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Abstract: This note introduces a new class of preinvexity called (h1, h2)-Godunova-Levin preinvex
functions that generalize earlier findings. Based on these notions, we developed Hermite-Hadamard,
weighted Fejér, and trapezium type inequalities. Furthermore, we constructed some non-trivial
examples in order to verify all the developed results. In addition, we discussed some applications
related to the trapezoidal formula, probability density functions, special functions and special means.
Lastly, we discussed the importance of order relations and left two open problems for future research.
As an additional benefit, we believe that the present work can provide a strong catalyst for enhancing
similar existing literature.
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1. Introduction

Convexity is important in optimization, and many optimization problems can be for-
mulated and solved using convex function and convex set properties. Here are some of the
most important applications of convexity in optimization: These days, convex optimization is
essential to many deep learning algorithms, including logistic regression and neural network
training (see ref. [1]). Utility theory relies heavily on convexity since convex utility functions
are frequently used to represent preferences (see ref. [2]). Furthermore, cooperative games
fall under the category of convex games. This idea is used to analyse and model cooperation
amongst logical decision makers (see ref. [3]). For more information on some other recent
developments in other disciplines, see refs. [4–6].

A relaxation of some of the strict conditions imposed by convex sets and functions is
known as generalized convexity, which is an extension of classical convexity. To accom-
modate a wider class of functions and sets, some modifications or generalizations of the
convexity concept are introduced in generalized convexity. The following are some features
and uses of generalised convexity: log-convex, p-convex, h-convex, preinvexity, Godunova–
Levin, exponentially convex, harmonic convex, and many others (see refs. [7–13]). As a
result of these different classes, various authors developed the following double inequality
for convex function in different perspectives, and it is the most crucial factor in optimiza-
tion [14].
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V

(
a+ b

2

)
≤ 1

b− a

∫ b

a
V(β) dβ ≤ V(a) +V(b)

2
. (1)

It is clear from the extensive study of generalizations and variants of the Hermite–
Hadamard inequality, as well as its extensive application in multiple fields, that this
result carries a great deal of mathematical significance [15]. In the realm of mathematical
optimization, the notion of invex functions is an intriguing advancement. Due to their
properties, these functions are useful in many mathematical models and are appropriate for
use in optimization problems. First, Hanson [16] introduced and studied invex functions,
a more generalised class of convex mappings, and talked about some of their fascinating
characteristics. In [17], the authors minimized the objective function by using preinvex
mappings in multiobjective optimization. According to Suneja et al. [18], b-preinvex
functions are generalizations of classical preinvex and b-vex functions. Drawing inspiration
from this work, Noor first proposed the concept of h-preinvex mapping [19]. Later, in
2018, Awan proposed the concept of (h1, h2)-convex functions and created a new, more
generalized version of the well-known double inequality [20].

Let V : [a, b] → R. Consider V be h-G.L-preinvex mappings, and h
(

1
2

)
̸= 0; then, the

following double inequality holds [21]:

h
(

1
2

)
2

V

(
2a+ ς(b, a)

2

)
≤ 1

ς(b, a)

∫ a+ς(b,a)

a
V(ϱ) dϱ ≤

∫ 1

0

dy

h(y)
.

A set-valued analysis is a useful tool for dealing with uncertainties and errors in
data and computations. An interval-valued integral inequality is used to study functions
with outputs determined by intervals rather than sets of arbitrary shapes. Initially, in
1993 Wolfgang [22], developed the continuity of generalized convex mapping through
set-valued mappings. In [23], the authors linked famous double inequalities in the settings
of interval-valued functions (I.V.F.S) using (h1, h2)-convex mappings, and demonstrated
that our result becomes more general when our interval is degenerated. By utilizing the
idea of preinvex functions and the fractional integral via interval-valued functions, the
authors in [24] developed the well-known double inequality along with several new varia-
tions. Liu used the idea of strongly preinvex type functions on fuzzy invex sets and used
differentiability to look into some of its properties [25]. Kalsoom et al. [26] developed some
new generalized forms of double inequalities on coordinates with two types of preinvex
mappings by using quantum integrals. By using conformable fractional integrals with
various integral identities, Khurshid and his co-workers proposed a Hermite–Hadamard–
Fejér inequality for symmetric preinvex mappings [27]. Barani developed the mean value
inequality in invexity analysis by utilizing the concept of Cartan–Hadamard manifolds and
explained its significant characteristics [28]. Nasir et al. [29] developed some Ostrowski-
type results using a fractional approach by using preinvex functions via second derivatives.
In [30], the authors developed new variants of double inequalities based on preinvex func-
tions on a real plane. As a result of using preinvex mappings in fractal space, Yu et al. [31]
found error bounds on parameterized integral inequalities. In [32], the authors created a
number of inequalities connected to these developed results by using fractional integral
utilizing interval mapping via generalized (h1, h2)-preinvex functions. Zhou et al. [33]
employed the pre-invex exponential type definition in the context of interval-valued map-
ping through fractional integrals, yielding several findings associated with these. Khan
et al. [34] generalized a number of results pertaining to these developed results using
the concept of U-d preinvex mappings via fractional operator in the fuzzy environment.
Afzal et al. [35] employed the midpoint and center radius interval order relations through
set-valued mappings, and derived several conclusions via harmonical (h1, h2)–Godunova–
Levin. In [36], the concept of (s, m, φ)-type functions was used to develop a number of
novel double inequalities with some intriguing characteristics. Regarding a few additional
recent developments concerning developed outcomes, see [37].
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Novelty and Significance

This study is novel and significant because we introduce a more generalized class for
the first time, referred to as (h1, h2)–Godunova–Levin preinvex functions, which generalize
the results of authors mentioned in abstract as well as unify various other results by using
different sets of non-negative arbitrary functions and bifunctions ς. Futhermore, we have
found error bounds of the trapezoidal formula using standard as well as Kulisch- and
Miranke-type order relations. In addition, we found error bounds for trapezoidal-type
formulas in a set-valued setting for the first time in the literature, and the result generalizes
when the interval is degenerated. The application of preinvexity to special means and
random variables also lends an interesting note to researchers through this novel class
of preinvexity.

The rich literature on developed results, and specifically [21,38], motivated us to create
new extensions, improved forms of Hermite–Hadamard, trapezium, and weighted forms
of Fejér-type results, as well as applications spanning a wide range of areas using this new
class of preinvex functions. This article follows the following structure. In Section 2, first
of all, we recall some known definitions and interval calculus results that are necessary to
progress. Next, we developed some improved forms of Hermite–Hadamard and Fejér-type
results that generalize various previous findings in Section 3. In Section 4, we apply some
novel results to numerical quadrature rules and applications to special means involving
set-valued mappings. In Section 5, we include a discussion on the developed results and
conclusions with some future recommendations.

2. Preliminaries

We now define some existing definitions and results that may lend support to the
main findings presented in the article. Let Θ ⊂ R, and ς(·, ·) : Θ × Θ −→ R is a bifunction.

Definition 1 (see [39]). A set Θ is considered to be invex with reference to the bifunction ς(·, ·), iff

a+ yς(b, a) ∈ Θ,

for all a, b ∈ Θ, and y ∈ [0, 1].

Example 1. Let Θ = [−4,−3] ∪ [−2, 3] be considered to be invex with reference to bifunction
ς(·, ·) and defined as:

ς(a, b) =


a− b if 3 ≥ a ≥ −2, 3 ≥ b ≥ −1;
a− b if − 4 ≤ a ≤ −3,−4 ≤ b ≤ −3;
−4 − b if − 2 ≤ a ≤ 3,−4 ≤ b ≤ −2;
−2 − b if − 4 ≤ a ≤ −3,−2 ≤ b ≤ 3.

Example 2. Let Θ =
[−π

2 , 0
)
∪
(
0, π

2
]
,

ς(a, b) =


cos(a− b), 0 < b ≤ π

2 , 0 < a ≤ π
2 ;

− cos(a− b), −π
2 ≤ b < 0, −π

2 ≤ a < 0;
cos b, 0 < b ≤ π

2 , −π
2 ≤ a < 0;

− cos b, −π
2 ≤ b < 0, 0 < a ≤ π

2 .

Then, in both examples, Θ is considered to be invex with reference to bifunction ς(·, ·). In
contrast, Θ is not convex.

Definition 2 (see [39]). Consider Θ be invex with reference to bifunction ς(·, ·). A mappping
V : Θ → R is known as preinvex with reference to ς if

V(a+ yς(b, a)) ≤ yV(b) + (1 − y) V(a),
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for all a, b ∈ Θ, and y ∈ [0, 1].

Example 3. The function V(ρ) = 1−|2ρ−1|
2 , (ρ ∈ R), in light of the following

η(a, b) =



2(a− b), b ≥ 1
2 , a ≥ 1

2 , a ≥ b,
0, b > 1

2 , a ≥ 1
2 , a < b,

0, b < 1
2 , a ≤ 1

2 , a > b,
a− b, b ≤ 1

2 , a ≤ 1
2 , a ≤ b,

1 − a− b, b < 1
2 , a > 1

2 , a+ b ≥ 1,
0, b < 1

2 , a > 1
2 , a+ b ≤ 1,

0, b > 1
2 , a < 1

2 , a+ b ≥ 1,
1 − a− b, b > 1

2 , a < 1
2 , a+ b ≤ 1,

is considered to be a preinvex mapping on R, while not being convex in general.

Definition 3 (see [19]). Consider Θ to be a invex with reference to bifunction ς(·, ·). A mapping
V : Θ → R is known as G.L preinvex with respect to ς if

V(a+ yς(b, a)) ≤ V(b)

y
+

V(a)

(1 − y)
,

for all a, b ∈ Θ, and y ∈ (0, 1).

Definition 4 (see [19]). Consider Θ be invex with reference to bifunction ς(·, ·), and h : (0, 1) →
(0, ∞), where h ̸= 0. A mapping V : Θ → R is known as h-preinvex with reference to ς if

V(a+ yς(b, a)) ≤ h(y)V(b) + h(1 − y) V(a),

for all a, b ∈ Θ, and y ∈ [0, 1].

Definition 5 (see [19]). Consider Θ to be invex with reference to bifunction ς(·, ·), and h :
(0, 1) → (0, ∞), where h ̸= 0. A mapping V : Θ → R is known as h-G.L preinvex with reference
to ς if

V(a+ yς(b, a)) ≤ V(b)

h(y)
+

V(a)

h(1 − y)
,

for all a, b ∈ Θ, and y ∈ (0, 1).

Remark 1. A note should be made to the effect that not all Godunova–Levin functions belong to
the class of h-Godunova–Levin or h-convex functions, and this inconvenience can be avoided by
omitting the assumption that V is positive (see ref. [40]).

Definition 6 (see [32]). Let Θ ⊂ Rn be an invex set with reference to ς(·, ·). For all a, b ∈ Θ and
y ∈ [0, 1], we have

ς(b, b+ y ς(a, b)) = −y ς(a, b) (2)

and
ς(a, b+ y ς(a, b)) = (1 − y) ς(a, b). (3)

for all a, b ∈ Θ and y1, y2 ∈ [0, 1]. This is often called Condition C, that is

ς(b+ y2 ς(a, b), b+ y1ς(a, b)) = (y2 − y1)ς(a, b).

It was proven in [41] that if a differentiable mapping is invex on some set, it also meets
the assumptions of preinvex-type mappings under Condition C and the corresponding
bifunction. Note that the mapping “ς” in Example 1 is not defined on a convex set and that
“ς” still holds with regard to Condition C.
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There are vector-valued mappings that meet Condition C. For instance, consider
Θ = R− {0} and

ς(a, b) =


a− b if a ≥ 0, b ≥ 0
a− b if a ≤ 0, b ≤ 0
−b otherwise

It is clear from the above that Θ is an invex set and that ς satisfies Condition C.

2.1. Interval Operations

Consider MC be the pack of all compact subsets of R in one-dimensional Euclidean
space, that is,

MC = {[ρx, ηx] : ρx, ηx ∈ R and ρx ≤ ηx},

The Hausdorff metric on MC is defined as

H(ρ, η) = sup{d(ρ, η), d(η, ρ)}, (4)

where d(ρ, η) = supa∈ρ d(a, η), and d(a, η) = minb∈η d(a, b) = minb∈η |a− b|.

Remark 2. A parallel representation of the Hausdorff metric, as stated in (4), is:

H([a, a], [b, b]) = sup{|a− b|, |a− b|},

which is referred to as the Moore metric in interval space.

As is commonly known, (MC,H) is a complete metric space. The following notations
are fixed throughout this paper:

• RI
+: positive intervals of R;

• RI
−: negative intervals of R;

• RI: all intervals of R.
• V = V: interval degenerated;
• ≤: standard order relation;
• ⊆KC : Kulisch and Miranker relations.

Now, we define the scalar multiplication and Minkowski sum on MC using

ρ + η = {a+ b | a ∈ ρ, b ∈ η} and γρ = {γa | a ∈ ρ}.

In addition, if ρ = [a, a] and η = [b, b] are two closed and bounded intervals, we
define the difference as follows:

ρ − η = [a− b, a− b],

with the product

ρ · η = [min{ab, ab, ab, ab}, sup{ab, ab, ab, ab}],

and the division
ρ

η
=

[
min

{
a

b
,
a

b
,
a

b
,
a

b

}
, sup

{
a

b
,
a

b
,
a

b
,
a

b

}]
,

whenever 0 /∈ η. The order relation "⊆KC " is defined as follows by Kulisch and Miranker
in [38]:

[a, a] ⊆KC [b, b] ⇔ b ≤ a and a ≤ b.
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Remark 3. We note that if [a, b], [c, d], and [e, f] are intervals with positive endpoints, then

[a, b] ≥ [e, f] ⇔ [a, b]
[c, d]

≥ [e, f]
[c, d]

,

[c, d] ≤ [e, f] ⇔ [a, b]
[c, d]

≥ [a, b]
[e, f]

.

Next, we will describe how interval-valued functions are defined, followed by how
these kinds of functions are integrated.

2.2. Integral of I.V.F.S

If M = [a, b] is a interval and Y : M → MC is an interval-valued mapping, then
one has

Y(ηo) = [s(ηo), s(ηo)],

where s(ηo) ≤ s(ηo),∀ηo ∈ M. The endpoints of function Y are denoted by the functions
s(ηo) and s(ηo), respectively. For I.V.F, it is clear that Y : M → MC is continuous at ηo ∈ M if

lim
η→ηo

Y(η) = Y(ηo),

where the limit is considered from the metric space (MC,H). Consequently, Y is continuous
at ηo ∈ M iff its terminal functions s(ηo) and s(ηo) are continuous at a given point.

Theorem 1 (see [35]). Let Y : [a, b] → RI be considered to be I.V.F, defined as Y(ηo) =
[Y(ηo),Y(ηo)]. Y ∈ IR([a,b]) iff Y(ηo),Y(ηo) ∈ R([a,b]) and

(IR)
∫ b

a
Y(ηo) dηo =

[
(R)

∫ b

a
Y(ηo) dηo, (R)

∫ b

a
Y(ηo) dηo

]
,

where R([a,b]) is considered to be the pack of all interval-valued integrable functions. If Y(ηo) ⊆
V(ηo) for all ηo ∈ [a, b], then the following holds:

(IR)
∫ b

a
Y(ηo) dηo ⊆ (IR)

∫ b

a
V(ηo) dηo.

Some Novel Definitions via Kulisch and Miranker Inclusion Relations

Here, we introduce some new types of preinvex mappings based on inclusion relations
for I.V.F.S, called (h1, h2)–Godunova–Levin preinvex functions, which generalize several
existing definitions and unify many previously published studies. In what follows, let
H(a, b) = h1(a)h2(b).

Definition 7. Let V : [a, b] be I.V.F given by V = [V,V]. Let h1, h2 : (0, 1) → (0, ∞) where
h1, h2 ̸= 0. Then, V defined on invex set Θ is known as (h1, h2)-G.L-preinvex with reference to ς if

V
(
a+ yς(b, a)

)
⊇KC

V(b)

H(y, 1 − y)
+

V(a)

H(1 − y, y)
,

for all a, b ∈ Θ and y ∈ (0, 1).

Remark 4.

• Setting h1(y) =
1
y , h2(y) = 1, Definition 7 becomes a preinvex function [32].

• Setting V = V and h1(y) = y, h2(y) = 1, Definition 7 reduces to a G.L-preinvex func-
tion [21].

• Setting ς(b, a) = b− a, V = V with h1(y) =
1

h1(y)
, h2(y) =

1
h2(y)

, Definition 7 becomes a
(h1, h2)-convex function [20].
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• Setting ς(b, a) = b − a with h1(y) = h(y), h2(y) = 1, Definition 7 becomes a h-G.L
function [42].

• Setting ς(b, a) = b− a with h1(y) = 1
h(y) , h2(y) = 1, Definition 7 becomes a h-convex

function [43].

3. Hermite–Hadamard-Type Inclusions for (h1,h2)–Godunova–Levin
Preinvex Mappings

The objective of this section is to developed several novel Hermite–Hadamard inclu-
sions for the (h1, h2)–Godunova–Levin–preinvex functions.

Theorem 2. Consider V : [a, a+ ς(b, a)] → RI to be (h1, h2)–Godunova–Levin preinvex interval-
valued mapping and hold the assumptions of Condition C. Then, one has[

H
(

1
2 , 1

2

)]
2

V

(
2a+ ς(b, a)

2

)
⊇KC

1
ς(b, a)

∫ a+ς(b,a)

a
V(ϱ) dϱ

⊇KC [V(a) +V(b)]
∫ 1

0

dy

H(y, 1 − y)
.

Proof. From the definition of (h1, h2)-G.L-preinvex functions, one has

V

(
2a+ ς(b, a)

2

)
⊇KC

1[
H
(

1
2 , 1

2

)] [V(a) +V(b)].

Choosing a = a+ yς(b, a) and b = a+ (1 − y)ς(b, a), we have

V

(
a+ yς(b, a) +

1
2

ς(a+ (1 − y)ς(b, a), a+ yς(b, a))
)

⊇KC
1[

H
(

1
2 , 1

2

)] [V(a+ yς(b, a)) +V(a+ (1 − y)ς(b, a))].

This implies[
H

(
1
2

,
1
2

)]
V

(
2a+ ς(b, a)

2

)
⊇KC [V(a+ yς(b, a)) +V(a+ (1 − y)ς(b, a))]. (5)

Integrating the aforementioned inclusion (5), we obtain[
H

(
1
2

,
1
2

)]
V

(
2a+ ς(b, a)

2

)
⊇KC

[∫ 1

0
V(a+ yς(b, a))dy+

∫ 1

0
V(a+ (1 − y)ς(b, a))dy

]
=
∫ 1

0
(V(a+ yς(b, a)) +V(a+ (1 − y)ς(b, a)))dy,∫ 1

0

(
V(a+ yς(b, a)) +V(a+ (1 − y)ς(b, a))

)
dy

=
2

ς(b, a)

∫ a+ς(b,a)

a
V(ϱ) dϱ,

2
ς(b, a)

∫ a+ς(b,a)

a
V(ϱ) dϱ

=
2

ς(b, a)

∫ a+ς(b,a)

a
V(ϱ) dϱ.

Taking into account previous developments, it is clear that[
H
(

1
2 , 1

2

)]
2

V

(
2a+ ς(b, a)

2

)
⊇KC

1
ς(b, a)

∫ a+ς(b,a)

a
V(ϱ) dϱ. (6)
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From Definition 7, one has

V(a+ yς(b, a)) ⊇KC
V(b)

H(y, 1 − y)
+

V(a)

H(1 − y, y)
.

Integrating the aforementioned inclusion, we have∫ 1

0
V
(
a+ yς(b, a)

)
dy ⊇KC V(b)

∫ 1

0

dy

H(y, 1 − y)
+V(a)

∫ 1

0

dy

H(1 − y, y)
.

This implies

1
ς(b, a)

∫ a+ς(b,a)

a
V(ϱ) dϱ ⊇KC [V(a) +V(b)]

∫ 1

0

dy

H(y, 1 − y)
. (7)

By combining Equations (6) and (7), we obtain required result, that is,[
H
(

1
2 , 1

2

)]
2

V

(
2a+ ς(b, a)

2

)
⊇KC

1
ς(b, a)

∫ a+ς(b,a)

a
V(ϱ) dϱ

⊇KC [V(a) +V(b)]
∫ 1

0

dy

H(y, 1 − y)
.

This completes the proof.

Remark 5.

• Setting h1(y) = 1
h(y) , h2(y) = 1 and ς(b, a) = b− a, Theorem 2 incorporates result for

h-convex functions ([43], Theorem 4.1).
• Setting h1(y) = h(y), h2(y) = 1 and ς(b, a) = b− a, Theorem 2 incorporates results for

h-G.L functions ([42], Theorem 2).
• Setting V = V and h1(y) = y, h2(y) = 1, Definition 7 reduces to a G.L-preinvex function

([21], Theorem 1).

Example 4. Let V(ϱ) = [ϱ2, 4 − eϱ], ς(b, a) = b− a, a = 0, and b = 2. Then, for h1(y) =
1
y , h2(y) = 1, we have [

H
(

1
2 , 1

2

)]
2

V

(
2a+ ς(b, a)

2

)
≈ [1, 1.2817],

1
ς(b, a)

∫ a+ς(b,a)

a
V(ϱ) dϱ ≈ [1.3333, 0.8054],

[V(a) +V(b)]
∫ 1

0

dy

H(y, 1 − y)
≈ [2, 0.7091].

Consequently, Theorem 2 is correct.

[1, 1.2817] ⊇KC [1.3333, 0.8054] ⊇KC [2, 0.7091].

Theorem 3. Based on the same hypotheses in Theorem 2, the successive inclusion relation can be
defined as follows:

1
ς(b, a)

∫ a+ς(b,a)

a
V(ϱ)Y(ϱ) dϱ ⊇KC M(a, b)

∫ 1

0

dy

H2(y, 1 − y)

+N(a, b)
∫ 1

0

dy

H(y, y)H(1 − y, 1 − y)
. (8)
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where
M(a, b) = V(a)Y(a) +V(b)Y(b)

and
N(a, b) = V(a)Y(b) +V(b)Y(a).

Proof. By the definition of (h1, h2)-G.L-preinvex functions, we have

V(a+ yς(b, a)) ⊇KC
V(b)

H(y, 1 − y)
+

V(a)

H(1 − y, y)

and

Y(a+ yς(b, a)) ⊇KC
Y(b)

H(y, 1 − y)
+

Y(a)

H(1 − y, y)
.

By multiplying the two previously mentioned outcomes, we obtain

V(a+ yς(b, a))Y(a+ yς(b, a))

⊇KC

[
V(b)

H(y, 1 − y)
+

V(a)

H(1 − y, y)

][
Y(b)

H(y, 1 − y)
+

Y(a)

H(1 − y, y)

]
=

[V(b)Y(b)]

H2(y, 1 − y)
+

[V(a)Y(a)]

H2(1 − y, y)
+

[V(b)Y(a)] + [V(a)Y(b)]

H(y, y)H(1 − y, 1 − y)
. (9)

Integrating the aforementioned inclusion (9) over (0, 1), we have∫ 1

0
V
(
a+ yς(b, a)

)
Y
(
a+ yς(b, a)

)
dy

⊇KC [V(b)Y(b)]
∫ 1

0

dy

H2(y, 1 − y)
+ [V(a)Y(a)]

∫ 1

0

dy

H2(1 − y, y)

+ [V(b)Y(a) +V(a)Y(b)]
∫ 1

0

dy

H(1 − y, 1 − y)H(y, y)
.

Consequently, we obtain

1
ς(b, a)

∫ a+ς(b,a)

a
V(ϱ)Y(ϱ) dϱ ⊇KC [V(a)Y(a) +V(b)Y(b)]

∫ 1

0

dy

H2(1 − y, y)

+ [V(a)Y(b) +V(b)Y(a)]
∫ 1

0

dy

H(1 − y, 1 − y)H(y, y)

= M(a, b)
∫ 1

0

dy

H2(1 − y, y)
+N(a, b)

∫ 1

0

dy

H(1 − y, 1 − y)H(y, y)
.

As Theorem 3 indicates, we will eventually arrive at the intended outcome.

Remark 6.

• Setting h1(y) = h(y), h2(y) = 1 and ς(b, a) = b− a, Theorem 3 incorporates results for
h-G.L functions ([42], Theorem 4).

• Setting h1(y) = 1
h(y) , h2(y) = 1 and ς(b, a) = b− a, Theorem 3 incorporates results for

h-convex functions ([43], Theorem 4.5).
• Setting h1(y) = 1

y , h2(y) = 1 and ς(b, a) = b − a, Theorem 3 incorporates results for
classical convex functions, that is,

1
b− a

∫ b

a
V(ϱ)Y(ϱ) dϱ ⊇KC

M(a, b)
3

+
N(a, b)

6
.
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Example 5. Let V(ϱ) =
[
ϱ2, 4 − eϱ

]
,Y(ϱ) = [ϱ, 3 − ϱ2], ς(b, a) = b− a, a = 0 and b = 1.

Then, for h1(y) =
1
y , h2(y) = 1, we have

1
ς(b, a)

∫ a+ς(b,a)

a
V(ϱ)Y(ϱ) dϱ ≈ [0.25, 6.2301],

and

M(a, b)
∫ 1

0

dy

H2(y, 1 − y)
+N(a, b)

∫ 1

0

dy

H(1 − y, 1 − y)H(y, y)
dy ≈ [0.3333, 5.4953].

Thus, we have
[0.25, 6.2301] ⊇KC [0.3333, 5.4953].

Consequently, Theorem 3 is true.

Theorem 4. Based on the same hypotheses as in Theorem 2, the successive inclusion relation can be
defined as: [

H
(

1
2 , 1

2

)]2

2
V

(
2a+ ς(b, a)

2

)
Y

(
2a+ ς(b, a)

2

)
⊇KC

1
ς(b, a)

∫ a+ς(b,a)

a
V(ϱ)Y(ϱ) dϱ

+M(a, b)
∫ 1

0

dy

H(1 − y, 1 − y)H(y, y)
+N(a, b)

∫ 1

0

dy

H2(y, 1 − y)
.

Proof. Since V is a (h1, h2)-G.L-preinvex function, we have[
H

(
1
2

,
1
2

)]
V

(
2a+ ς(b, a)

2

)
⊇KC [V(a+ yς(b, a)) +V(a+ (1 − y)ς(b, a))].

Utilizing Condition C defined above, we have

V

(
2a+ ς(b, a)

2

)
= V

(
a+ yς(b, a) +

1
2

ς(a+ (1 − y)ς(b, a), a+ yς(b, a))
)

⊇KC
1[

H
(

1
2 , 1

2

)] [V(a+ yς(b, a)) +V(a+ (1 − y)ς(b, a))]. (10)

Similarly,

Y

(
2a+ ς(b, a)

2

)
= Y

(
a+ yς(b, a) +

1
2

ς(a+ (1 − y)ς(b, a), a+ yς(b, a))
)

⊇KC
1[

H
(

1
2 , 1

2

)] [Y(a+ yς(b, a)) +Y(a+ (1 − y)ς(b, a))]. (11)

Multiplying Equations (10) and (11), we have
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V

(
2a+ ς(b, a)

2

)
Y

(
2a+ ς(b, a)

2

)
⊇KC

1[
H
(

1
2 , 1

2

)] [V(a+ yς(b, a)) +V(a+ (1 − y)ς(b, a))]×

1[
H
(

1
2 , 1

2

)] [Y(a+ yς(b, a)) +Y(a+ (1 − y)ς(b, a))]

=
1[

H
(

1
2 , 1

2

)]2

[
V(a+ yς(b, a))Y(a+ yς(b, a))

+V(a+ (1 − y)ς(b, a))Y(a+ (1 − y)ς(b, a))

+V(a+ yς(b, a))Y(a+ (1 − y)ς(b, a))

+V(a+ (1 − y)ς(b, a))Y(a+ yς(b, a)),

V(a+ yς(b, a))Y(a+ yς(b, a))

+V(a+ (1 − y)ς(b, a))Y(a+ (1 − y)ς(b, a))

+V(a+ yς(b, a))Y(a+ (1 − y)ς(b, a))

+V(a+ (1 − y)ς(b, a))Y(a+ yς(b, a))
]

=
1[

H
(

1
2 , 1

2

)]2

[
V(a+ yς(b, a))Y(a+ yς(b, a)),V(a+ yς(b, a))Y(a+ yς(b, a))

]

+
1[

H
(

1
2 , 1

2

)]2

[
V(a+ (1 − y)ς(b, a))Y(a+ (1 − y)ς(b, a)),

V(a+ (1 − y)ς(b, a))Y(a+ (1 − y)ς(b, a))
]

+
1[

H
(

1
2 , 1

2

)]2

[
V(a+ yς(b, a))Y(a+ (1 − y)ς(b, a))

,V(a+ yς(b, a))Y(a+ (1 − y)ς(b, a))
]

+
1[

H
(

1
2 , 1

2

)]2

[
V(a+ (1 − y)ς(b, a))Y(a+ yς(b, a))

,V(a+ (1 − y)ς(b, a))Y(a+ yς(b, a))
]
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=
1[

H
(

1
2 , 1

2

)]2

[
V(a+ yς(b, a))Y(a+ yς(b, a))

+V(a+ (1 − y)ς(b, a))Y(a+ (1 − y)ς(b, a))
]

+
1[

H
(

1
2 , 1

2

)]2

[
V(a+ yς(b, a))Y(a+ (1 − y)ς(b, a))

+V(a+ (1 − y)ς(b, a))Y(a+ yς(b, a))
]

⊇KC
1[

H
(

1
2 , 1

2

)]2

[
V(a+ yς(b, a))Y(a+ yς(b, a))

+V(a+ (1 − y)ς(b, a))Y(a+ (1 − y)ς(b, a))
]

+
1[

H
(

1
2 , 1

2

)]2

[(
V(a)

H(1 − y, y)
+

V(b)

H(y, 1 − y)

)(
Y(b)

H(y, 1 − y)
+

Y(a)

H(1 − y, y)

)

+

(
V(b)

H(y, 1 − y)
+

V(a)

H(1 − y, y)

)(
Y(a)

H(1 − y, y)
+

Y(b)

H(y, 1 − y)

)]
=

1[
H
(

1
2 , 1

2

)]2

[
V(a+ yς(b, a))Y(a+ yς(b, a))

+V(a+ (1 − y)ς(b, a))Y(a+ (1 − y)ς(b, a))
]

+
1[

H
(

1
2 , 1

2

)]2

[
M(a, b)

[
2

H(1 − y, 1 − y)H(y, y)

]
+N(a, b)

[
1

H2(1 − y, y)
+

1
H2(y, 1 − y)

]]
.

With an integration over (0, 1), we obtain

V

(
2a+ ς(b, a)

2

)
Y

(
2a+ ς(b, a)

2

)
⊇KC

2[
H
(

1
2 , 1

2

)]2

{
1

ς(b, a)

∫ a+ς(b,a)

a
V(ϱ)Y(ϱ) dϱ

+ M(a, b)
∫ 1

0

dy

H(1 − y, 1 − y)H(y, y)
+N(a, b)

∫ 1

0

dy

H2(y, 1 − y)

}
.

This readily gives[
H
(

1
2 , 1

2

)]2

2
V

(
2a+ ς(b, a)

2

)
Y

(
2a+ ς(b, a)

2

)
⊇KC

1
ς(b, a)

∫ a+ς(b,a)

a
V(ϱ)Y(ϱ) dϱ

+M(a, b)
∫ 1

0

dy

H(1 − y, 1 − y)H(y, y)
+N(a, b)

∫ 1

0

dy

H2(y, 1 − y)
.

The proof is now completed.
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Remark 7.

• Setting h1(y) =
1

h(y) , h2(y) = 1, and ς(b, a) = b− a, Theorem 4 incorporates results for
h-convex functions.

• Setting h1(y) = h(y), h2(y) = 1, and ς(b, a) = b− a, Theorem 4 incorporates results for
h-G.L functions.

Example 6. Furthermore, by Example 5, we have[
H
(

1
2 , 1

2

)]2

2
V

(
a+

1
2

ς(b, a)
)
Y

(
a+

1
2

ς(b, a)
)
≈ [0.25, 12.9190],

and

1
ς(b, a)

∫ a+ς(b,a)

a
V(ϱ)Y(ϱ) dϱ

+M(a, b)
∫ 1

0

dy

H(1 − y, 1 − y)H(y, y)
+N(a, b)

∫ 1

0

dy

H2(y, 1 − y)
≈ [0.4166, 11.4390].

Thus, we have
[0.25, 12.9190] ⊇KC [0.4166, 11.4390].

Consequently, Theorem 4 is true.

Weighted Fejér-Type Inclusions For (h1, h2)-G.L-Preinvex Functions

Theorem 5. Let V : [a, a+ ς(b, a)] → RI be I.V.F, which is defined as V(ϱ) =
[
V(ϱ),V(ϱ)

]
for all ϱ ∈ [a, b]. If V : [a, a + ς(b, a)] → RI is a (h1, h2)-G.L-preinvex function and χ :
[a, a + ς(b, a)] → RI, χ > 0 is symmetric with reference to a + 1

2 ς(b, a), then the following
inclusion holds:

1
ς(b, a)

∫ a+ς(b,a)

a
V(ϱ)χ(ϱ) dϱ ⊇KC [V(a) +V(b)]

∫ 1

0

χ(a+ yς(b, a)) dy
H(y, 1 − y)

.

Proof. Since V is a (h1, h2)-G.L-preinvex function and χ is symmetric with reference to
a+ 1

2 ς(b, a), we have

V(a+ yς(b, a))χ(a+ yς(b, a))

⊇KC

[
V(b)

H(y, 1 − y)
+

V(a)

H(1 − y, y)

]
χ(a+ yς(b, a)),

and

V(a+ (1 − y)ς(b, a))χ(a+ (1 − y)ς(b, a))

⊇KC

[
V(a)

H(y, 1 − y)
+

V(b)

H(1 − y, y)

]
χ(a+ (1 − y)ς(b, a)).
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Adding the above two inclusions and integrating them, we have∫ 1

0
V(a+ yς(b, a))χ(a+ yς(b, a)) dy (12)

+
∫ 1

0
V(a+ (1 − y)ς(b, a))χ(a+ (1 − y)ς(b, a)) dy

⊇KC

∫ 1

0

[
V(a)

((
χ(a+ yς(b, a))
H(y, 1 − y)

+
χ(a+ (1 − y)ς(b, a))

H(1 − y, y)

)

+V(b)

((
χ(a+ yς(b, a))
H(y, 1 − y)

+
χ(a+ (1 − y)ς(b, a))

H(1 − y, y)

)]
dy

= 2V(a)
∫ 1

0

χ(a+ (1 − y)ς(b, a))
H(y, 1 − y)

dy+ 2V(b)
∫ 1

0

χ(a+ yς(b, a))
H(1 − y, y)

dy

= 2[V(a) +V(b)]
∫ 1

0

χ(a+ yς(b, a))
H(y, 1 − y)

dy, (13)

since ∫ 1

0
V(a+ yς(b, a))χ(a+ yς(b, a)) dy (14)

+
∫ 1

0
V(a+ (1 − y)ς(b, a))χ(a+ (1 − y)ς(b, a)) dy

=
2

ς(b, a)

∫ a+ς(b,a)

a
V(ϱ)χ(ϱ) dϱ, (15)

By considering Equations (12) and (14), we obtain the required outcome.

Remark 8.

• If h1(y) =
1
y , h2(y) = 1, then Theorem 5 incorporates results for preinvex functions, that is,

1
ς(b, a)

∫ a+ς(b,a)

a
V(ϱ)χ(ϱ) dϱ ⊇KC [V(a) +V(b)]

∫ 1

0
yχ(a+ yς(b, a)) dy.

• If h1(y) = 1
h(y) , h2(y) = 1 and ς(b, a) = b− a, then Theorem 5 incorporates results for

h-G.L functions, and this is also new as well, that is,

1
b− a

∫ b

a
V(ϱ)χ(ϱ) dϱ ⊇KC [V(a) +V(b)]

∫ 1

0

χ((1 − y)a+ yb)

h(y)
dy.

• If h1(y) =
1
y , h2(y) = 1 and ς(b, a) = b− a, then Theorem 5 incorporates results for convex

functions, that is,

1
b− a

∫ b

a
V(ϱ)χ(ϱ) dϱ ⊇KC [V(a) +V(b)]

∫ 1

0
yχ((1 − y)a+ yb) dy.



Mathematics 2024, 12, 382 15 of 28

Example 7. Let V(ϱ) =
[

1
ϱ , ϱ
]
, ς(b, a) = b − a, a = 1, and b = 4. Then, for h1(y) =

1
y , h2(y) = 1 and symmetric functions χ(ϱ) = ϱ − 1 for ϱ ∈

[
1, 5

2
]

and χ(ϱ) = −ϱ + 4 for
ϱ ∈

[ 5
2 , 4
]
, we have

1
ς(b, a)

∫ a+ς(b,a)

a
V(ϱ)χ(ϱ) dϱ

=
1
3

∫ 4

1
V(ϱ)χ(ϱ) dϱ

=
1
3

∫ 5
2

1

[
1
ϱ
(ϱ − 1), (ϱ − 1)ϱ

]
dϱ

+
1
3

∫ 4

5
2

[
1
ϱ
(−ϱ + 4), (−ϱ + 4)ϱ

]
dϱ

≈ [0.4048, 1.875],

and

[V(a) +V(b)]
∫ 1

0

χ(a+ yς(b, a))
H(y, 1 − y)

dy

≈ [0.4687, 1.8671].

Thus, we have
[0.4048, 1.875] ⊇KC [0.4687, 1.8671].

Consequently, Theorem 5 is correct.

Theorem 6. Based on the same hypotheses as in Theorem 5, the successive inclusion relation can be
defined as follows:

V

(
2a+ ς(b, a)

2

)
⊇KC

2[
H
(

1
2 , 1

2

)] ∫ a+ς(b,a)
a χ(ϱ) dϱ

∫ a+ς(b,a)

a
V(ϱ)χ(ϱ) dϱ.

Proof. Since V is a (h1, h2)-G.L-preinvex function, one has

V

(
2a+ ς(b, a)

2

)
⊇KC

1[
H
(

1
2 , 1

2

)] [V(a+ yς(b, a))dy+V(a+ (1 − y)ς(b, a))dy].

Multiplying the above inclusion with χ(a+ yς(b, a)) = χ(a+ (1 − y)ς(b, a)) and
integrating it, we have

V

(
2a+ ς(b, a)

2

) ∫ 1

0
χ(a+ yς(b, a)) dy

⊇KC
1[

H
(

1
2 , 1

2

)][∫ 1

0
V(a+ yς(b, a))χ(a+ yς(b, a)) dy

+
∫ 1

0
V(a+ (1 − y)ς(b, a))χ(a+ (1 − y)ς(b, a)) dy

]
, (16)

since
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∫ 1

0
V(a+ yς(b, a))χ(a+ yς(b, a)) dy

=
∫ 1

0
V(a+ (1 − y)ς(b, a))χ(a+ (1 − y)ς(b, a)) dy

=
1

ς(b, a)

∫ a+ς(b,a)

a
V(ϱ)χ(ϱ) dϱ (17)

and ∫ 1

0
χ(a+ yς(b, a))dy =

1
ς(b, a)

∫ a+ς(b,a)

a
χ(ϱ) dϱ. (18)

Using (17) and (18) in (16), we have

V

(
2a+ ς(b, a)

2

)
⊇KC

2[
H
(

1
2 , 1

2

)] ∫ a+ς(b,a)
a χ(ϱ) dϱ

∫ a+ς(b,a)

a
V(ϱ)χ(ϱ) dϱ.

The proof is now complete.

Remark 9.

• If h1(y) =
1
y , h2(y) = 1, then Theorem 6 incorporates results for preinvex functions, that is,

V

(
2a+ ς(b, a)

2

)
⊇KC

1∫ a+ς(b,a)
a χ(ϱ) dϱ

∫ a+ς(b,a)

a
V(ϱ)χ(ϱ) dϱ.

• If ς(b, a) = b− a, then Theorem 6 incorporates results for (h1, h2)-G.L function, that is,

V

(
a+ b

2

)
⊇KC

2[
H
(

1
2 , 1

2

)] ∫ b
a χ(ϱ) dϱ

∫ b

a
V(ϱ)χ(ϱ) dϱ.

• If h1(y) =
1
y , h2(y) = 1 and ς(b, a) = b− a, then Theorem 6 incorporates results for convex

functions, that is,

V

(
a+ b

2

)
⊇KC

1∫ b
a χ(ϱ) dϱ

∫ b

a
V(ϱ)χ(ϱ) dϱ.

Example 8. Furthermore, by Example 7, we have

V

(
a+

1
2

ς(b, a)
)
= [0.4, 2.5],

and

H
(

1
2 , 1

2

)
2
∫ a+ς(b,a)
a χ(ϱ) dϱ

∫ a+ς(b,a)

a
V(ϱ)χ(ϱ) dϱ

≈ [0.5397, 2.471].

Thus, one has
[0.4, 2.5] ⊇KC [0.5397, 2.471].

Consequently, Theorem 6 is correct.

4. Applications of Some Novel Results to Numerical Integration Rule

This section aims to relate our results to some numerical integration trapezoidal-type
formulas via (h1, h2)–Godunova—Levin preinvex-type mappings to find the error bounds
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on set-valued mappings. The following lemma will assist us in developing fresh findings
in the configuration of interval-valued functions.

Lemma 1 (see [44]). Let V : Θ = [a, a+ ς(b, a)] → (0, ∞) be a differentiable mapping, where
a < a+ ς(b, a). If V′ ∈ L1[a, a+ ς(b, a)]. Then, we have

1
ζ(b, a)

∫ a+ς(b,a)

a
V(β)dβ − V(a) +V(a+ ς(b, a))

2

=
ζ(b, a)

2

[∫ 1

0
(1 − 2y)V′(a+ yζ(b, a))dy

]
.

Theorem 7. Let V : Θ = [a, a+ ς(b, a)] → (0, ∞) be a differentiable I.V.F on a◦, a, ζ(b, a) ∈ a◦,
with a < a+ ς(b, a). If |V′| is a (h1, h2)–Godunova–Levin preinvex on [a, a+ ς(b, a)], then we
obtain the following inclusion:

H
([

V(a) +V(a+ ς(b, a))
2

,
V(a) +V(a+ ς(b, a))

2

]
,[

1
ζ(b, a)

∫ a+ς(b,a)

a
V(β)dβ,

1
ζ(b, a)

∫ a+ς(b,a)

a
V(β)dβ

])
⊇ ζ(b, a)

2

[∣∣V′(a)
∣∣+ ∣∣V′(b)

∣∣, ∣∣∣V′
(a)
∣∣∣+ ∣∣∣V′

(b)
∣∣∣]

×
∫ 1

0
|1 − 2y|

[
1

H(y, 1 − y)
+

1
H(1 − y, y)

]
dy. (19)

Proof. Taking into account Lemma 1 to prove Theorem 7, we have the following:

H([
V(a) +V(a+ ς(b, a))

2
,
V(a) +V(a+ ς(b, a))

2
], .

[
1

ζ(b, a)

∫ a+ς(b,a)

a
V(β)dβ,

1
ζ(b, a)

∫ a+ς(b,a)

a
V(β)dβ])

= sup{|V(a) +V(a+ ς(b, a))
2

− 1
ζ(b, a)

∫ a+ς(b,a)

a
V(β)dβ, .

.
V(a) +V(a+ ς(b, a))

2
− 1

ζ(b, a)

∫ a+ς(b,a)

a
V(β)dβ|

}
⊇ | ζ(b, a)

2

∫ 1

0
|1 − 2y|[V′(a+ yζ(b, a)),V′

(a+ yζ(b, a))]dy|

⊇ ζ(b, a)
2

∫ 1

0
|1 − 2y|[V′(a+ yζ(b, a)),V′

(a+ yζ(b, a))]dy

⊇ ζ(b, a)
2

∫ 1

0
|1 − 2y|[ V′(a)

h1(y)h2(1 − y)
+

V′(b)

h1(1 − y)h2(y)
,

V
′
(a)

H(y, 1 − y)
+

V
′
(b)

H(1 − y, y)
]dy

⊇ ζ(b, a)
2

[|V′(a)|+ |V′(b)|, |V′
(a)|+ |V′

(b)|]

×
∫ 1

0
|1 − 2y|[ 1

H(y, 1 − y)
+

1
H(1 − y, y)

]dy

=
ζ(b, a)

2
[|V′(a)|+ |V′(b)|]×

∫ 1

0
|1 − 2y|[ 1

H(y, 1 − y)
+

1
H(1 − y, y)

]dy
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Corollary 1. Note that
∫ 1

0
dy

H(y,1−y)
=
∫ 1

0
dy

H(1−y,y) . Using this fact in inclusion (19), we obtain
this fresh result:

sup{|V(a) +V(a+ ς(b, a))
2

− 1
ζ(b, a)

∫ a+ς(b,a)

a
V(β)dβ, .

V(a) +V(a+ ς(b, a))
2

− 1
ζ(b, a)

∫ a+ς(b,a)

a
V(β)dβ|

}
⊇ ζ(b, a)

2
[|V′(a)|+ |V′(b)|, |V′

(a)|+ |V′
(b)|]×

∫ 1

0
[

|1 − 2y|
H(y, 1 − y)

]dy. (20)

Corollary 2. Considering ζ(b, a) = b− a, V = V in inclusion (19), we obtain this fresh result:

∣∣∣∣V(a) +V(b)

2
− 1

b− a

∫ b

a
V(β)dβ

∣∣∣∣ ≤ b− a

2
[∣∣V′(a)

∣∣+ ∣∣V′(b)
∣∣] ∫ 1

0

|1 − 2y|
H(y, 1 − y)

dy.

Example 9. Consider [a, b] = [1, 2], h1(y) =
1
y , h2(y) = 1, and ∀ y ∈ (0, 1). If V : [a, b] → R+

is defined by
V(y) = y2 + 2,

then ∣∣∣∣V(a) +V(b)

2
− 1

b− a

∫ b

a
V(β)dβ

∣∣∣∣ = 1
6

b− a

2
[∣∣V′(a)

∣∣+ ∣∣V′(b)
∣∣] ∫ 1

0

|1 − 2y|
H(y, 1 − y)

dy =
1
4

.

Consequently,
1
6
≤ 1

4
This verifies Corollary 2.

4.1. Applications to Numerical Trapezoidal Formula on Set-Valued Mappings

It is well known that generalized convexity is applicable to a variety of research areas.
We demonstrate here how to estimate errors accumulated by using the (h1, h2)–Godunova–
Levin preinvex functions for numerical integration with the trapezoidal formula.

Consider d to be a partition of interval [a, b] (i.e., d : a = a0 < a1 < · · · < an−1 <
an = b) of the quadrature formula, known as the trapezoidal rule. The corresponding
approximation error is represented as S(V, d).∫ b

a
V(β)dβ ∼= T(V, d) + S(V, d),

where

T(V, d) =
n−1

∑
i=0

V(ai) +V(ai+1)

2
(ai+1 − ai)

and

V(y) =

2
∫ 1

2
y V(sa+ (1 − s)b)ds y ∈

[
0 1

2

]
;

−2
∫ y

1
2
V(sa+ (1 − s)b)ds y ∈

[
1
2 , 1
]
.

Proposition 1. Let V : Θ = [a, a+ ς(b, a)] → (0, ∞) be a differentiable I.V.F on a◦ with
a < a+ ς(b, a). If |V′| is a (h1, h2)–Godunova–Levin preinvex on [a, a+ ς(b, a)], then for every
disjoint d of [a, b], we obtain the following inclusion:
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∣∣Sn(V, d), Sn(V, d)
∣∣ ⊇ 1

2

n−1

∑
i=0

(ai+1 − ai)
2(∣∣V′(ai)

∣∣+ ∣∣V′(ai+1)
∣∣,

∣∣∣V′
(ai)

∣∣∣+ ∣∣∣V′
(ai+1)

∣∣∣)× ∫ 1

0

|1 − 2y|
H(y, 1 − y)

dy

⊇
n−1

∑
i=0

(ai+1 − ai)
2[sup

{∣∣V′(a)
∣∣, ∣∣V′(b)

∣∣}, sup
{∣∣V′(a)

∣∣, ∣∣V′(b)
∣∣}] ∫ 1

0

|1 − 2y|
H(y.1 − y)

dy.

Proof. Take into account inclusion (19) on the interval [ai, ai+1] for each i = 0 to n− 1 of
the partition d. This provides the following:

sup{|V(ai) +V(ai+1)

2
− 1

(ai+1 − ai)

∫ ai+1

ai

V(β)dβ, .

V(ai) +V(ai+1)

2
− 1

(ai+1 − ai)

∫ ai+1

ai

V(β)dβ|
}

⊇ (ai+1 − ai)
2

2
[|V′(ai)|+ |V′(ai+1)|, |V

′
(ai)|+ |V′

(ai+1)|]×
∫ 1

0
[

|1 − 2y|
H(y, 1 − y)

]dy. (21)

Since |V′| is (h1, h2)–Godunova–Levin preinvex and sums up the results from i = 0
to i = n− 1, we obtain

H
(
[T(V, d), T(V, d)],

[∫ b

a
V(β)dβ,

∫ b

a
V(β)dβ

])
= sup

{∣∣∣∣T(V, d)−
∫ b

a
V(β)dβ, T(V, d)−

∫ b

a
V(β)dβ

∣∣∣∣}
⊇ 1

2

n−1

∑
i=0

(ai+1 − ai)
2
(∣∣V′(ai)

∣∣+ ∣∣V′(ai+1)
∣∣, ∣∣∣V′

(ai)
∣∣∣+ ∣∣∣V′

(ai+1)
∣∣∣)

⊇
[
sup

{∣∣V′(ai)
∣∣, ∣∣V′(ai+1)

∣∣}, sup
{∣∣∣V′

(ai)
∣∣∣, ∣∣∣V′

(ai+1)
∣∣∣}] n−1

∑
i=0

(ai+1 − ai)
2
∫ 1

0

|1 − 2y|
H(y, 1 − y)

dy

⊇
[
sup

{∣∣V′(a)
∣∣, ∣∣V′(b)

∣∣}, sup
{∣∣∣V′

(a)
∣∣∣, ∣∣∣V′

(b)
∣∣∣}] n−1

∑
i=0

(ai+1 − ai)
2
∫ 1

0

|1 − 2y|
H(y, 1 − y)

dy

Remark 10. With the assistance of (h1, h2)–Godunova—Levin preinvex mappings, the above
inclusion provides an error bound of numerical quadrature trapezoidal-type formulas. Furthermore,
our results generalize the results reported in [45] when our interval is degenerated and when setting
h1(y) = 1, h2(1 − y) = 1.

4.2. Some Further Applications to Trapezoidal Formula and the Probability Density Function

By using interval-valued functions, we find the error bounds of the trapezoidal formula
in the previous section. This section eliminates the Kulisch–Miranker order relation and
develops the trapezium-type inequality under interval degeneration and finds the error
bound for the trapezoidal formula and its applications to probability density functions
using Definition 2.4, defined by Afzal et al. [46].

Theorem 8. Consider a differentiable function Y : I ⊆ R → R on I◦, a, b ∈ I◦ and V : [a, b] → R+

as a function symmetric to a+b
2 . If |Y′| is a a (h1, h2)–Godunova–Levin mapping on [a, b], then



Mathematics 2024, 12, 382 20 of 28

∣∣∣∣Y(a) +Y(b)

2

∫ b

a
V(β)dβ −

∫ b

a
Y(β)V(β)dβ

∣∣∣∣
≤ (b− a)

(∣∣Y′(a)
∣∣+ ∣∣Y′(b)

∣∣) ∫ b+a
2

a

∫ β−a
b−a

0
V(β)

[
1

H(y, 1 − y)
+

1
H(1 − y, y)

]
dydβ.

Proof. By virtue of V(y) and the (h1, h2)–Godunova–Levin convexity of |Y′|, this implies∣∣∣∣Y(a) +Y(b)

2

∫ b

a
V(β)dβ −

∫ b

a
Y(β)V(β)dβ

∣∣∣∣ = (b− a)2

2

∣∣∣∣∫ 1

0
V(y)Y′(ya+ (1 − y)b)dy

∣∣∣∣
≤ (b− a)2

2

{∫ 1
2

0
|V(y)|

∣∣Y′(ya+ (1 − y)b)
∣∣dy+ ∫ 1

1
2

|V(y)|
∣∣Y′(ya+ (1 − y)b)

∣∣dy}

=
(b− a)2

2

{∫ 1
2

0
V(y)

∣∣Y′(ya+ (1 − y)b)
∣∣dy− ∫ 1

1
2

V(y)
∣∣Y′(ya+ (1 − y)b)

∣∣dy}

≤ (b− a)2

2

{
2
∫ 1

2

0

∫ 1
2

y
V(sa+ (1 − s)b)

(
|Y′(a)|

H(y, 1 − y)
+

|Y′(b)|
H(1 − y, y)

)
dsdy

+2
∫ 1

1
2

∫ y

1
2

V(sa+ (1 − s)b)

(
|Y′(a)|

H(y, 1 − y)
+

|Y′(b)|
H(1 − y, y)

)
dsdy

}
.

Now, if we alter the integration’s order, then∣∣∣∣Y(a) +Y(b)

2

∫ b

a
V(β)dβ −

∫ b

a
Y(β)V(β)dβ

∣∣∣∣
≤ (b− a)2

{∫ 1
2

0

∫ s

0
V(sa+ (1 − s)b)

(
|Y′(a)|

H(y, 1 − y)
+

|Y′(b)|
H(1 − y, y)

)
dyds

+
∫ 1

1
2

∫ 1

s
V(sa+ (1 − s)b)

(
|Y′(a)|

H(y, 1 − y)
+

|Y′(b)|
H(1 − y, y)

)
dyds

}
.

Making use of the variable change β = sa+ (1 − s)b, we obtain∣∣∣∣Y(a) +Y(b)

2

∫ b

a
V(β)dβ −

∫ b

a
Y(β)V(β)dβ

∣∣∣∣
≤ (b− a)

{∫ b

b+a
2

∫ b−β
b−a

0
V(β)

(
|Y′(a)|

H(y, 1 − y)
+

|Y′(b)|
H(1 − y, y)

)
dydβ

+
∫ b+a

2

a

∫ 1

b−β
b−a

V(β)

(
|Y′(a)|

H(y, 1 − y)
+

|Y′(b)|
H(1 − y, y)

)
dydβ

}
. (22)

Given that the V function is symmetric to b+a
2 ,

∫ b

b+a
2

∫ b−β
b−a

0
V(β)

(
|Y′(a)|

H(y, 1 − y)
+

|Y′(b)|
H(1 − y, y)

)
dydβ

=
∫ b+a

2

a

∫ β−a
b−a

0
V(β)

(
|Y′(a)|

H(y, 1 − y)
+

|Y′(b)|
H(1 − y, y)

)
dydβ. (23)

Replacing Equation (23) in (22) implies that
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∣∣∣∣Y(a) +Y(b)

2

∫ b

a
V(β)dβ −

∫ b

a
Y(β)V(β)dβ

∣∣∣∣
≤ (b− a)

(∣∣Y′(a)
∣∣+ ∣∣Y′(b)

∣∣) ∫ b+a
2

a

∫ β−a
b−a

0
V(β)

[
1

H(y, 1 − y)
+

1
H(1 − y, y)

]
dydβ. (24)

Corollary 3. Considering the hypothesis of Theorem 8, if |Y′| is s-convex on [a, b] with h1(y) =
h2(1 − y) = 1, then∣∣∣∣Y(a) +Y(b)

2

∫ b

a
V(β)dβ −

∫ b

a
Y(β)V(β)dβ

∣∣∣∣
≤ (b− a)

1 + s

(∣∣Y′(a)
∣∣+ ∣∣Y′(b)

∣∣) ∫ b+a
2

a
V(β)

[(
β − a

b− a

)1+s

−
(
b− β

b− a

)1+s

+ 1

]
dβ.

Corollary 4. Considering the hypothesis of Theorem 8, if |Y′| is convex on [a, b] with h1(y) =
h2(1 − y) = 1, then∣∣∣∣Y(a) +Y(b)

2

∫ b

a
V(β)dβ −

∫ b

a
Y(β)V(β)dβ

∣∣∣∣ ≤ (∣∣Y′(a)
∣∣+ ∣∣Y′(b)

∣∣) ∫ b

b+a
2

V(β)(b− β)dβ.

Additionally, if we take V = 1, we repeat the outcome found in [47].∣∣∣∣Y(a) +Y(b)

2
− 1

b− a

∫ b

a
Y(β)dx

∣∣∣∣ ≤ (b− a)(|Y′(a)|+ |Y′(b)|)
8

.

4.3. Trapezoidal Formula

Consider d to be a partition of interval [a, b] (i.e., d : a = a0 < a1 < · · · < an−1 < an =
b) of a trapezoidal formula.∫ b

a
Y(β)V(β)dβ = T (Y,V, d) + S(Y,V, d),

where

T (Y,V, d) =
n−1

∑
i=0

Y(ai) +Y(ai+1)

2

∫ ai+1

ai

V(β)dβ,

The corresponding approximation error is represented as S(Y,V, d). Consider the
hypothesis of Theorem 8 to hold and take a subinterval [ai, ai+1] for each i = 0 to i = n− 1
of the partition d. This provides the following:

∣∣∣∣Y(ai) +Y(ai+1)

2

∫ ai+1

ai

V(β)dβ −
∫ ai+1

ai

Y(β)V(β)dβ

∣∣∣∣
(25)

Considering the inequality (25), for each i = 0 to i = n − 1, employing a triangular
inequality, we arrive at
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| T (Y,V, d)−
∫ b

a
Y(β)V(β)dβ |

=

∣∣∣∣∣n−1

∑
i=0

[
Y(ai) +Y(ai+1)

2

∫ ai+1

ai

V(β)dβ −
∫ ai+1

ai

Y(β)V(β)dβ

]∣∣∣∣∣
≤

n−1

∑
i=0

∣∣∣∣Y(ai) +Y(ai+1)

2

∫ ai+1

ai

V(β)dβ −
∫ ai+1

ai

Y(β)V(β)dβ

∣∣∣∣
≤

n−1

∑
i=0

(ai+1 − ai)
[∣∣Y′(ai)

∣∣+ ∣∣Y′(ai+1)
∣∣] ∫ ai+1

ai+ai+1
2

∫ ai+1−β

ai+1−ai

0
V(β)

×
[

1
H(y, 1 − y)

+
1

H(1 − y, y)

]
dydβ.

This gives us the error bound:

|S(Y,V, d)| ≤
n−1

∑
i=0

(ai+1 − ai)
[∣∣Y′(ai)

∣∣+ ∣∣Y′(ai+1)
∣∣]

×
∫ ai+1

ai+ai+1
2

∫ ai+1−β

ai+1−ai

0
V(β)

[
1

H(y, 1 − y)
+

1
H(1 − y, y)

]
dydβ.

Corollary 5. Setting h1(y) =
1
yk

, h2(y) = 1 in (25), we obtain the following:

|S(Y,V, d)| ≤ 1
k+ 1

n−1

∑
i=0

(ai+1 − ai)
[∣∣Y′(ai)

∣∣+ ∣∣Y′(ai+1)
∣∣]

×
∫ ai+1

ai+ai+1
2

[(
ai+1 − β

ai+1 − ai

)k+1
−
(

β − ai
ai+1 − ai

)k+1
+ 1

]
V(β)dβ. (26)

Remark 11. Additionally, if we set k = 1 and V = 1 in (26), we subsequently restate the inequality
found in Prop. 4.1 in [47]:

|S(Y, d)| ≤ 1
8

n−1

∑
i=0

[∣∣Y′(ai)
∣∣+ ∣∣Y′(ai+1)

∣∣](ai+1 − ai)
2.

4.4. Associating Probability Density Function with Trapezoidal-Type Inequality

Consider a probability density function V : [a, b] → R+ where 0 < a < b. Then,∫ b

a
V(β)dβ = 1,

which is symmetric with respect to b+a
2 . Consider µ to be a moment where µ ∈ R. Then,

one has

Eµ(X) =
∫ b

a
βµV(β)dβ,

which is finite. From Equation (8) and the fact that for any a ≤ β ≤ b+a
2 we have

0 ≤ β−a
b−a ≤ 1

2 , the following result holds.
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∣∣∣∣Y(a) +Y(b)

2

∫ b

a
V(β)dβ −

∫ b

a
Y(β)V(β)dβ

∣∣∣∣ ≤ (b− a)
(∣∣Y′(a)

∣∣+ ∣∣Y′(b)
∣∣)

×
∫ b+a

2

a

∫ 1
2

0
V(β)

[
1

H(y, 1 − y)
+

1
H(1 − y, y)

]
dydβ =

(b− a)

2
(∣∣Y′(a)

∣∣+ ∣∣Y′(b)
∣∣)

×
∫ 1

2

0

[
1

H(y, 1 − y)
+

1
H(1 − y, y)

]
dy,

From the fact that V is symmetric and
∫ b
a V(β)dβ = 1, one has

∫ b+a
2

a V(β)dβ = 1
2 .

Example 10. If we take into account
Y(β) = 1

µ βµ, β > 0, µ ∈ (−∞, 0) ∪ (0, 1] ∪ [2,+∞);

h1(y) =
1
yk

, h2(y) =
1
8 k ∈ (−∞,−1) ∪ (−1, 1];

V(β) = 1.

then |Y′| is (h1, h2)–Godunova–Levin; therefore, from Theorem 8, one has∣∣∣∣aµ + bµ

2µ
− Eµ(X)

∣∣∣∣ ≤ µ(b− a)

2

(
aµ−1 + bµ−1

) ∫ 1
2

0

[
yk

8
+

(1 − y)k

8

]
dy

=
µ(b− a)

8(k+ 1)

(
aµ−1 + bµ−1

)
.

Hence, the required bound is∣∣∣∣aµ + bµ

2µ
− Eµ(X)

∣∣∣∣ ≤ µ(b− a)

8(k+ 1)

(
aµ−1 + bµ−1

)
,

Remark 12. If µ = 1, h2(y) = 1, k = 1, E(X) is the random variable X′s expectation, we can
obtain the following known bound from the inequality above.∣∣∣∣b+ a

2
− E(X)

∣∣∣∣ ≤ (b− a)

8(1 + 1)

(
a1−1 + b1−1

)
,

∣∣∣∣b+ a

2
− E(X)

∣∣∣∣ ≤ b− a

8
.

As a consequence of this remark, we concluded that the error bound of a trapezoid
inequality in combination with a probability density function depends on the selection of
non-negative functions h1 and h2.

4.5. Applications Associated with Special Functions

Here, we present bounds for trapezoidal-type inequality involving moment-generating
and symmetric weighted functions as applications, representing their solution using special
functions. In order to begin, we should recall the two special functions known as the
gamma function and beta function:

B(z, w) =
∫ 1

0
tz−1(1 − t)w−1dt =

∫ 1

0
tw−1(1 − t)z−1dt.

We have the following relationship between the gamma and the beta functions:

B(z, w) =
Γ(z)Γ(w)
Γ(z+ w)

,
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when z and w have positive real parts. Based on Theorem 8, we arrive at the following
conclusion: ∣∣∣∣Y(a) +Y(b)

2

∫ b

a
V(β)dβ −

∫ b

a
Y(β)V(β)dβ

∣∣∣∣
≤ (b− a)

2
(∣∣Y′(a)

∣∣+ ∣∣Y′(b)
∣∣) ∫ 1

2

0

[
1

H(y, 1 − y)
+

1
H(1 − y, y)

]
dy

≤ (b− a)

2
(∣∣Y′(a)

∣∣+ ∣∣Y′(b)
∣∣)[∫ 1

0

dy
H(y, 1 − y)

+
∫ 1

0

dy
H(1 − y, y)

]
.

Accordingly, H(y, 1 − y) = h1(y)h2(1 − y), and taking into account the assumptions of
Example 10, we have the following result:∣∣∣∣aµ + bµ

2µ
− Eµ(X)

∣∣∣∣ ≤ µ(b− a)

2

(
aµ−1 + bµ−1

)[∫ 1

0

dy
H(y, 1 − y)

+
∫ 1

0

dy
H(1 − y, y)

]
. (27)

Remark 13. If h1(y) =
1

ys1 ,h2(y) =
1

ys2 , then under the assumptions of Theorem 8 and Example 10,
the result presented in (27) becomes bounds for Breckner-type (s1,s2)-preinvex functions:∣∣∣∣aµ + bµ

2µ
− Eµ(X)

∣∣∣∣ ≤ µ(b− a)

2

(
aµ−1 + bµ−1

)
B(s1 + 1, s2 + 1). (28)

Remark 14. If h1(y) = 1
y−s1

, h2(y) = 1
y−s2

, then under the assumptions of Theorem 8 and
Example 10, the result presented in (27) becomes bounds for Godunova–Levin-type (s1, s2)-preinvex
functions: ∣∣∣∣aµ + bµ

2µ
− Eµ(X)

∣∣∣∣ ≤ µ(b− a)

2

(
aµ−1 + bµ−1

)
B(1 − s1, 1 − s2). (29)

where B(z, w) denotes the beta as a special function.

Remark 15. As we connect the results of a generalized class of Godunova–Levin mappings with
probability density functions and find bounds with the aid of moment-generating functions, it could
be interesting for academics to take inspiration from these results and discuss other properties like
variance, standard deviation, and various other applications of moments. Here, we refer to [48–52].

4.6. Applications to Special Means

The mean plays an essential role in mathematics of all kinds, especially when it comes
to ensuring accuracy. We now demonstrate the relationship between our developed results
and special means under specific assumptions. Consider two positive numbers a, b, where
a ̸= b, and define the means as follows:

• The arithmetic mean:

A = A(a, b) =
a+ b

2
; a, b ∈ R, with a, b > 0.

• The following defines the logarithmic mean in its generalized form:

Ls(a, b) =
[

bs+1 − ρs+1
a

(s+ 1)(b− a)

] 1
s

, s ̸= −1, 0.

Using Theorem 7 and the aforementioned applications of special means, the following
propositions are obtained.
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Proposition 2. Let 0 < a < b, where s ≥ 2; then, one has

H
(
[A(as, bs), A(as, bs)],

[
Lss(a, b), Lss(a, b)

])
= sup

{∣∣A(as, bs)− Lss(a, b), A(as, bs)− L
s
s(a, b)

∣∣}
⊇ s(b− a)

2

[
A
(∣∣∣as−1

∣∣∣, ∣∣∣bs−1
∣∣∣), A

(∣∣∣as−1
∣∣∣, ∣∣∣bs−1

∣∣∣)] ∫ 1

0

|1 − 2y|
H(y, 1 − y)

dy.

Corollary 6. Proposition 2 is simplified to the following result when our interval is degenerated
and this is its unique instance.

|A(as, bs)− Lss(a, b)| ≤ s(b− a)

2
A
(∣∣∣as−1

∣∣∣, ∣∣∣bs−1
∣∣∣) ∫ 1

0

|1 − 2y|
H(y, 1 − y)

dy

Proof. We derive this inequality from Corollary (2) and apply it to the (h1, h2)–Godunova–
Levin preinvex function V : R → R,V(β) = βs, s ≥ 2.

Note: Our next objective is to demonstrate that the results developed in Theorem 8
are consistent with the arithmetic and generalized logarithm means.

Consider
V(β) = βs, β > 0 and s ∈ (−∞,−1) ∪ (−1, 0) ∪ [1, ∞);
h1(y) = yk, h2(y) = 1, k ≤ 1 and k ̸= −1,−2
Y(β) = 1.

Theorem 8 implies the following inequalities:∣∣∣∣as + bs

2
(b− a)− 1

s+ 1

[
bs+1 − as+1

]∣∣∣∣ ≤ s(b− a)
(
|a|s−1 + |b|s−1

)
×
∫ a+b

2

a

∫ β−a
b−a

0

[
yk + (1 − y)k

]
dydβ =

s(b− a)

k+ 1

(
|a|s−1 + |b|s−1

)
×
∫ a+b

2

a

[(
β − a

b− a

)k+1
−
(
b− β

b− a

)k+1
+ 1

]
dβ

=
s

(k+ 1)(2 + k)(b− a)k

(
|a|s−1 + |b|s−1

)
×
[
(β − a)k+2 − (b− β)k+2 + (b− a)k+1(k+ 2)β

] a+b
2

a

≤ s

2(k+ 1)(2 + k)(b− a)k

(
|a|s−1 + |b|s−1

)
(b− a)2+k[2−k + k

]
=

s(b− a)2

2(k+ 1)(k+ 2)

(
|a|s−1 + |b|s−1

)[
2−k + k

]
.

Hence, one has∣∣∣∣as + bs

2
− bs+1 − as+1

(s+ 1)(b− a)

∣∣∣∣ ≤ s(b− a)

2(k+ 1)(k+ 2)

(
|a|s−1 + |b|s−1

)[
2−k + k

]
,

this implies that

|A(as, bs)− Lss(a, b)| ≤ s(b− a)

(k+ 1)(k+ 2)
L
(
|a|s−1, |b|s−1

)[
2−k + k

]
. (30)

Remark 16. If we let k = 1 in (30), then we obtain Prop. 3.1 in [47].
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5. Discussion and Conclusions

This work introduces a generalized class of Godunova–Levin preinvex-type mappings
via Kulisch- and Miranker-type order relations and develops a number of new generaliza-
tions of Hermite–Hadamard and Fejér-type inequalities. Preinvexity of this type unifies
several definitions that have been developed recently with the inclusion of distinct non-
negative arbitrary functions and associated bifunctions. Furthermore, we have calculated
error bounds of the trapezoid-type numerical integration formula using interval-valued
mappings based on Moore interval distance metrics. The last step in our analysis was to
develop trapezoidal-type inequality and to show some further applications to trapezoidal
formulas as well as probability density functions. As a result of the results obtained in
this paper, similar inequalities can be derived for the fractional integrals with nonsingular
kernels defined as:

ℑq
wV(t) =

1
q

∫ t

w
Eq,1

(
−1 − q

q
(t− e)q

)
V(e)de, t > w

and

ℑq
gV(t) =

1
q

∫ g

t
Eq,1

(
−1 − q

q
(e− t)q

)
V(e)de, t < g

where

Eq,η(r) =
∞

∑
k=0

rk

Γ(qk+ η)
.

Furthermore, since we know that inequalities are established using different types of
integral operators as well as order relations, each with its own characteristics and limita-
tions, it is apparent from reference [53] that Theorem 11 does not satisfy the assumptions
with this order relation in interval-valued settings. Recently, Saeed et al. [35] used this
order relation defined by Bhunia and developed several results. The beauty of this order
relation is that it is full order, which means we can collate intervals with fewer constraints
than inclusion order, so interested researchers may apply this type of order relation to
Theorem 11. The second problem is that we used the Moore metric in interval space to
arrive at these conclusions. Researchers could instead use the Hukuhara interval metric
defined in [54] and do a comparative study to see which metric provide more precise results
in terms of closer endpoint distances between intervals.
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Functions. Results Math. 2023, 78, 89. [CrossRef]
52. Erden, S.; Sarikaya, M.; Budak, H. New Weighted Inequalities for Higher Order Derivatives and Applications. Filomat 2018, 32,

4419–4433. [CrossRef]
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