
Citation: Geenens, G. (Re-)Reading

Sklar (1959)—A Personal View on

Sklar’s Theorem. Mathematics 2024, 12,

380. https://doi.org/10.3390/

math12030380

Academic Editor: Takeshi Emura

Received: 26 December 2023

Revised: 14 January 2024

Accepted: 15 January 2024

Published: 24 January 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Communication

(Re-)Reading Sklar (1959)—A Personal View on Sklar’s Theorem
Gery Geenens

School of Mathematics and Statistics, UNSW Sydney, Kensington, Sydney, NSW 2052, Australia;
ggeenens@unsw.edu.au

Abstract: In this short communication, I share some personal thoughts on Sklar’s theorem and
copulas after reading the original paper (Sklar, 1959) in French. After providing a literal translation
of Sklar’s original statements, I argue that the modern version of ‘Sklar’s theorem’ given in most
references has a slightly different emphasis, which may lead to subtly different interpretations. In
particular, with no reference to the subcopula, modern ‘Sklar’s theorem’ does not provide the clues
to fully appreciate when the copula representation of a distribution may form a valid basis for
dependence modelling and when it may not.
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1. Introduction

In probability and statistics, copula methods have become ubiquitous when it comes to
analysing, modelling and quantifying the dependence between variables; Genest et al. [1]
provides a comprehensive up-to-date literature review on copula methods for approaching
dependence in a variety of statistical settings. Systematically, any written (research paper)
or verbal (conference talk) communication about copulas starts with a statement of the so-
called ‘Sklar’s theorem’, establishing the existence of a copula for any multivariate probability
distribution. After defining a d-dimensional copula (d ∈ N) as a continuous cumulative
distribution function supported on the unit hypercube [0, 1]d with uniform marginals,
the theorem is typically stated under a form equivalent to the following:

Theorem 0 (‘Sklar’s theorem’).

1. Let F1...d be a d-dimensional (d ∈ N) distribution function with marginals F1, . . . , Fd. Then,
(i) there exists a d-dimensional copula C such that

F1...d(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (1)

for all (x1, . . . , xd) ∈ Rd
; (ii) if each Fk (k = 1, . . . , d) is continuous, then C is unique;

otherwise, C is uniquely determined on
Śd

k=1 Ran Fk, where Ran Fk = {t ∈ [0, 1] : ∃x ∈
R s.t. Fk(x) = t}.

2. Conversely, if C is a d-dimensional copula and F1, . . . , Fd are univariate distribution functions,
then the function F1...d defined via (1) is a d-dimensional distribution function with marginals
F1, . . . , Fd.

(Here, R denotes the extended real line [−∞, ∞]). This is the theorem as it is stated in
Theorem 5.3 in McNeil et al. [2] and (for d = 2) in Theorem 2.3.3 in Nelsen [3]. Statements in
other main references on copulas, such as Theorem 1.1 in Joe [4], Theorem 2.2.1 in Durante
and Sempi [5] or Theorem 2.3.1 in Hofert et al. [6], differ only slightly. The reference
provided is invariably Sklar [7].
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Now, not long ago, in the discussion following a seminar on copulas that I attended,
the speaker argued that Sklar [7] was certainly the most cited unread statistical paper.
The argument holds water if we put into perspective the facts that (i) Sklar [7] is referenced
each time copulas are introduced, leading to a huge number of citations (close to 11,000 at
the time of writing, according to Google Scholar); and (ii) it is an ‘old’ paper in French, which
was difficult to access for a long time, even after it was republished [8]. Thus, as Theorem 0
above is found (in English) in a multitude of other easily accessible sources, it may be
reasonably conjectured that only a minor fraction of the authors citing Sklar [7] put in the
effort to access and read the original text.

Admittedly, I was not part of that minor fraction until recently, and Theorem 0 was
reported as is in Geenens et al. [9] and Geenens [10], with reference to [7] (which is very
bad practice, for that matter). However, the previously mentioned discussion prompted
me to read the original paper in French, only to find out that [7] does not contain any such
‘Sklar’s theorem’ under the above form—making the wider community aware of this fact
may be the only purpose of this short note.

2. Sklar’s Statements

In fact, the paper [7] comprises five theorems, among which three (Théorème 1, Théorème
2 and Théorème 3), when combined, allow one to reconstruct and/or deduce Theorem 0.
For convenience, we translate (bearing in mind that ‘traduire c’est trahir’—‘translating is
betraying’—as my high-school English teacher used to say. Ironically, the statements in [7]
were themselves, presumably, French translations of Sklar’s initial thoughts, making all
this an interesting instance of the ‘broken telephone game’) here in English Sklar [7]’s
Théorème 1, Théorème 2 and Théorème 3, as well as the definition of a copula appearing
in the sequence (Définition 1). (The notations and footnotes are original from [7]. The
three Théorèmes and the Définition appear in this order. Nothing is omitted between the
statements, given without proofs).

Théorème 1. Let Gn be an n-dimensional cumulative distribution function with margins F1, F2, . . . , Fn.
Let Rk be the set of values of Fk, for k = 1, . . . , n. Then there exists a unique function Hn defined on
the Cartesian product R1 × R2 × . . . Rn and such that

Gn(x1, . . . , xn) = Hn(F1(x1), F2(x2), . . . , Fn(xn)).

Définition 1. We call (n-dimensional) copula any function Cn, continuous, non-decreasing (in the
sense of an n-dimensional cumulative distribution function), defined on the Cartesian product of n
closed intervals [0, 1] and satisfying the conditions:

Cn(0, 0, . . . , 0) = 0, Cn(1, . . . , 1, α, 1, . . . , 1) = α.

(Special cases of such functions were considered in [11])

Théorème 2. The function Hn of Théorème 1 can be extended (in general, in more than one way)
into a copula Cn. An extension of Hn, the copula Cn satisfies the condition:

Gn(x1, . . . , xn) = Cn(F1(x1), F2(x2), . . . , Fn(xn)).

Théorème 3. Let be given univariate cumulative distribution functions F1, F2, . . . , Fn. Let Cn be
an arbitrary n-dimensional copula. Then the function Gn defined as

Gn(x1, . . . , xn) = Cn(F1(x1), F2(x2), . . . , Fn(xn))

is an n-dimensional cumulative distribution function with margins F1, F2, . . . , Fn.
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Théorème 1 establishes the existence and uniqueness of the function that would later be called
subcopula – Sklar [7] did not use that word, not introduced before (Definition 3, Schweizer
and Sklar [12]). This subcopula, denoted H below to stay consistent with Théorème 1, is
defined only on the ‘Cartesian product of the sets of values of Fk’, that is,

Śd
k=1 Ran Fk in

the notation of Theorem 0, and satisfies

F1...d(x1, . . . , xd) = H(F1(x1), . . . , Fd(xd)) ∀(x1, . . . , xd) ∈ Rd
. (2)

Although no details are given, Théorème 2 states that the unique subcopula satisfying (2) may
be extended ‘in general, in more than one way’ beyond

Śd
k=1 Ran Fk into a function defined

on the whole of the unit hypercube [0, 1]d and satisfying Définition 1, such a function being
called a copula. In other words, there exists at least one copula C coinciding exactly with
the subcopula on

Śd
k=1 Ran Fk:

C(u1, . . . , ud) = H(u1, . . . , ud) ∀(u1, . . . , ud) ∈
ąd

k=1
Ran Fk. (3)

Then, (1) follows immediately from (2) and (3). Evidently, the values taken by any such
copula C outside

Śd
k=1 Ran Fk are totally irrelevant, as they do not even appear in (1). All

in all, Théorème 2 is akin to part 1(i) of Theorem 0, while, clearly, Théorème 3 is its part 2.
What about part 1(ii)? Sklar [7] does not make any specific mention of the uniqueness

of the copula in the continuous case. Rather the contrary, Théorème 2 is stated with an
explicit note about the non-uniqueness of the copula in general. Naturally, for a continuous
univariate distribution Fk, Ran Fk ≡ [0, 1], thus if each Fk (k = 1, . . . , d) is continuous, then
Śd

k=1 Ran Fk ≡ [0, 1]d. In that case, (3) implies that the subcopula is a copula, and since there
is no room for arbitrary extension, any copula C satisfying (1) must be that same subcopula,
making such C unique. Hence, part 1(ii) follows from Théorèmes 1 and 2 and is not an add-on
stricto sensu, but this was apparently not an essential point to make for Sklar [7].

This illustrates that Theorem 0 should not be regarded as just a concise re-statement of
the sequence Théorèmes 1–3. The substance may be equivalent, but the form is not exactly
the same, and this may lead to subtly different readings and interpretations. I outline my
thoughts on this below.

3. Some Personal Comments

What is notable is that, although Sklar [7] gives a prominent place to the subcopula—
with Théorème 1 explicitly devoted to it—it has totally disappeared from the ‘modern’
statement (Theorem 0), largely consigning it to oblivion. Indeed, in the above classical
references, either the subcopula is introduced only in the technical lemmas leading to
Theorem 0 (Lemma 2.3.4 in [3]; Lemma 2.3.3 in [5]), or it is not mentioned at all [2,4,6].
However, it is clear that the only informative part of the copula is the underlying subcopula;
therefore, understanding completely the whys and wherefores of (1) seems conditional on
the proper recognition of the role played by H. It is my opinion that short-circuiting the
subcopula step, as in Theorem 0, induces overemphasis on the copula(s) C and, ultimately,
unwarranted exploitation of (1) when C ̸= H. This is especially the case when it comes to
analysing or modelling dependence, which is the main—if not only—application of Sklar’s
theorem in statistics.

Remarkably, Theorem 0 does not make any reference to dependence; (1) is merely an
analytical result providing an alternative representation of F1...d which may or may not be
of any relevance. It is really the interpretation which we are willing to make of it which
brings in the concept of dependence and relates it to copulas. Effectively, it appears from
(1) that C is to capture how the marginals F1, . . . , Fd interlock inside F1...d, which it seems
fair to call the ‘dependence structure’. This explains why, early on, copulas were called
‘dependence functions’, e.g., in (Definition 5.2.1, Galambos [13]) and Deheuvels [14,15].

However, for playing with the dependence structure of F1...d, the subcopula H is the
only function worth examining: it always exists, it is always unique, and it always describes
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unequivocally, through (2), how to reconstruct F1...d from the marginals F1, . . . , Fd. Thus,
with Théorème 1 in hand, it is not clear what the added value of the copula extension
promised by Théorème 2 is—that same extension (1) implicitly but exclusively put forward
by Theorem 0. This said, the fact that the subcopula H contains all necessary information for
describing the dependence in F1...d does not imply that it is, in itself, a valid representation
of that dependence. Indeed, defined on

Śd
k=1 Ran Fk, the subcopula is, in general, not a

stand-alone element which can be handled and analysed without reference to marginal
distributions, and, therefore, cannot isolate a dependence structure as such. In fact, H must
adjust to F1, . . . , Fd by definition—again, in general.

It so happens that, when all the marginal distributions are continuous, the subcopula
takes a very specific form which is invariably a d-variate distribution function with continu-
ous uniform margins on [0, 1]—this follows straightforwardly from the standard results on
functions of random variables applied to (2), particularly the Probability Integral Transform
(PIT) (if Xk is a continuous variable with cumulative distribution Fk, then Fk(Xk) ∼ U[0,1]
always). In this case, the subcopula is a copula as per Définition 1, so H ≡ C (and (1) ≡ (2))
as observed above, but even more importantly this (sub)copula is ‘marginal-distribution-
free’ (where ‘distribution-free’ is taken in the sense of [16]: free of the parent distribution.
Thus, more specifically here, ‘marginal-distribution-free’, or ‘margin-free’, means free of the
marginal distributions of the parent distribution F1...d), also called ‘margin-free’. Unbound from
any marginal interference, the (sub)copula can now be genuinely understood as capturing
the heart of F1...d, that is, its dependence structure. The representation (1) is then particularly
appealing, as it provides an explicit breakdown of a joint distribution into the individual
behaviour of the variables of interest (captured by F1, . . . , Fd) on one hand, and their inter-
dependence structure (captured by C) on the other, with no overlap/redundancy between
the two. The entire copula methodology for dependence modelling developed around this
neat decomposition and its desirable consequences.

It cannot be stressed enough, though, that this pleasant situation only follows as a
corollary of two favourable events which occur concurrently when and only when all the
variables involved are continuous: first, the copula appearing in (1) is the subcopula,
and second, that subcopula is margin-free. In all other non-continuous situations, any
copula C satisfying (1) is nothing more than an arbitrary extension of the subcopula H in (2),
which itself is not a satisfactory representation of the dependence of F1...d as it is not margin-
free. The suitability of (1) for analysing and/or modelling dependence becomes, then,
highly questionable. In effect, the validity of any attempt at dependence modelling based
on the typical interpretation of (1) as a clear-cut decomposition ‘marginals vs. dependence’,
is critically contingent on the continuity of all the variables—as a matter of fact, the early
references which linked copulas to dependence through (1) [14,17,18], always considered
continuous marginal distributions exclusively.

Yet, without any reference to the subcopula, the usual statement of ‘Sklar’s theorem’,
as in Theorem 0, does not provide the clues to appreciate this. I questioned above the real
benefit of the extension promised by Théorème 2 when we have Théorème 1. The question
may be rephrased as: why did (1) become the universal baseline, in lieu of (2)? The
only reason I see is that, since a copula is always a distribution supported on [0, 1]d with
standard uniform margins by definition, the function C in (1) appears as a standard familiar
object (a cumulative distribution function) enjoying a nice invariance property (specifically:
known marginals), as opposed to the function H in (2), whose exact nature is undefined
and its specification requiring knowledge of

Śd
k=1 Ran Fk. Yet, such invariance of C may

only be granted in continuous cases (but then H enjoys the same desirable property,
anyway), otherwise it is mostly a lure. In fact, the definition of C makes it into a blanket
which conceals the fact that, ‘underneath’, its anchor points are fixed by H via (3). That
the gaps between the nodes of

Śd
k=1 Ran Fk may be filled in such a way that C maintains

uniform margins is actually little more than an analytical artefact of no obvious relevance.
Worse still, allowing those gaps to be filled may actually create more confusion than clarity
and be misleading, as illustrated in Example 1 below.
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What adds to the blur is part 1(ii) explicitly contrasting the continuous and non-
continuous cases in terms of the (non-)uniqueness of the copula C in (1). This may give
the feeling that this is the only notable difference between the two situations, and may
consequently divert attention from other questions. Indeed, the lack of uniqueness of C
and the ensuing problems of model unidentifiability have often been presented as the main
hurdle for the practical use of copula methods outside the continuous framework, and have
consequently been abundantly commented on [10,19–22]. In my current view, though,
the only consequential difference between continuous and non-continuous cases is that the
(sub)copula is margin-free in the former, and not in the latter—and this seems to have been
much less frequently pinpointed as a problem on its own.

What has been discussed is all the ‘little annoyances’ which follow directly from this,
e.g., the fact that copula-based dependence measures, such as Kendall’s τ or Spearman’s
ρ, depend on the margins in non-continuous settings ([23], Section 4 in [19]). Yet, these
are only consequences of the lack of margin-freeness of C which, in itself, appears to me
as the real predicament; in effect, we are losing the very reason-of-being of the copula
approach, which is precisely its power to dissociate marginal behaviour and dependence
structure via (1). For example, (Section 1.6, Joe [4]) motivates resorting to copulas over
alternative multivariate models as follows: “(...) the copula approach has an advantage of
having univariate margins of different types and the dependence structure can be modeled separately
from univariate margins”. Yet, outside the continuous framework, this alleged separation
between dependence structure and margins is clearly violated. All in all, it seems that
copula methods applied to non-continuous distributions miss their own point entirely.

It is, therefore, my opinion that copula-like methods for analysing, modelling and
quantifying dependence in non-continuous multivariate distributions should not be based
on (1). I elaborated on this in [10], and proposed an alternative approach for discrete
distributions. In a nutshell, the idea is to extract the information about dependence from
the subcopula, and to reshape it under the form of a distribution with (discrete) uniform
margins—hence ‘margin-free’—in order to define a discrete copula. A simple situation is
explored below to illustrate the previous points.

Example 1. Let (X1, X2) be a bivariate Bernoulli vector; that is, for p1•, p•1 ∈ (0, 1), X1 ∼
Bern(p1•), X2 ∼ Bern(p•1) and the joint distribution p—i.e., P(X1 = x1, X2 = x2), (x1, x2) ∈
{0, 1}2—are described by a (2 × 2) table:

X2/X1 0 1

0 p00 p01 p0•
1 p10 p11 p1•

p•0 p•1 1

, (4)

where pxy = P(X = x, Y = y) > 0, px• = px0 + px1 and p•y = p0y + p1y (x, y ∈ {0, 1}).
As ∑ pxy = 1, there are initially three free parameters for p. Once the marginal values p1• and p•1
are fixed, only one free parameter is left, the one describing the dependence inside p—cf., the χ2-test
for independence which articulates around one degree of freedom in this case. If the dependence
parameter is to be ‘margin-free’, it must be (any one-to-one function of) the odds-ratio

ω =
p00 p11

p10 p01

([24], Theorem 6.3 in [25]). It is thus fair to identify the dependence structure to the value of ω in
this case—see Section 4.3.1 of Geenens [26] for a thorough discussion.

For this (obviously non-continuous) distribution, Ran F1 × Ran F2 = {0, 1 − p1•, 1} ×
{0, 1 − p•1, 1}. Any copula C satisfying (1) may thus solely be identified on this (3 × 3) grid.
In fact, as any copula is fixed along the sides of [0, 1]2 (uniform margins; ∀u ∈ [0, 1], C(0, u) =
C(u, 0) = 0, C(1, u) = C(u, 1) = u), out of these 9 values only the ‘internal’ C(1 − p1•, 1 − p•1)
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is informative (in agreement with the above, only one parameter may describe the dependence). Thus,
Sklar’s representation (1) here reduces down to a single identity

p00 = C(1 − p1•, 1 − p•1). (5)

For set values p1•, p•1, this is, indeed, enough to identify by substitution the other values p01, p10
and p11—hence, the whole distribution p. The odds ratio can then be written

ω
.
= ωC(p1•, p•1) =

C(1 − p1•, 1 − p•1)(C(1 − p1•, 1 − p•1) + p1• + p•1 − 1)
(1 − p1• − C(1 − p1•, 1 − p•1))(1 − p•1 − C(1 − p1•, 1 − p•1))

. (6)

For a given copula C, this is a continuous function of (p1•, p•1) ∈ (0, 1)2; if we vary (p1•, p•1),
ωC(p1•, p•1) generally changes accordingly. In fact, the only copula C guaranteeing ωC(p1•, p•1)
to be constant in p1• and p•1 is the Plackett copula, which was precisely designed for that
purpose [27]. Thus, we may easily construct two bivariate Bernoulli distributions using the same
copula C in (1)/(5), but showing very different dependence structures for different pairs of marginal
parameters (p1•, p•1). Example 1.1 in Marshall [23] provides a compelling illustration of this.
Clearly, it is not sensible to equate copulas and dependence structures here.

Owing to (3), we can directly write (5) and (6) in terms of the unique subcopula H of p as well:

p00 = H(1 − p1•, 1 − p•1), (7)

ω
.
= ωH(1−p1• ,1−p•1) =

H(1 − p1•, 1 − p•1)(H(1 − p1•, 1 − p•1) + p1• + p•1 − 1)
(1 − p1• − H(1 − p1•, 1 − p•1))(1 − p•1 − H(1 − p1•, 1 − p•1))

. (8)

A subtle but consequential difference between (6) and (8), which justifies the different notations
ωC(p1•, p•1) and ωH(1−p1• ,1−p•1)

, is that, unlike C, H is not defined elsewhere in the interior of
[0, 1]2 than at (1 − p1•, 1 − p•1). Thus, the idea of ‘varying the marginal parameters while keeping
the same subcopula’ is groundless—if we were to amend the margins, we would have to consider
another subcopula entirely, by definition. As opposed to (6), (8) makes it clear that the dependence
structure (odds-ratio) induced by (5)/(7) is only meaningful when considering the given marginals.
In fact, both H and C are margin-dependent to the exact same extent, but the ‘blanket’ nature of
copulas, which cover the whole [0, 1]2 and always have uniform marginals, may give the dangerously
comfortable feeling that it is not the case for C.

In order to represent the dependence structure of p in a margin-free way, and therefore mimic,
at best, the definition of copulas in continuous settings, we may wish to exhibit the bivariate
Bernoulli distribution with the same odds-ratio as p, but with Bern(1/2)-marginal distributions,
i.e., uninformative uniform marginals in the class of Bernoulli distributions. It is a simple algebraic
exercise to show that, for a given ω > 0,

U2/U1 0 1

0 1
2

√
ω

1+
√

ω
1
2

1
1+

√
ω

1/2

1 1
2

1
1+

√
ω

1
2

√
ω

1+
√

ω
1/2

1/2 1/2 1

(9)

is such a distribution, and it is unique. This is what was called the ‘Bernoulli copula’ in Section 5
in Geenens [10]. Although evidently not a ‘copula’ according to Sklar [7]’s classical meaning—and
not an element appearing in (1)/(5)—this Bernoulli copula enjoys all the pleasant properties which
make copulas successful in continuous cases. For example, its associated correlation coefficient is
a margin-free discrete analogue of Spearman’s ρ (Section 5.5 in [10])—which happens to be the
correlation coefficient associated with the unique copula C of a continuous vector.
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