

	
0.5884

	
10

	
0.5507

	
11

	
0.6189

	
13

	
0.5595

	
12

	
0.3076




	
   10  − 4    

	
10

	
0.2818

	
11

	
0.3153

	
11

	
0.2926

	
12

	
0.2941

	
14

	
0.3090




	
   10  − 6    

	
8

	
0.1839

	
8

	
0.1803

	
9

	
0.1877

	
9

	
0.1925

	
11

	
0.2012




	
   10  − 8    

	
5

	
0.1467

	
5

	
0.1473

	
6

	
0.1575

	
6

	
0.1390

	
7

	
0.1590




	
   P  S t r    

	
   10  − 2    

	
8

	
0.4493

	
8

	
0.4496

	
8

	
0.4419

	
11

	
0.4304

	
11

	
0.2405




	
   10  − 4    

	
9

	
0.2037

	
9

	
0.2275

	
9

	
0.2327

	
10

	
0.2191

	
12

	
0.2096




	
   10  − 6    

	
10

	
0.1563

	
10

	
0.1533

	
11

	
0.1583

	
11

	
0.1689

	
11

	
0.1649




	
   10  − 8    

	
7

	
0.1453

	
8

	
0.1354

	
9

	
0.1481

	
9

	
0.1441

	
9

	
0.1542











 





Table 4. IT and CPU of different methods with a mesh refinement degree of 1 (  ε =  10  − 4    ).
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Method

	
   β   

	
    ω =  10  − 2      

	
    ω =  10  − 1      

	
    ω = 1    

	
    ω = 10    

	
    ω = 100    




	
IT

	
CPU

	
IT

	
CPU

	
IT

	
CPU

	
IT

	
CPU

	
IT

	
CPU






	
   P  B D    

	
   10  − 2    

	
14

	
0.3497

	
14

	
0.4169

	
14

	
0.3526

	
16

	
0.3951

	
16

	
0.3993




	
   10  − 4    

	
14

	
0.3560

	
14

	
0.3509

	
15

	
0.3880

	
16

	
0.3947

	
18

	
0.4448




	
   10  − 6    

	
13

	
0.3915

	
14

	
0.3526

	
14

	
0.3522

	
14

	
0.3506

	
13

	
0.3291




	
   10  − 8    

	
11

	
0.3318

	
11

	
0.2839

	
11

	
0.2800

	
11

	
0.2799

	
11

	
0.2781




	
EI-GMRES

	
   10  − 2    

	
36

	
0.3523

	
37

	
0.3576

	
38

	
0.3654

	
47

	
0.3840

	
286

	
1.3653




	
   10  − 4    

	
207

	
0.9619

	
208

	
0.9742

	
215

	
0.9972

	
229

	
1.1027

	
303

	
1.3806




	
   10  − 6    

	
74

	
0.2520

	
75

	
0.2529

	
76

	
0.2549

	
79

	
0.2614

	
93

	
0.2999




	
   10  − 8    

	
12

	
0.0699

	
12

	
0.0657

	
13

	
0.0723

	
14

	
0.0754

	
15

	
0.0775




	
   P  T r i    

	
   10  − 2    

	
10

	
0.5825

	
10

	
0.4703

	
11

	
0.5512

	
13

	
0.5106

	
12

	
0.3455




	
   10  − 4    

	
10

	
0.3009

	
11

	
0.3062

	
11

	
0.3188

	
12

	
0.3080

	
14

	
0.3229




	
   10  − 6    

	
8

	
0.1915

	
8

	
0.1903

	
9

	
0.1975

	
9

	
0.1976

	
11

	
0.1738




	
   10  − 8    

	
5

	
0.1384

	
5

	
0.1237

	
6

	
0.1611

	
6

	
0.1592

	
7

	
0.1440




	
   P  S t r    

	
   10  − 2    

	
8

	
0.4700

	
8

	
0.4793

	
8

	
0.4771

	
11

	
0.4741

	
11

	
0.2776




	
   10  − 4    

	
9

	
0.2347

	
9

	
0.2299

	
9

	
0.2350

	
9

	
0.2369

	
12

	
0.2390




	
   10  − 6    

	
10

	
0.1665

	
10

	
0.1658

	
11

	
0.1604

	
11

	
0.1799

	
11

	
0.1733




	
   10  − 8    

	
7

	
0.1313

	
8

	
0.1565

	
9

	
0.1531

	
9

	
0.1678

	
9

	
0.1664











 





Table 5. IT and CPU of different methods with a mesh refinement degree of 2 (  ε =  10  − 2    ).
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Method

	
   β   

	
    ω =  10  − 2      

	
    ω =  10  − 1      

	
    ω = 1    

	
    ω = 10    

	
    ω = 100    




	
IT

	
CPU

	
IT

	
CPU

	
IT

	
CPU

	
IT

	
CPU

	
IT

	
CPU






	
   P  B D    

	
   10  − 2    

	
12

	
3.8865

	
12

	
4.0014

	
14

	
4.8745

	
16

	
5.3181

	
16

	
5.8238




	
   10  − 4    

	
16

	
5.0045

	
16

	
5.2044

	
16

	
5.3404

	
16

	
5.3438

	
20

	
6.8909




	
   10  − 6    

	
15

	
4.8586

	
15

	
4.9940

	
15

	
5.0187

	
14

	
4.7922

	
14

	
4.8349




	
   10  − 8    

	
15

	
4.8220

	
15

	
5.1933

	
15

	
5.0183

	
15

	
5.1233

	
15

	
5.2811




	
EI-GMRES

	
   10  − 2    

	
33

	
8.5808

	
34

	
9.4610

	
35

	
8.5315

	
44

	
9.6189

	
277

	
30.6406




	
   10  − 4    

	
219

	
23.6554

	
220

	
26.0373

	
227

	
23.1903

	
222

	
23.7048

	
293

	
27.4971




	
   10  − 6    

	
320

	
22.7231

	
321

	
19.7114

	
324

	
25.5421

	
346

	
22.8257

	
819

	
82.3304




	
   10  − 8    

	
31

	
1.1882

	
31

	
1.0294

	
32

	
1.0578

	
34

	
1.3804

	
35

	
1.1845




	
   P  T r i    

	
   10  − 2    

	
9

	
4.6557

	
10

	
5.2937

	
11

	
6.0840

	
13

	
5.0051

	
12

	
2.4285




	
   10  − 4    

	
10

	
2.3134

	
11

	
2.4929

	
12

	
2.2728

	
12

	
2.6970

	
14

	
2.6304




	
   10  − 6    

	
9

	
1.0883

	
9

	
1.1096

	
10

	
0.9939

	
10

	
0.9687

	
11

	
1.0648




	
   10  − 8    

	
7

	
0.6851

	
8

	
0.6855

	
8

	
0.6482

	
8

	
0.8094

	
9

	
0.7477




	
   P  S t r    

	
   10  − 2    

	
8

	
4.1514

	
8

	
4.1970

	
8

	
4.1532

	
11

	
4.1784

	
11

	
2.1912




	
   10  − 4    

	
9

	
1.7436

	
9

	
1.7654

	
9

	
1.8235

	
10

	
1.7920

	
12

	
1.5819




	
   10  − 6    

	
10

	
0.9174

	
10

	
0.9010

	
11

	
0.9029

	
11

	
0.9861

	
11

	
0.9318




	
   10  − 8    

	
9

	
0.5362

	
10

	
0.5933

	
10

	
0.6658

	
11

	
0.6811

	
11

	
0.7139











 





Table 6. IT and CPU of different methods with a mesh refinement degree of 2 (  ε =  10  − 4    ).






Table 6. IT and CPU of different methods with a mesh refinement degree of 2 (  ε =  10  − 4    ).





	
Method

	
   β   

	
    ω =  10  − 2      

	
    ω =  10  − 1      

	
    ω = 1    

	
    ω = 10    

	
    ω = 100    




	
IT

	
CPU

	
IT

	
CPU

	
IT

	
CPU

	
IT

	
CPU

	
IT

	
CPU






	
   P  B D    

	
   10  − 2    

	
12

	
4.2890

	
12

	
4.5644

	
14

	
4.6339

	
16

	
5.5704

	
16

	
5.4510




	
   10  − 4    

	
16

	
5.1801

	
16

	
5.3446

	
16

	
5.2663

	
16

	
5.4883

	
20

	
6.5576




	
   10  − 6    

	
15

	
4.7688

	
15

	
5.3357

	
15

	
5.0471

	
14

	
4.8455

	
14

	
5.0261




	
   10  − 8    

	
15

	
4.8160

	
15

	
5.2069

	
15

	
5.5848

	
15

	
4.9962

	
15

	
5.4429




	
EI-GMRES

	
   10  − 2    

	
33

	
7.9145

	
34

	
11.8086

	
34

	
8.2787

	
44

	
9.7776

	
277

	
29.8383




	
   10  − 4    

	
219

	
21.0878

	
220

	
21.8016

	
227

	
23.4309

	
222

	
22.0786

	
293

	
32.1779




	
   10  − 6    

	
320

	
18.9017

	
321

	
18.3263

	
324

	
25.5726

	
346

	
20.8813

	
819

	
80.4379




	
   10  − 8    

	
31

	
1.3566

	
31

	
1.4166

	
32

	
1.3717

	
34

	
1.4684

	
35

	
1.1625




	
   P  T r i    

	
   10  − 2    

	
9

	
4.8221

	
10

	
4.9119

	
11

	
5.4390

	
13

	
5.3903

	
12

	
2.5764




	
   10  − 4    

	
10

	
1.9896

	
11

	
2.4368

	
12

	
2.5581

	
12

	
2.6989

	
14

	
2.2606




	
   10  − 6    

	
9

	
0.9322

	
9

	
0.9472

	
10

	
1.0677

	
10

	
1.1115

	
11

	
1.2455




	
   10  − 8    

	
7

	
0.6920

	
8

	
0.7421

	
8

	
0.7528

	
8

	
0.7582

	
9

	
0.7885




	
   P  S t r    

	
   10  − 2    

	
8

	
4.2393

	
8

	
4.5281

	
8

	
4.3064

	
11

	
4.2991

	
11

	
2.0287




	
   10  − 4    

	
9

	
1.5311

	
9

	
1.7552

	
9

	
1.7384

	
10

	
1.8320

	
12

	
1.5949




	
   10  − 6    

	
10

	
0.8088

	
10

	
0.8456

	
11

	
0.9061

	
11

	
0.8727

	
11

	
0.8555




	
   10  − 8    

	
9

	
0.5540

	
10

	
0.5974

	
10

	
0.6033

	
11

	
0.6705

	
11

	
0.7197











 





Table 7. IT and CPU of different methods with a mesh refinement degree of 3 (  ε =  10  − 2    ).






Table 7. IT and CPU of different methods with a mesh refinement degree of 3 (  ε =  10  − 2    ).





	
Method

	
   β   

	
    ω =  10  − 2      

	
    ω =  10  − 1      

	
    ω = 1    

	
    ω = 10    

	
    ω = 100    




	
IT

	
CPU

	
IT

	
CPU

	
IT

	
CPU

	
IT

	
CPU

	
IT

	
CPU






	
   P  B D    

	
   10  − 2    

	
12

	
81.8281

	
16

	
105.4884

	
16

	
109.9203

	
16

	
105.9849

	
20

	
134.6659




	
   10  − 4    

	
16

	
107.4442

	
16

	
105.4884

	
16

	
109.9203

	
16

	
105.9849

	
20

	
134.6659




	
   10  − 6    

	
15

	
97.8574

	
15

	
100.7715

	
15

	
99.6838

	
15

	
98.3083

	
16

	
103.6864




	
   10  − 8    

	
15

	
101.0590

	
15

	
97.1670

	
15

	
102.1359

	
15

	
96.2878

	
15

	
99.9818




	
EI-GMRES

	
   10  − 2    

	
32

	
133.6483

	
33

	
139.4299

	
34

	
141.4927

	
41

	
134.3916

	
264

	
369.5007




	
   10  − 4    

	
212

	
312.7996

	
213

	
294.7765

	
212

	
313.8426

	
207

	
297.1443

	
277

	
338.1885




	
   10  − 6    

	
1004

	
1114.7164

	
1005

	
1050.4192

	
1006

	
1531.9104

	
1008

	
1019.2132

	
1009

	
1035.8507




	
   10  − 8    

	
123

	
40.5372

	
123

	
38.3368

	
124

	
37.9307

	
125

	
39.3624

	
131

	
40.6898




	
   P  T r i    

	
   10  − 2    

	
9

	
53.9215

	
10

	
59.0182

	
11

	
62.5487

	
13

	
57.8992

	
12

	
26.1145




	
   10  − 4    

	
10

	
22.3395

	
11

	
24.1635

	
12

	
25.8925

	
12

	
25.1441

	
15

	
24.8410




	
   10  − 6    

	
9

	
8.5960

	
10

	
9.4512

	
11

	
10.1539

	
11

	
10.0147

	
12

	
10.8725




	
   10  − 8    

	
8

	
4.4818

	
8

	
4.3435

	
8

	
4.4833

	
9

	
4.8736

	
9

	
4.9703




	
   P  S t r    

	
   10  − 2    

	
8

	
53.3623

	
8

	
54.2410

	
8

	
53.8772

	
11

	
52.2347

	
11

	
24.5139




	
   10  − 4    

	
9

	
19.7767

	
9

	
19.9295

	
9

	
20.6046

	
10

	
21.6593

	
12

	
18.5826




	
   10  − 6    

	
10

	
8.5884

	
10

	
8.5899

	
11

	
9.4848

	
11

	
9.2194

	
11

	
9.4156




	
   10  − 8    

	
9

	
3.5892

	
10

	
4.0119

	
10

	
3.9536

	
11

	
4.2778

	
11

	
4.3012











 





Table 8. IT and CPU of different methods with a mesh refinement degree of 3 (  ε =  10  − 4    ).






Table 8. IT and CPU of different methods with a mesh refinement degree of 3 (  ε =  10  − 4    ).





	
Method

	
   β   

	
    ω =  10  − 2      

	
    ω =  10  − 1      

	
    ω = 1    

	
    ω = 10    

	
    ω = 100    




	
IT

	
CPU

	
IT

	
CPU

	
IT

	
CPU

	
IT

	
CPU

	
IT

	
CPU






	
   P  B D    

	
   10  − 2    

	
12

	
81.4266

	
13

	
86.6890

	
14

	
94.4300

	
18

	
116.0574

	
16

	
101.5482




	
   10  − 4    

	
16

	
104.3243

	
16

	
106.3716

	
16

	
109.3637

	
16

	
109.1431

	
20

	
137.9688




	
   10  − 6    

	
15

	
110.6812

	
15

	
104.7531

	
15

	
99.7118

	
15

	
98.5565

	
16

	
105.2505




	
   10  − 8    

	
15

	
113.4792

	
15

	
110.8891

	
15

	
104.3281

	
15

	
110.8320

	
15

	
111.7145




	
EI-GMRES

	
   10  − 2    

	
32

	
146.2052

	
33

	
140.7934

	
33

	
141.0543

	
41

	
133.7156

	
264

	
381.4948




	
   10  − 4    

	
212

	
309.2196

	
213

	
309.0034

	
212

	
311.9646

	
207

	
289.9215

	
278

	
332.9411




	
   10  − 6    

	
1004

	
1015.9542

	
1005

	
1006.3369

	
1006

	
1038.2084

	
1008

	
1012.9365

	
1009

	
1036.8108




	
   10  − 8    

	
123

	
37.8935

	
123

	
40.9428

	
124

	
39.3744

	
125

	
44.0573

	
131

	
43.2647




	
   P  T r i    

	
   10  − 2    

	
9

	
54.0646

	
10

	
59.5861

	
11

	
62.9363

	
13

	
57.6960

	
12

	
26.0438




	
   10  − 4    

	
10

	
22.0596

	
11

	
23.8576

	
12

	
26.0655

	
12

	
25.7485

	
15

	
25.0688




	
   10  − 6    

	
9

	
8.7380

	
10

	
9.4483

	
11

	
10.2397

	
11

	
10.2184

	
12

	
10.7271




	
   10  − 8    

	
8

	
4.4882

	
8

	
4.4240

	
8

	
4.4115

	
9

	
4.9650

	
9

	
4.8197




	
   P  S t r    

	
   10  − 2    

	
8

	
53.7306

	
8

	
53.8112

	
8

	
53.8167

	
11

	
52.1213

	
11

	
23.9081




	
   10  − 4    

	
9

	
19.4848

	
9

	
20.0403

	
9

	
20.1023

	
10

	
21.9683

	
12

	
19.1874




	
   10  − 6    

	
10

	
8.6292

	
10

	
8.