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Abstract: In this paper, we consider the numerical solution of a large complex linear system with a
saddle-point form obtained by the discretization of the time-harmonic eddy-current optimal control
problem. A new Schur complement is proposed for this algebraic system, extending it to both the
block-triangular preconditioner and the structured preconditioner. A theoretical analysis proves
that the eigenvalues of block-triangular and structured preconditioned matrices are located in the
interval [1/2, 1]. Numerical simulations show that two new preconditioners coupled with a Krylov
subspace acceleration have good feasibility and effectiveness and are superior to some existing
efficient algorithms.
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1. Introduction

The mathematical theory of optimal control has rapidly evolved over the last few
decades into an important and distinct field of applied mathematics, as shown in [1]. J.
L. Lions was the first to propose partial differential equation (PDE)-constrained optimiza-
tion [2,3]. Eddy-current problems are a unique kind of electromagnetic field problem that
appear in computational electromagnetism when at least one of the electromagnetic fields is
changing very slowly over time. It is an application of Maxwell’s equations, which appears
in many practical situations, such as in the numerical modeling of transformers, relays and
electric motors [1,4].

We focus on the solution method of the complex-valued linear system obtained after
the discretization of the time-harmonic eddy-current optimal control problem by the
finite element method (FEM). At present, the main methods for solving large-scale linear
systems are iterative methods and preconditioners. In 2001, Golub et al. extended the
SOR iterative method to the generalized saddle-point problem and proposed the SOR-like
method [5]. In 2002, Benzi et al. extended the HSS iterative method to the saddle-point
problem [6,7]. Since then, numerous iterative solutions have emerged based on the HSS
iterative method [8–12].

Because the coefficient matrix of the discrete linear equations has a special structure,
the efficiency of the Krylov subspace method can be improved by constructing efficient
preconditioners. In 2013, Krendl et al. [13] proposed a block diagonal preconditioner
to accelerate the MINRES method. In 2016, Zheng and Zhang et al. [14] introduced a
parameter on this basis and proposed a generalized block-diagonal preconditioner. In 2018,
Liang et al. [15] proposed an efficient structured preconditioner to accelerate the GMRES
method. In 2021, Liang et al. [16] proposed an exact complex decomposition technique of
the Schur complement to accelerate the GMRES method [17–29]. In 2022, Luo et al. [30]
proposed two new block preconditioners PDE and PVDE for solving saddle-point problems.
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In 2023, Luo et al. [31] used the block preconditioner PDE for solving general block two-by-
two linear systems by expanding the dimensions of the coefficient matrix.

We propose a new Schur complement based on [13,16] to obtain a new block-triangular
preconditioner PTri and a new structured preconditioner PStr and theoretically prove the
eigenvalue distribution interval of their preconditioned matrices. Numerical simulation
results show that PTri and PStr exhibit stable numerical performance. When compared
with the block-diagonal preconditioner PBD and the algorithm EI-GMRES, the two newly
proposed preconditioners can reduce iteration time and steps.

The paper is structured as follows. We introduce the background of the problem
in Section 1. Some details and discretization processes of eddy-current problems are
introduced in Section 2. We summarize the existing preconditioner and propose two
new preconditioners PTri and PStr in Section 3. The algorithm of PTri is derived, and the
eigenvalue interval of its preconditioned matrix is proved in Section 4. The algorithm of PStr
is derived, and the eigenvalue interval of its preconditioned matrix is proved in Section 5.
Numerical results of the preconditioners PTri and PStr are presented and discussed in
Section 6. We summarize the work and look to the future in Section 7.

2. Eddy Current Problem

The problem originates from the magneto quasi-static model, which is the application
of Maxwell’s equations in slowly changing electric fields [17,18]. We consider the following
linearized eddy-current problem: find a time-varying magnetic vector potential p(x, t)
such that

σ
∂

∂t
p(x, t) + curl(vcurl(p(x, t))) = j in QT ,

p(x, t)× n = 0 on ΣT ,

p(x, t) = p(x, 0) in Σ0,

(1)

where QT = Ω × (0, T) is the space-time cylinder, and ΣT = Γ × (0, T) is its extracellular
surface, Σ0 = Γ×{0}. Ω is a bounded region in R3 with a Lipschitz continuous boundary Γ,
and Γn is the outer normal vector of Ω. j denotes the impressed current density, σ denotes
the electrical conductivity, and v denotes the magnetic reluctivity. The time-harmonic field
is an important type of time-varying electromagnetic field, whose solution is a sine function
of a single frequency. According to [19], the following problem is considered: find the state
p(x, t) and the control u(x, t) to minimize the cost function

J (p, u) =
1
2

∫ T

0

∫
Ω
|p(x, t)− pd(x, t)|2dxdt +

β

2

∫ T

0

∫
Ω
|u(x, t)|2dxdt, (2)

subject to the time-harmonic problem

σ
∂

∂t
p(x, t) + curl(vcurl(p(x, t))) + εp(x, t) = u(x, t) in QT ,

p(x, t)× n = 0 on ΣT ,

p(x, 0) = p(x, T) in Ω,

u(x, 0) = u(x, T) in Ω.

(3)

where pd(x, t) is a function of the given target. β > 0 is a regularization parameter,
and ε > 0 is an extra regularization parameter, but in some cases, ε = 0 can be chosen.
The conductivity is a constant, and the magnetic reluctivity σ ∈ L∞(Ω) is consistently
positive and independent of p(x, t).

In Ref. [20], it is deduced and proved that the vector-potential formulation method
is used to solve the time-harmonic eddy-current optimal control problem. The external
current density is a harmonic relation with time in alternating currents. According to



Mathematics 2024, 12, 375 3 of 17

the special case of a linear material law, we obtain a time-harmonic expression of the
target state:

pd(x, t) = Re
[

p̂d(x)eiω̂t
]
, (4)

with angular frequency ω̂ = 2πk
T , k ∈ Z; p̂d(x) is a complex amplitude. For the original

problems (2) and (3), the time-harmonic solutions are

p(x, t) = Re
[

p̂(x)eiω̂t
]

and u(x, t) = Re
[
û(x)eiω̂t

]
, (5)

where p̂(x) and û(x) are the solutions of the optimal control problems:

min
p̂,û

1
2

∫
Ω
|p̂(x)− p̂d(x)|2dx +

β

2

∫
Ω
|û(x)|2dx, (6)

subject to
iω̂σ p̂(x) + curl(vcurlp̂(x)) + εp̂(x) = û(x) in Ω,

p̂(x)× n = 0 on Γ.
(7)

Therefore, the problem changes from the time domain to the frequency domain,
and the time variation problem becomes a complex time-independent problem.

Since the operators in the problem are Hermitian, the same coefficient matrix can be
obtained by using two approaches: the discretize-then-optimize or optimize-then-discretize
approach. In order to solve problems (6) and (7), we choose to use the former. The FEM
is used to discretize the problem, and the following finite-dimensional optimal control
problems are obtained:

min
p,u

1
2
(p − pd)

∗M(p − pd) +
β

2
u∗Mu,

subject to

iσω̂Mp +Kp −Mu = 0,

where M =
[
Mij

]
is the mass matrix, K =

[
Kij

]
is the stiffness matrix, with

Mij =
∫

Ω
φi φjdx and Kij =

∫
Ω

vcurl(φi)curl
(

φj
)
+ εφi φjdx,

and (·)∗ denotes the conjugate transposition vector, pd, p and u are the discrete forms
of p̂d(x), p̂(x) and û(x), respectively. φi(1 ≤ i ≤ N) is the linear Nédélec-I edge basis
function [21,22]. This constrained optimization problem is solved by constructing the
Lagrange function

L(p, u, z) =
1
2
(p − pd)

∗M(p − pd) +
β

2
u∗Mu + z∗(iσω̂Mp +Kp −Mu), (8)

where z represents the Lagrange multiplier. In order to obtain stationarity, the following
first-order necessary optimality conditions must be satisfied

∇L(p, u, z) = 0.

The linear system is derived: M 0 K− iωM
0 βM −M

K+ iωM −M 0

 p
u
z

 =

 Mpd
0
0

, (9)
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where ω = σω̂. We simplify the system by eliminating variables. According to the system
of Equation (9), we have z = βu, eliminating the Lagrange multiplier z to obtain the system
of equations: [

M β(K− iωM)
K+ iωM −M

][
p
u

]
=

[
Mpd

0

]
. (10)

By scaling ũ =
√

βu or u = −
√

βu, Equation (10) is simplified to

A1

[
p
ũ

]
=

[
Mpd

0

]
, with A1 =

[
M

√
β(K− iωM)√

β(K+ iωM) −M

]
, (11)

or

A2

[
p
u

]
=

[
Mpd

0

]
, with A2 =

[
M −

√
β(K− iωM)√

β(K+ iωM) M

]
. (12)

The matrix A1 in linear system (11) has the Hermitian property, and the matrix A2 in
linear system (12) has the positive-definite property. According to the different properties of
the coefficient matrix, different Krylov subspace solvers such as the MINRES and GMRES
methods are used to solve it [23,24].

3. The Preconditioners

Since the Krylov subspace method converges slowly when applied to large and
sparse complex linear systems, an ideal preconditioner is required in order to achieve
fast convergence. Since the coefficient matrix A1 is Hermitian and it is more convenient to
design the efficient preconditioning techniques when we consider the discretized linear
system (12), we solve the discretized linear system (11) in this paper. For the discrete linear
equations of the time-harmonic eddy-current optimal control problem, many papers have
proposed and studied various preconditioners [13–16,25].

In 2013, Krendl et al. [13] designed the block-diagonal preconditioner for the Hermitian
matrix A1

PBD =

[
M+

√
β(K+ ωM) 0

0 M+
√

β(K+ ωM)

]
. (13)

In 2016, according to the approximation Schur complement of the coefficient matrix
A1 [26]

S1 =

(√
1 + ω2βM+

√
βK

)
M−1

(√
1 + ω2βM+

√
βK

)
, (14)

Zheng et al. [14], on the basis of [13], proposed a generalized block-diagonal preconditioner

PBD−1 =

[
α
√

1 + ω2βM+
√

βK 0
0 α

√
1 + ω2βM+

√
βK

]
, (15)

and applied the approximate Schur complement (14) to a block-triangular preconditioner

PTri−1 =

[
M 0√

β(K+ iωM) −S1

]
. (16)

In 2018, Liang et al. [15] applied the approximate Schur complement (14) to the block
two-by-two preconditioner and proposed the highly active structured preconditioner

PStr−2 =

[
M −

√
β(K− iωM)√

β(K+ iωM) M+ 2
√

β(1 + βω2)K

]
. (17)
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In Ref. [15], it is proved that the structured preconditioned matrix P−1
Str−2A2 and the

block-triangular preconditioned matrix P−1
Tri−1A1 have the same eigenvalue distribution as[

1
2 , 1

]
. In 2021, Liang et al. [16] proposes an exact Schur complement form

S2 =

(√
1 + ω2βM− i

√
βK

)
M−1

(√
1 + ω2βM+ i

√
βK

)
, (18)

which is inspired by [27]. The exact Schur complement (18) is used to accelerate the GMRES
method to obtain the algorithm EI-GMRES.

Using the exact decomposition of (18), the article gives a practical expression for the
inverse of the matrix A1:

A−1
1 =

[
βω H−1

1 + βω H−1
2 − β2

ω H−1
2 MH−1

1 −i(I − βω H−1
2 M)H−1

1
iH−1

2 (I − βω MH−1
1 ) −H−1

2 MH−1
1

]
, (19)

where
H1 =

√
1 + ω2βM − i

√
βK, H2 =

√
1 + ω2βM + i

√
βK (20)

and
βω =

√
1 + ω2β − ω

√
β. (21)

Secondly, matrix (19) is applied to the preconditioned Krylov subspace method,
and the following linear system needs to be solved:

A1

[
p
ũ

]
=

[
Mpd

0

]
⇔

[
p
ũ

]
= A−1

1

[
Mpd

0

]
. (22)

Combining Equations (19) and (22), the following algorithm is obtained.
According to Algorithm 1, the solution of the complex valued linear system (11) is

equivalently transformed into the solution of two complex-valued linear systems with
coefficient matrices H1 and H2. For Steps 1 and 2, the article [16] first uses the C-to-R
method to transform them into real-valued linear systems, respectively, and then the
corresponding preconditioned square blocks (PRESB)-type preconditioners are used, i.e.,

P1 =

[ √
1 + ω2βM

√
βK

−
√

βK
√

1 + ω2βM + 2
√

βK

]
(23)

and

P2 =

[ √
1 + ω2βM −

√
βK√

βK
√

1 + ω2βM + 2
√

βK

]
. (24)

Algorithm 1 Computation of [p, ũ]H of system (11)

1. Solve (
√

1 + ω2βM − i
√

βK)h = βω Mpd;
2. Solve (

√
1 + ω2βM + i

√
βK)ũ = iM(pd − h);

3. Compute p = h − iβω ũ.

This leads to Algorithms 2 and 3 below:

Algorithm 2 Computation of z from P1z = r with z = [z1, z2]
T , r = [r1, r2]

T

1. Solve (
√

1 + ω2βM +
√

βK)h = r1 − r2;
2. Solve (

√
1 + ω2βM +

√
βK)z2 = r2 +

√
βKh;

3. Compute z1 = h + z2.
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Algorithm 3 Computation of z from P2z = r with z = [z1, z2]
T , r = [r1, r2]

T :

1. Solve (
√

1 + ω2βM +
√

βK)h = r1 + r2;
2. Solve (

√
1 + ω2βM +

√
βK)z2 = r2 −

√
βKh;

3. Compute z1 = h − z2.

Algorithms 2 and 3 implement steps 1 and 2 of Algorithm 1, respectively. The pre-
conditioners P1 and P2 are such that the eigenvalue distributions of the preconditioned
matrices is in the interval [ 1

2 , 1].
The advantage of algorithm EI-GMRES is that it retains the true Schur complement

form and increases the accuracy of the calculation. However, there are two shortcomings
in the exact Schur complement (18). The first is that the exact decomposition causes
the first and third factors to be different, which increases the amount of computation.
The second is that the exact decomposition introduces complex numbers, which increases
computational complexity.

This paper focuses on how to overcome the shortcomings of the EI-GMRES algorithm.
According to [13,14], matrices (1 + ω

√
β)M+

√
βK and

√
1 + ω2βM+

√
βK have the

same structure except for the different coefficient before M. Note

lim
β→0

1 + ω
√

β√
1 + ω2β

= 1, (25)

which means that the two matrices are almost the same when the regularization parameter
β approaches 0.

In this paper, we propose a new approximate Schur complement

S̃ = [(1 + ω
√

β)M+
√

βK]M−1[(1 + ω
√

β)M+
√

βK], (26)

based on the Schur complement (14), and extend it to a block-triangular preconditioner
and a block two-by-two preconditioner. A new block-triangular preconditioner

PTri =

[
M 0√

β(K+ iωM) −S̃

]
, (27)

and a new structured preconditioner

PStr =

[
M

√
β(K− iωM)√

β(K+ iωM) −[(1 + 2ω
√

β)M+ 2
√

β(1 + ω
√

β)K]

]
(28)

are proposed for the Hermitian matrix A1. We prove that the distribution intervals of the
eigenvalues of preconditioned matrices P−1

Tri A1 and P−1
StrA1 are both

[
1
2 , 1

]
when β tends to

0. The block-triangular preconditioner PTri and structured preconditioner PStr proposed
in this paper avoid the different decomposition factors and the calculation of complex
numbers, which improves the efficiency of the calculation.

4. Block-Triangular Preconditioner

In this section, the algorithm of the preconditioner PTri is presented through the
expression of the inverse of the block-triangular preconditioner PTri, and the eigenvalue
interval of the preconditioned matrix P−1

Tri A1 is proved.
The preconditioner PTri is applied to the preconditioned Krylov subspace method,

and the linear systems need to be solved:

PTri

[
x1
x2

]
=

[
r1
r2

]
⇔

[
r1
r2

]
= P−1

Tri

[
x1
x2

]
, (29)
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where r denotes the current residual vector, and x denotes the generalized residual vector.
Let

D = [(1 + ω
√

β)M+
√

βK]; (30)

then, the approximate Schur complement (26) can be written as

S̃ = DM−1D. (31)

Thus, the exact inverse PTri can be written in the form

P−1
Tri =

[
M−1 0(

I − δ1D−1M
)

D−1 −D−1MD−1

]
, (32)

where δ1 = (1 + ω
√

β)− iω
√

β. Based on (32), we can implement (29) by the following
Algorithm 4.

Algorithm 4 Computing the solution x of PTrix = r with x = [x1, x2]
T and r = [r1, r2]

T

1. Let r = [Mpd, 0]H ;
2. Solve the h form [(1 + ω

√
β)M+

√
βK]h = [(1 + ω

√
β)− iω

√
β]r1 + r2;

3. Solve the x2 form [(1 + ω
√

β)M+
√

βK]x2 = r1 −Mh;
4. Solve the x1 form Mx1 = r1;
5. Set the iteration termination condition to residuals less than 10−6.

In the above steps, the equations to be solved in Steps 2–4 have coefficient matrices that
are all real, symmetric, positive-definite matrices. We chose to use the conjugate gradient
(CG) method to solve them.

Next, we consider the eigenvalue expressions of the preconditioned matrix P−1
Tri A1.

Theorem 1. Set A1 ∈ C2n×2n as the coefficient matrix for linear system (11), defined in Equa-
tion (27). Then, the eigenvalues of the preconditioned matrix are 1 with algebraic multiplicity n,
and the rest of the eigenvalues are given by

λj =
1+ω2β+βµ2

j

(1+ω
√

β+
√

βµj)
2 , j = 1, 2, . . . , n (33)

where β > 0 is a regularization parameter, and ω = 2πk
T is a frequency parameter.

Proof of Theorem 1. Define H = blkdiag(M,M). Then, the preconditioned matrix
P−1

Tri A1 is similar to the following matrix

H
1
2 P−1

Tri A1H− 1
2 =

[
H− 1

2 PTri H− 1
2

]−1[
H− 1

2 A1H− 1
2

]
=

[
I 0√

β(K̃+ iωI) −[(1 + ω
√

β)I +
√

βK̃]2

]−1[ I
√

β(K̃ − iωI)√
β(K̃+ iωI −I

]
,

with K̃ = M− 1
2 KM− 1

2 . Since M and K are symmetric positive-definite matrices, there
exists a positive diagonal matrix Σ = diag(µ1, µ2, . . . , µn) and an orthogonal matrix Q such
that K̃ = QTΣQ. Thus, we have

H
1
2 P−1

Tri A1H− 1
2 =

[
QT 0
0 QT

][
I

√
β(Σ − iωI)

0 [(1 + ω
√

β)I +
√

βΣ]−2[(1 + ω2β
)

I + βΣ2] ][
Q 0
0 Q

]
.
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According to the eigenvalue determinant∣∣∣∣ I − λ
√

β(Σ − iωI)
0 [(1 + ω

√
β)I +

√
βΣ]−2[(1 + ω2β

)
I + βΣ2]− λ

∣∣∣∣ = 0,

the following equation(
1 + ω

√
β +

√
βµj

)−2
(

1 + ω2β + βµ2
j

)
− λ = 0, j = 1, 2, . . . , n.

is obtained. The eigenvalues of the preconditioned matrix P−1
Tri A1 are solved to be 1 or

λj =
1+ω2β+βµ2

j

(1+ω
√

β+
√

βµj)
2 , j = 1, 2, . . . , n.

Theorem 2. Assume that M and K are both symmetric positive-definite matrices. When the
regularization parameter β tends to 0, the eigenvalues of the preconditioned matrix P−1

Tri A1 are equal
to 1 or Equation (33), which lies in the interval

λ ∈
[

1
2

, 1
]

. (34)

Proof of Theorem 2. When the regularization parameter β tends to 0, according to Equa-
tions (25) and (33), we can obtain

λj =
1+µ̂2

j

(1+µ̂j)
2 , with µ̂j =

√
β√

1+ω2β
µj > 0.

Therefore
λj ∈

[
1
2 , 1

)
.

In summary, the eigenvalues of the preconditioned matrix P−1
Tri A1 are found to lie in the

interval
[

1
2 , 1

]
.

5. Structured Preconditioner

In this part, we decompose the structured preconditioner PStr, deduce the algorithm
of preconditioner PStr, and prove the eigenvalue distribution interval of the preconditioned
matrix P−1

StrA1.
Firstly, the structured two-by-two preconditioner PStr is applied to the preconditioned

Krylov subspace method, and the following linear system need to be solved:

PStr

[
x1
x2

]
=

[
r1
r2

]
, (35)

where r denotes the current residual vector, and x denotes the generalized residual vector.
Secondly, based on [16] and Equation (28), the structured preconditioner PStr can be

decomposed into

PStr =

[
M 0√

β(K+ iωM) −D

][
M−1 0

0 M−1

][
M

√
β(K− iωM)

0 D

]
, (36)

with D = [(1 + ω
√

β)M+
√

βK]. According to the Equations (35) and (36), the linear
system we solve becomes[

I
√

βM−1(K− iωM)
0 M−1D

][
x1
x2

]
=

[
M 0√

β(K+ iωM) −D

]−1[ r1
r2

]
,



Mathematics 2024, 12, 375 9 of 17

thus obtaining the following two equations

x1 +
√

βM−1(K− iωM)x2 = M−1r1, (37)

and
M−1Dx2 = D−1√β(K+ iωM)M−1r1 − D−1r2. (38)

Because of
√

βK = D − (1 + ω
√

β)M , Equation (38) can be written as

Dx2 = r1 −Mh, (39)

with h = D−1(δ1r1 + r2), δ1 = (1 + ω
√

β)− iω
√

β. Similarly, Equation (37) can be writ-
ten as

x1 = h − δ2x2, (40)

where δ2 = (1 + ω
√

β) + iω
√

β.
Finally, based on Equations (39) and (40), we can get the following Algorithm 5 to

implement (35).

Algorithm 5 Computing the solution x of PStrx = r with x = [x1, x2]
T and r = [r1, r2]

T

1. Let r = [Mpd, 0]H ;
2. Solve the h form [(1 + ω

√
β)M+

√
βK]h = [(1 + ω

√
β)− iω

√
β]r1 + r2;

3. Solve the x2 form [(1 + ω
√

β)M+
√

βK]x2 = r1 −Mh;
4. Solve the x1 form x1 = h − [(1 + ω

√
β) + iω

√
β]x2;

5. Set the iteration termination condition to residuals less than 10−6.

In the above execution steps, the equations to be solved in Steps 2 and 3 have real,
symmetric, positive-definite coefficient matrices. We chose to use the conjugate gradient
(CG) method to solve them. Step 4 only requires direct computation and does not require
any additional solving.

Next, we consider the eigenvalue expressions of the preconditioned matrix P−1
StrA1.

Lemma 1. Suppose that M and K are positive-definite symmetric matrices. The true Schur comple-
ment of A1 is § =

(
1 + βω2)M+ βKM−1K, and the eigenvalues τ of the matrix S̃−1S satisfy

τ = 1+σ2

(1+σ)2 ∈
[

1
2 , 1

)
, (41)

where σ > 0 is an eigenvalue of K̂ =
√

γM− 1
2 KM− 1

2 with γ = β

(1+ω
√

β)2 .

Proof of Lemma 1. Assume that γ = β

(1+ω
√

β)2 {χ, m} is an eigenpair of τ of the matrix

S̃−1S; thus,
Sm = τS̃m with m ̸= 0.

Then, it is evident that τ > 0 such that S and S̃ are both positive-definite symmetric
matrices. We obtain the equality((

1 + βω2)M+ βKM−1K
)
m = τ

(
(1 + ω

√
β)2M+ βKM−1K+ 2

√
β(1 + ω

√
β)K

)
m. (42)

Divide both sides of Equation (42) by the coefficient (1 + ω
√

β)2 to obtain(
M+ γKM−1K

)
m = τ

(
M+ γKM−1K+ 2

√
γK

)
m, (43)

with
√

γ =

√
β

1+ω
√

β
. Multiply M−1 at both ends of Equation (43) to obtain
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M− 1
2
(

I + K̂2)m̂ = τM− 1
2 (I + K̂)2m̂,

where K̂ =
√

γM− 1
2 KM− 1

2 is a symmetric positive-definite matrix, m̂ = M 1
2 m. The eigen-

values τ of the matrix S̃−1S can be obtained as

τ = 1+σ2

(1+σ)2 ,

where σ > 0 is the eigenvalue of K̂. Therefore, the eigenvalue interval of matrix S̃−1S is

τ ∈
[

1
2 , 1

)
.

In the following, we prove the eigenvalue interval of the preconditioned matrix P−1
StrA1.

Theorem 3. Suppose that M and K are positive-definite symmetric matrices. When the regular-
ization parameter β tends to 0, the eigenvalues of the preconditioned matrix P−1

StrA1 are equal to 1
or Equation (41), which lies in the interval

λ ∈
[

1
2

, 1
]

.

Proof of Theorem 3. Firstly, according to the decomposition form (36) of the structured
preconditioner P−1

Str ,

P−1
Str =

[
I

√
βM−1(K− iωM)

0 I

]−1[ M 0√
β(K+ iωM) −S̃

]−1

can be obtained, where S̃ is an approximate Schur complement (26). Then, the inverse of
the preconditioned matrix PStr is

P−1
Str =

[
M−1 −M−1√β(K− iωM)S̃−1√β(K+ iωM)M−1 M−1√β(K− iωM)S̃−1

S̃−1√β(K+ iωM)M−1 −S̃−1

]
· (44)

Let δ1 = (1 + ω
√

β)− iω
√

β, δ2 = (1 + ω
√

β) + iω
√

β; then, Equation (44) can be written
in the following form

P−1
Str =

[
(δ1 + δ2)D−1 − δ1δ2D−1MD−1 (

I − δ2D−1M
)

D−1

D−1(I − δ1MD−1) −D−1MD−1

]
,

with D = [(1 + ω
√

β)M+
√

βK].
Secondly, the preconditioned matrix P−1

StrA1 is calculated. Denote

RStr =

[
0 0
0 −[2ω

√
βM+ 2

√
β(1 + ω

√
β)K]

]
;

thus, we have

P−1
StrA = I − P−1

Str RStrt =

[
I

(
I − δ2D−1M

)
D−1[2ω

√
βM+ 2

√
β(1 + ω

√
β)K]

0 I − D−1MD−1[2ω
√

βM+ 2
√

β(1 + ω
√

β)K]

]
,

where

I − D−1MD−1[2ω
√

βM+ 2
√

β(1 + ω
√

β)K]

= S̃−1(S̃ − [2ω
√

βM+ 2
√

β(1 + ω
√

β)K])

= S̃−1S

.
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Finally, we can obtain the eigenvalues of the preconditioned matrix P−1
StrA located in

the interval
[

1
2 , 1

]
.

6. Numerical Experiments

In this part, we solve linear system (11) using the new preconditioners PTri and PStr,
and compare them with the preconditioner PBD and the algorithm EI-GMRES. In Table 1,
the numerical experiment method and corresponding abbreviations are shown.

Table 1. The abbreviated names of the method being tested.

Abbreviation Description

PBD MINRES with a block-diagonal preconditioner (13)
EI-GMRES GMRES with the exact Schur complement (18)
PTri GMRES with a block-triangular preconditioner (27)
PStr GMRES with a structured preconditioner (28)

Example 1. The problem of optimal control of time-harmonic eddy-current Equations (2) and (3)
was considered, with Ω = [0, 1]3 and σ = 1, v = 1. The target state is of the form defined as in
Equation (2), with

p̂d(x) =

 0
0

sin(πx1) sin(πx2)

.

In the experiment, the CG method [28] was used in the inner iteration. The initial
vector of the iteration method was assumed to be x(0) = 0, the maximum number of

iteration steps was kmax = 1000, and the stopping tolerance was ∥b−Ax(k)∥2
∥b∥2

≤ 10−6, where

x(k) is the kth iteration. Similarly, the external iteration adopts the MINRES method or
GMRES method. The initial vector of the iteration method was assumed to be x(0) = 0,
the maximum number of iteration steps was kmax = 1000, and the stopping tolerance

was ∥b−Ax(k)∥2
∥b∥2

≤ 10−6. In Table 2, we show the relationship between the degree of mesh
refinement and the orders of the matrices M and K.

Table 2. Sizes of the matrix for the three-dimensional problem.

Level Size of M and K
1 1854
2 13,428
3 102,024

In Refs. [21,22], two classes of linear Nédélec edge finite element spaces were proposed.
Here, we discretized the equations using the first class of Nédélec edge finite element spaces.
The 3D problem used a tetrahedral dissection to discretize state variables and control
variables. In order to construct the relevant matrices, we used the MATLAB package of [29].
All results were calculated in MATLAB with an Intel Xeon Gold 6258R Processor (38.5 M
Cache, 2.70 GHz) FC-LGA14B, Tray.

We used the iteration step (denoted by “IT”) and CPU time in seconds (denoted by
“CPU”) to illustrate the performance of the algorithm. For the additional regularization
parameter ε, we chose two values as 10−2 and 10−4.

In Tables 3 and 4, the iteration time and iteration steps of different tested methods are
shown with a mesh refinement degree of one in 3D.



Mathematics 2024, 12, 375 12 of 17

Table 3. IT and CPU of different methods with a mesh refinement degree of 1 (ε = 10−2).

Method β
ω = 10−2 ω = 10−1 ω = 1 ω = 10 ω = 100

IT CPU IT CPU IT CPU IT CPU IT CPU

PBD

10−2 14 0.4314 14 0.3827 14 0.3755 16 0.4547 16 0.4343
10−4 14 0.3775 14 0.3883 15 0.3949 16 0.4670 18 0.4868
10−6 13 0.4047 14 0.4034 14 0.3722 14 0.4268 13 0.3587
10−8 11 0.3078 11 0.3022 11 0.3339 11 0.3017 11 0.3040

EI-GMRES

10−2 36 0.3453 37 0.3453 38 0.3527 47 0.3612 285 1.3114
10−4 207 0.9442 208 0.9415 215 0.9721 229 1.0480 303 1.3246
10−6 74 0.2320 75 0.2450 76 0.2413 79 0.2496 93 0.2838
10−8 12 0.0692 12 0.0642 13 0.0670 14 0.0738 15 0.0739

PTri

10−2 10 0.5884 10 0.5507 11 0.6189 13 0.5595 12 0.3076
10−4 10 0.2818 11 0.3153 11 0.2926 12 0.2941 14 0.3090
10−6 8 0.1839 8 0.1803 9 0.1877 9 0.1925 11 0.2012
10−8 5 0.1467 5 0.1473 6 0.1575 6 0.1390 7 0.1590

PStr

10−2 8 0.4493 8 0.4496 8 0.4419 11 0.4304 11 0.2405
10−4 9 0.2037 9 0.2275 9 0.2327 10 0.2191 12 0.2096
10−6 10 0.1563 10 0.1533 11 0.1583 11 0.1689 11 0.1649
10−8 7 0.1453 8 0.1354 9 0.1481 9 0.1441 9 0.1542

Table 4. IT and CPU of different methods with a mesh refinement degree of 1 (ε = 10−4).

Method β
ω = 10−2 ω = 10−1 ω = 1 ω = 10 ω = 100

IT CPU IT CPU IT CPU IT CPU IT CPU

PBD

10−2 14 0.3497 14 0.4169 14 0.3526 16 0.3951 16 0.3993
10−4 14 0.3560 14 0.3509 15 0.3880 16 0.3947 18 0.4448
10−6 13 0.3915 14 0.3526 14 0.3522 14 0.3506 13 0.3291
10−8 11 0.3318 11 0.2839 11 0.2800 11 0.2799 11 0.2781

EI-GMRES

10−2 36 0.3523 37 0.3576 38 0.3654 47 0.3840 286 1.3653
10−4 207 0.9619 208 0.9742 215 0.9972 229 1.1027 303 1.3806
10−6 74 0.2520 75 0.2529 76 0.2549 79 0.2614 93 0.2999
10−8 12 0.0699 12 0.0657 13 0.0723 14 0.0754 15 0.0775

PTri

10−2 10 0.5825 10 0.4703 11 0.5512 13 0.5106 12 0.3455
10−4 10 0.3009 11 0.3062 11 0.3188 12 0.3080 14 0.3229
10−6 8 0.1915 8 0.1903 9 0.1975 9 0.1976 11 0.1738
10−8 5 0.1384 5 0.1237 6 0.1611 6 0.1592 7 0.1440

PStr

10−2 8 0.4700 8 0.4793 8 0.4771 11 0.4741 11 0.2776
10−4 9 0.2347 9 0.2299 9 0.2350 9 0.2369 12 0.2390
10−6 10 0.1665 10 0.1658 11 0.1604 11 0.1799 11 0.1733
10−8 7 0.1313 8 0.1565 9 0.1531 9 0.1678 9 0.1664

In Tables 5 and 6, the iteration time and iteration steps of different tested methods are
shown with a mesh refinement degree of two in 3D.
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Table 5. IT and CPU of different methods with a mesh refinement degree of 2 (ε = 10−2).

Method β
ω = 10−2 ω = 10−1 ω = 1 ω = 10 ω = 100

IT CPU IT CPU IT CPU IT CPU IT CPU

PBD

10−2 12 3.8865 12 4.0014 14 4.8745 16 5.3181 16 5.8238
10−4 16 5.0045 16 5.2044 16 5.3404 16 5.3438 20 6.8909
10−6 15 4.8586 15 4.9940 15 5.0187 14 4.7922 14 4.8349
10−8 15 4.8220 15 5.1933 15 5.0183 15 5.1233 15 5.2811

EI-GMRES

10−2 33 8.5808 34 9.4610 35 8.5315 44 9.6189 277 30.6406
10−4 219 23.6554 220 26.0373 227 23.1903 222 23.7048 293 27.4971
10−6 320 22.7231 321 19.7114 324 25.5421 346 22.8257 819 82.3304
10−8 31 1.1882 31 1.0294 32 1.0578 34 1.3804 35 1.1845

PTri

10−2 9 4.6557 10 5.2937 11 6.0840 13 5.0051 12 2.4285
10−4 10 2.3134 11 2.4929 12 2.2728 12 2.6970 14 2.6304
10−6 9 1.0883 9 1.1096 10 0.9939 10 0.9687 11 1.0648
10−8 7 0.6851 8 0.6855 8 0.6482 8 0.8094 9 0.7477

PStr

10−2 8 4.1514 8 4.1970 8 4.1532 11 4.1784 11 2.1912
10−4 9 1.7436 9 1.7654 9 1.8235 10 1.7920 12 1.5819
10−6 10 0.9174 10 0.9010 11 0.9029 11 0.9861 11 0.9318
10−8 9 0.5362 10 0.5933 10 0.6658 11 0.6811 11 0.7139

Table 6. IT and CPU of different methods with a mesh refinement degree of 2 (ε = 10−4).

Method β
ω = 10−2 ω = 10−1 ω = 1 ω = 10 ω = 100

IT CPU IT CPU IT CPU IT CPU IT CPU

PBD

10−2 12 4.2890 12 4.5644 14 4.6339 16 5.5704 16 5.4510
10−4 16 5.1801 16 5.3446 16 5.2663 16 5.4883 20 6.5576
10−6 15 4.7688 15 5.3357 15 5.0471 14 4.8455 14 5.0261
10−8 15 4.8160 15 5.2069 15 5.5848 15 4.9962 15 5.4429

EI-GMRES

10−2 33 7.9145 34 11.8086 34 8.2787 44 9.7776 277 29.8383
10−4 219 21.0878 220 21.8016 227 23.4309 222 22.0786 293 32.1779
10−6 320 18.9017 321 18.3263 324 25.5726 346 20.8813 819 80.4379
10−8 31 1.3566 31 1.4166 32 1.3717 34 1.4684 35 1.1625

PTri

10−2 9 4.8221 10 4.9119 11 5.4390 13 5.3903 12 2.5764
10−4 10 1.9896 11 2.4368 12 2.5581 12 2.6989 14 2.2606
10−6 9 0.9322 9 0.9472 10 1.0677 10 1.1115 11 1.2455
10−8 7 0.6920 8 0.7421 8 0.7528 8 0.7582 9 0.7885

PStr

10−2 8 4.2393 8 4.5281 8 4.3064 11 4.2991 11 2.0287
10−4 9 1.5311 9 1.7552 9 1.7384 10 1.8320 12 1.5949
10−6 10 0.8088 10 0.8456 11 0.9061 11 0.8727 11 0.8555
10−8 9 0.5540 10 0.5974 10 0.6033 11 0.6705 11 0.7197

In Tables 7 and 8, the iteration time and iteration steps of different tested methods are
shown with a mesh refinement degree of three in 3D.
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Table 7. IT and CPU of different methods with a mesh refinement degree of 3 (ε = 10−2).

Method β
ω = 10−2 ω = 10−1 ω = 1 ω = 10 ω = 100

IT CPU IT CPU IT CPU IT CPU IT CPU

PBD

10−2 12 81.8281 16 105.4884 16 109.9203 16 105.9849 20 134.6659
10−4 16 107.4442 16 105.4884 16 109.9203 16 105.9849 20 134.6659
10−6 15 97.8574 15 100.7715 15 99.6838 15 98.3083 16 103.6864
10−8 15 101.0590 15 97.1670 15 102.1359 15 96.2878 15 99.9818

EI-GMRES

10−2 32 133.6483 33 139.4299 34 141.4927 41 134.3916 264 369.5007
10−4 212 312.7996 213 294.7765 212 313.8426 207 297.1443 277 338.1885
10−6 1004 1114.7164 1005 1050.4192 1006 1531.9104 1008 1019.2132 1009 1035.8507
10−8 123 40.5372 123 38.3368 124 37.9307 125 39.3624 131 40.6898

PTri

10−2 9 53.9215 10 59.0182 11 62.5487 13 57.8992 12 26.1145
10−4 10 22.3395 11 24.1635 12 25.8925 12 25.1441 15 24.8410
10−6 9 8.5960 10 9.4512 11 10.1539 11 10.0147 12 10.8725
10−8 8 4.4818 8 4.3435 8 4.4833 9 4.8736 9 4.9703

PStr

10−2 8 53.3623 8 54.2410 8 53.8772 11 52.2347 11 24.5139
10−4 9 19.7767 9 19.9295 9 20.6046 10 21.6593 12 18.5826
10−6 10 8.5884 10 8.5899 11 9.4848 11 9.2194 11 9.4156
10−8 9 3.5892 10 4.0119 10 3.9536 11 4.2778 11 4.3012

Table 8. IT and CPU of different methods with a mesh refinement degree of 3 (ε = 10−4).

Method β
ω = 10−2 ω = 10−1 ω = 1 ω = 10 ω = 100

IT CPU IT CPU IT CPU IT CPU IT CPU

PBD

10−2 12 81.4266 13 86.6890 14 94.4300 18 116.0574 16 101.5482
10−4 16 104.3243 16 106.3716 16 109.3637 16 109.1431 20 137.9688
10−6 15 110.6812 15 104.7531 15 99.7118 15 98.5565 16 105.2505
10−8 15 113.4792 15 110.8891 15 104.3281 15 110.8320 15 111.7145

EI-GMRES

10−2 32 146.2052 33 140.7934 33 141.0543 41 133.7156 264 381.4948
10−4 212 309.2196 213 309.0034 212 311.9646 207 289.9215 278 332.9411
10−6 1004 1015.9542 1005 1006.3369 1006 1038.2084 1008 1012.9365 1009 1036.8108
10−8 123 37.8935 123 40.9428 124 39.3744 125 44.0573 131 43.2647

PTri

10−2 9 54.0646 10 59.5861 11 62.9363 13 57.6960 12 26.0438
10−4 10 22.0596 11 23.8576 12 26.0655 12 25.7485 15 25.0688
10−6 9 8.7380 10 9.4483 11 10.2397 11 10.2184 12 10.7271
10−8 8 4.4882 8 4.4240 8 4.4115 9 4.9650 9 4.8197

PStr

10−2 8 53.7306 8 53.8112 8 53.8167 11 52.1213 11 23.9081
10−4 9 19.4848 9 20.0403 9 20.1023 10 21.9683 12 19.1874
10−6 10 8.6292 10 8.5744 11 9.3201 11 9.1705 11 8.8240
10−8 9 3.5368 10 3.8886 10 4.2097 11 4.3156 11 4.4294

Based on Tables 1–8, we can draw the following conclusions:

• With the increase in mesh refinement degree and matrix dimension, preconditioners
PTri and PStr reduce the iteration steps and shorten the iteration time compared with
preconditioner PBD and the EI-GMRES algorithm.

• The algorithm is robust. Preconditioners PTri and PStr still have better numerical
performance as parameters β and ω change.

• As parameter β decreases and tends to zero, the iteration time of preconditioners PTri
and PStr also decreases. It shows that the assumption that β tends to zero is reasonable.

Finally, the eigenvalue distribution images of P−1
Tri A and P−1

StrA are given. Here, the case
where the mesh refinement degree is one and ε = 10−2 in 3D was tested.
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In Figure 1, the eigenvalue distribution image of preconditioned matrix P−1
Tri A with

ε = 10−2 is displayed.

Figure 1. Eigenvalue distribution of preconditioned matrix P−1
Tri A.

In Figure 2, the eigenvalue distribution image of preconditioned matrix P−1
StrA with

ε = 10−2 is shown.
According to Figures 1 and 2, the eigenvalues of the preconditioned matrices P−1

Tri A
and P−1

StrA are closer to one for smaller β’s. This partly explains the reason for the shorter
iteration time for smaller β’s in the numerical calculations. As seen from Figures 1 and 2,
all the eigenvalues of the preconditioned matrices are indeed located in the interval

[
1
2 , 1

]
,

which is consistent with our spectral analyses in Sections 4 and 5.

Figure 2. Eigenvalue distribution of preconditioned matrix P−1
StrA.

7. Conclusions

The purpose of this paper was to construct and analyze the block-triangular precon-
ditioner and structured preconditioner of the discrete linear system of the time-harmonic
eddy-current optimal control problem. It was proved that the eigenvalues of their cor-
responding preconditioned matrices were all located in the interval

[
1
2 , 1

]
. Numerical
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experiments showed that both newly proposed algorithms were robust to the parameters
involved in the problem and ran faster than some existing algorithms.

In the future, an extension of our work is to apply new block-triangular preconditioners
and structured preconditioners to solve other problems arising in practice, such as the
optimal control problem involving the heat equation in [15]. We can further apply this
method to compute additional Hermitian operators, addressing problems as referenced
in [32]. In addition, we can try to use the newly proposed preconditioners to solve more
general algebraic problems with non-Hermite matrices, etc.
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