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Abstract: Our study focuses on the governing equation of a finitely deformed flexible rod with strain
waves. By utilizing the well-known Ablowita–Ramani–Segur (ARS) algorithm, we prove that the
equation is non-integrable in the Painlevé sense. Based on the bifurcation theory for planar dynamical
systems, we modify an auxiliary equation method to obtain a new systematic and effective method
that can be used for a wide class of non-linear evolution equations. This method is summed up in an
algorithm that explains and clarifies the ease of its applicability. The proposed method is successfully
applied to construct wave solutions. The developed solutions are grouped as periodic, solitary, super
periodic, kink, and unbounded solutions. A graphic representation of these solutions is presented
using a 3D representation and a 2D representation, as well as a 2D contour plot.
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1. Introduction

To develop fundamental phenomena and implementations, many non-linear physical
structures have been connected to non-linear equations in multiple fields, including plasma
physics, fluid dynamics, wave propagation, fluid flow, thermodynamics, non-linear net-
works, optical including fiber, mechanics, and soil stability. In non-linear sciences, as well
as many other disciplines of research, non-linearity plays an important role. In addition,
recent years have seen increasing attention directed at finding an exact solution for partial
non-linear equations. The reason is that the existence of the exact solutions enables the
researchers to explain, understand, and have much knowledge required to analyze the
properties of physical phenomena described by non-linear partial differential equations.
This motivates scholars to introduce new approaches or develop existing ones. In the
literature, there are several efficient and trustworthy approaches for exploring analytic
solutions. Several effective and trustworthy approaches have been introduced in the lit-
erature for finding the analytic solutions such as the homogeneous balance method [1,2],
Hirota bilinear method [3,4], the Backlund transformation method [5,6], the inverse scat-
tering method [7,8], Semi-inverse variational principle [9,10], algebraic method [11,12],
the first integral method [13], an extended mapping technique [14], the Riccati–Bernoulli
sub-ODE and exp(G′/G)−expansion method [15], the extended exponential function
method [16], Lie symmetry analysis [17,18], a modified F-expansion method [19], uni-
fied auxiliary equation method [20], three algebraic methods; 1/G′, modified G′/G2 and
new extended direct algebraic methods [21], the blackuctive perturbation method [22],
bifurcation theory [23–28], and for other several methods, see, e.g., [29–35].
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It is well known that non-linear elastic waves have also been used to address a variety
of technological matters. There are various sources of non-linearities in solid structures,
such as geometrical and physical non-linearities, kinetic non-linearities, and boundary
constraints. Solitary and shock wave solutions occur when non-linearity interacts with
dispersion or dissipation effects to produce steady traveling wave solutions. Increasingly,
problems involving non-linearity are being analyzed and solved qualitatively using the
non-linear evolution equation. As a consequence, we analyze some dynamic analysis of

∂2u
∂t2 − c2

0
∂2u
∂x2 =

∂2

∂x2

[
c2

0
2
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)]
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which is called the strain wave equation [36]. The longitudinal wave velocity and shear

wave velocity are denoted by c0 =
√

E
ρ , c1 =

√
µ
ρ , respectively. µ, ρ, E, and u(x, t) refer

to the material shear modulus, the rod density per unit volume, elastic modulus, and
distribution of the displacement at x, t, respectively. The model in Equation (1) explains
a double non-linear wave equation for an elastic circular-rod wave-guide. It involves the
axial displacement gradient and accounts for the transverse Poisson effect, which causes
the longitudinal and shear waves to propagate together. Hamilton’s principle of least
action is applied to derive the model [36]. In [37], the authors described the non-linear
dispersive dissipative evolution of strain waves in a solid with certain limiting conditions.
They constructed a bounded periodic solution and a kink solution. In [36], the authors
constructed a solitary wave solution for the governed equation by applying the hyperbolic
secant function finite expansion method. In [38], the authors applied the Jacobi elliptic
sine function and the third kind of Jacobi elliptic function, finite expansion, to obtain exact
periodic solutions of double non-linearity and double dispersion wave equations (cubic
non-linear item) and corresponding truncation equations (square non-linear items) of the
circular-rod-waveguide. In [39], the authors applied qualitative analysis and utilized the
principle of homogeneous balance to solve the governed equation with the Jacobi elliptic
function expansion method to construct solitary wave solutions, and they also illustrate
that the existence of shock wave solutions is possible under certain conditions. Solely,
both solitary and shock wave solutions are found which are commonly not capable of
producing an exact periodic solution. Shock, periodic, and solitary solutions of the derived
equation have been found by utilizing the Jacobi elliptic function expansion method [40].
Based on the bifurcation analysis, some new solutions, dependence on the initial conditions,
influence on the physical parameters, and the existence of quasi-periodic solution are
investigated by the current authors [41].

As a result, Section 2 includes the study of the integrability of the governing equation
via Painlevé analysis. Section 3 presents the proposed method for developing traveling
wave solutions for non-linear partial differential equations, based on bifurcation analy-
sis, and an algorithm to demonstrate its applicability. By applying the newly proposed
technique to the governing equation, we obtain some new wave solutions in Section 4. By
presenting 3D and 2D representations as well as 2D contours, these solutions are clarified
graphically in Section 5. The results are summarized in Section 6.

2. Painlevé Analysis

The integrability of Equation (1) is examined in the current section by utilizing the
Painlevé singularity analysis. The ARS algorithm is a powerful technique to study the
integrability of partial differential equations [42]. To have a self-contained article, we
introduce briefly the ARS algorithm in Appendix A. It is applied successfully in several
works, see e.g., [43–46]. We prove the next theorem

Theorem 1. The strain wave Equation (1) of a flexible rod with a finite deformation is not integrable
in Painlevé sense.
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Proof. The generalized Laurent series for the independent variable u(x, t) in the neigh-
borhood of a non-characteristic singular manifold ψ(x, t) with ψt ̸= 0 and ψx ̸= 0 admits
the form

u(x, t) = ψp(x, t)
∞

∑
j=0

uj(x, t)ψj(x, t), (2)

where u0(x, t) ̸= 0 and p ∈ Z− are to be calculated. The leading order term is postulated
to be

u(x, t) = u0(x, t)ψp(x, t). (3)

Inserting Equation (2) into Equation (1), p is calculated by balancing the most dominate
terms. Hence, we find p = −1. The coefficient of the leading term u0(x, t), which is
determined by comparing the coefficient of ψ−5, is given by

u0(x, t) = ±Rν

c0

√
2(c2

1ψ2
x − ψ2

t ). (4)

The resonances, which are the powers of ψ at which the free functions appear in the
Laurent series, are determined by plugging the expression

u(x, t) = u0(x, t)ψ−1(x, t) + ur(x, t)ψr−1(x, t), (5)

into Equation (1) and equating the coefficient of ψ(x, t)r−5 to zero, we get

R2ν2ur(r + 1)(r − 3)(r − 4)2ψ2
x(c

2
1ψ2

x − ψ2
t ) = 0, (6)

where u0(x, t) is eliminated by Equation (5). It is clear that ur are arbitrary functions if
r = −1, 3, 4, 4. Notice that there is always a resonance r = −1 which corresponds to the
arbitrariness of the singular manifold ψ(x, t). As the Equation (1) admits more resonances
at j = 4, 4 than the required arbitrary functions, we conclude that Equation (1) fails to
satisfy the Painlevé test. Hence, the theorem is proved.

3. Proposed Method

Due to the governed equation for the elastic rod with a finite deformation, Equation (1)
being non-integrable in the Painlevé sense, quasi-analytical methods or numerical analysis
are needed to discover special solutions such as wave solutions. This motivate us to develop
and modify the current methods to be more systematic and effective for constructing
wave solutions for non-linear partial differential equations. In this section, we perform a
combination of the bifurcation theory [47] and the auxiliary equation method [48]. In a
comparison with previous methods [36–40], this combination will lead to some significant
advantages as we clarify below..

3.1. Method Description

Considering that the general form of the partial differential equation takes the form:

K(u, ut, ux, utt, uxt, uxx, . . . ) = 0. (7)

We employ the transformation

u(x, t) = φ(ξ), ξ = k(x − ωt), (8)

where ξ is the wave number while w and k are constants characterizing the wave speed and
wave number respectively. Inserting the transformation (8) into Equation (7), we obtain an
ordinary differential equation

P(φ,−kωφ′, kφ′, k2ω2 φ′′,−k2ωφ′′, k2 φ′′, . . . ) = 0, (9)
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where primes refer to derivatives with respect to the wave variable ξ. This equation is
called an reduced equation. We assume Equation (9) has a solution in the form

φ(ξ) =
N

∑
j=0

ajτ(ξ)
j, (10)

where aj are constants required to be determined and N ∈ Z+ is calculated by balancing the
highest power of the non-linear term with the highest order derivative terms in Equation (9),
besides our assumption that τ(ξ) satisfies the auxiliary differential equation

τ′ =
√

β(τ4 − δτ2) + 2e, (11)

where β, δ, e are arbitrary constants. Thus, the key to constructing a solution for the main
partial differential Equation (7) is to find a solution for the reduced Equation (9). Thus,
separating the variables of Equation (11) gives the one-differential form

dτ√
P4(τ)

= dξ, (12)

where
P4(τ) = β(τ4 − δτ2) + 2e. (13)

The parameters β, δ, e must fall within a suitable range for the integration of both sides
of Equation (12). There are various ways to accomplish this, including the discriminating
approach and bifurcation. The bifurcation theory is more significant because it enables
us to specify the kind of solutions before constructing them through type of the phase
orbits. For instance, the existence of periodic orbits, homoclinic orbits, and heteroclinic
orbits indicates the presence of periodic, solitary and kink (or anti-kink) solutions. It has
been applied successfully in several works, see e.g., [49–51] as well as being applied to find
the solutions for the stochastic partial differential equation [52,53] and investigating the
chaotic behavior for perturbed partial differential equations containing perturbed periodic
term [54]. In this work, we apply the bifurcation theory [47] by using the Hamiltonian
concepts to find the solution of Equation (11) that can be expressed as

1
2

τ′2 − β

2
(τ4 − δτ2) = e. (14)

Equation (14) is equivalent to the conserved quantity for a one-dimension conservative
Hamiltonian system which is derived from the Hamiltonian function

H =
1
2

τ′2 + U(τ), (15)

where U is the potential function

U(τ) = − β

2
(τ4 − δτ2). (16)

Notice that the constant e does not appear in the potential function (16) and moreover,
it enters the Hamiltonian (15) linearly. Hence, it can be taken as the energy constant for the
Hamiltonian (15) [55,56].

Now, we are going to apply the bifurcation analysis for the Hamiltonian (15). Firstly,
we find the equilibrium points for the Hamiltonian (15) which appear as the critical points
for the potential function (16), i.e., they are (τ0, 0), where τ0 is a solution for U′(τ0) =
−βτ(2τ3

0 − δτ) = 0. Thus, if δ > 0, there exist three equilibrium points E0 = (0, 0), E1,2 =

(±
√

δ
2 , 0) while if δ < 0, there is a single equilibrium point E0 = (0, 0). The equilibrium
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point can be assorted according to whether it is either the maximum or minimum point for
the potential function (16). Therefore, we calculate

U′′(E0) = βδ, U′′(E1,2) = −2βδ. (17)

Assuming the condition of the equilibrium point is met, we find:

(a) If δ < 0, the Hamiltonian (15) has a single equilibrium point E0 = (0, 0) which is either
center point if β < 0 or saddle point if β > 0. The phase portrait for these cases are
depicted in Figure 1a,b.

(b) If δ > 0, the Hamiltonian (15) owns three equilibrium points E0,1,2. For β > 0, E0 is a
center point while E1,2 are saddle points while for β < 0, the two equilibrium points
E1,2 are center and E0 is saddle point. The phase portrait for both cases of β is depicted
by Figure 1c,d.

The value of the conserved quantity (14) at the equilibrium points are

e0 = e(E0) = 0, e1 = e(E1,2) =
βδ2

8
. (18)

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-1

-0.5

0

0.5

1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-1

-0.5

0

0.5

1

(a) δ < 0, β < 0 (b) δ < 0, β > 0

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5
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Figure 1. Phase portrait for the Hamiltonian (15) in the phase plane (τ, τ′). The cyan solid circles are
the equilibrium points.

Depending on the bifurcation conditions on the parameters β, δ, e, we can integrate
both sides of Equation (12) to construct the possible solutions for the auxiliary Equation (9).
These solutions are accumulated in Tables 1–3 to avoid ambiguity.
Equation (13) can be expressed as

P4(τ) = β(τ2 − r2
1)(τ

2 − r2
2), (19)
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where

r2
1 =

βδ +
√

β2δ2 − 8βe
2β

, r2
2 =

βδ −
√

β2δ2 − 8βe
2β

. (20)

The zeros of P4(τ) are then τ = ±
√

r2
1 and τ = ±

√
r2

2 which may be real or complex
according to the values of the parameters β, δ and e.

Table 1. Possible bounded real solutions for Equation (9).

Case δ β Interval of Range of e Solution
Real Propagation

1. − − (−|r2|, 0)
⋃
(0, |r2|) (e0, ∞) τ(ξ) = ±Asd(Ω1ξ, k1).

2. + + (−|r2|, 0)
⋃
(0, |r2|) (e0, e1) τ(ξ) = ±r2sn(r1

√
βξ, r2

r1
).

3. + − (−|r2|,−|r1|)
⋃
(|r1|, |r2|) (e1, e0) τ(ξ) = ±r2dn(r2

√
−βξ, 1

k1
).

4. + − (−|r2|, |r2|) (e0, ∞) τ(ξ) = ±r2cn(Ω1ξ, k1).

where sn(z, k), dn(z, k), cn(z, k), sd(z, k) = sn(z,k)
dn(z,k) are Jacobian elliptic functions [57], A =

r2

√
−r2

1√
r2
2−r2

1

, Ω1 =√
−β(r2

2 − r2
1), k1 =

√
r2
2

r2
2−r2

1
, and r2

2 > 0, r2
1 < 0 in Cases 1 and 4.

Table 2. Soliton and kink (or anti-kink) solutions for Equation (9).

Case δ β Interval of Range of e Solution
Real Propagation

1. + + (−|r1|, 0)
⋃
(0, |r1|) e1 τ(ξ) = ±

√
δ
2 tanh(

√
δβ
2 ξ).

2. + − (−|r2|, 0)
⋃
(0,−|r2|) e0 τ(ξ) = ±

√
δsech

√
−δβξ.

Table 3. Possible unbounded real solutions for Equation (9).

Case δ β Interval of Range of e Solution
Real Propagation

1. − + (−∞,−|r1|)
⋃
(|r1|, ∞) (−∞, e0) τ(ξ) = ±A2ds(Ω2ξ, k2).

2. − + R∗ e0 τ(ξ) = ±
√
−δcsch

√
−δβξ.

3. − + R (e0, ∞) τ(ξ) = ±
√
−r2

1tn(
√
−r2

2βξ, 1
k1
).

4. + + (−∞,−|r1|)
⋃
(|r1|, ∞) (−∞, e0) τ(ξ) = ±r1nc(Ω2ξ, k2).

5. + + (−∞,−|r1|)
⋃
(|r1|, ∞) e0 τ(ξ) = ±

√
δsec

√
δβξ.

6. + + (−∞,−|r1|)
⋃
(|r1|, ∞) (e0, e1) τ(ξ) = ±r1dc(r1

√
βξ, r2

r1
).

7. + + (−∞,−|r1|)
⋃
(|r1|, ∞) e1 τ(ξ) = ±

√
δ
2 coth(

√
δβ
2 ξ).

8. + + R (e1, ∞) τ(ξ) = ± |r1|nd(|r1|
√

βξ,k3)

tn(|r1|
√

βξ,k3)
.

where ds(z, k) = dn(z,k)
sn(z,k) , tn(z, k) = sn(z,k)

cn(z,k) , nc(z, k) = 1
cn(z,k) , dc(z, k) = dn(z,k)

cn(z,k) , nd(z, k) = 1
dn(z,k) are Jacobian

elliptic functions [57], A2 =
√

r2
1 − r2

2, Ω2 =
√

β(r2
1 − r2

2), k2 =

√
−r2

2
r2
1−r2

2
, k3 = Im(r1)

|r1 |
, and r2

1 > 0, r2
2 < 0 in Cases 1

and 4, while r2
1 < 0, r2

2 < 0 in Case 3.

We sum up our proposed method in the following algorithm to demonstrate how
easily it can be applied.

Algorithm

An algorithm is presented to demonstrate the applicability of the proposed method.
We consider a non-linear partial differential equation in the form (7). To construct possible
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wave solutions, we follow the steps shown below:

Step 1: Applying the wave transformation (8) to Equation (7), we obtain an ordinary
differential Equation (9) which is the reduced equation.
Step 2: Assuming the reduced Equation (9) has a solution

φ(ξ) =
N

∑
j=0

ajτ(ξ)
j, (21)

where τ(ξ) is a solution of the auxiliary equation

τ′(ξ) =
√

β(τ4 − δτ2) + 2e. (22)

Step 3: Determining the positive integer N by balancing the highest power of the non-linear
term with the highest order derivative terms in the auxiliary Equation (9). After some
calculations, the highest order derivative term φ′′ and highest power of the non-linear term
φm with positive integer m > 1, in the reduced equation are given by

O(φ′′) = N + 2, O(φm) = mN. (23)

Equating the last expression, we obtain

N =
2

m − 1
. (24)

Because N is a positive integer, we have two possible cases:

Case I: If m = 2, 3, then we have N = 2, 1, respectively, and go directly to the next step.

Case II: If m ≥ 4, we perform the transformation φ(ξ) = G(ξ)2/(m−1) to the reduced
equation and assume its solution admits the form (21), i.e.,

G(ξ) =
N

∑
j=0

ajτ(ξ)
j.

Then, go to the next step.

Step 4: Inserting the assumed solution (21) in Equation (7), using the Equation (22), and
equating all the coefficients of all powers of τ in the resulting polynomial to zero, we obtain
a non-linear algebraic system in aj and the physical parameters of the problem.
Step 5: Solving the last system to find aj in terms of the physical parameters and utilizing
Tables 1–3 to construct the solutions for the reduced equation and consequently, to the
non-linear partial differential equation under consideration.

The proposed method has many advantages as a result of its dependence on bifurcation
theory in its formulation. This is illustrated in the following:

(a) It is utilized only to construct real (not complex) wave solutions for the given NPDE,
because these solutions are constructed by integrating the conserved quantities along
all possible intervals of real wave propagation. Moreover, the entering of the concept
of the interval of real wave propagation intervals enables us to construct all possible
wave solutions that are completely different from mathematical and physical points
of view. Let us clarify this point. For the choice δ > 0, β > 0 and e ∈]e0, e1[, there
are two solutions. One of them is periodic as illustrated by row 2 in Table 1 while
the other is unbounded as outlined by row 6 in Table 3 row. Thus, we have two
completely different solutions from mathematical and physics points of view for the
same conditions of the parameters.

(b) It enables us to know in advance the types of solutions. For example in Table 1, the
first three cases are periodic solutions because they are related to periodic orbits in
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phase portrait while the fourth case is a super periodic solution since it corresponds to
the super periodic orbit, see Figure 1. Therefore, the assumed solution can be viewed
as a combination of periodic solutions or super periodic solutions, respectively. For
this reason, we know the obtained solution will be periodic or supper periodic.

(c) Thanks to employing bifurcation analysis, we were able to isolate all possible bounded
solutions that are required and significant in real-world problems.

4. Application

The current section aims to clarify how to apply the proposed method by following
the introduced algorithm. Based on the first step, we insert the wave transformation (8)
into the Equation (1), and we get

(ω2 − c0
2)

d2u
dξ2 −

c2
0

2
d2

dξ2 (3u2+u3)− ν2R2k2

2
d2

dξ2 [(ω
2 − c1

2)
d2u
dξ2 ] = 0. (25)

Integrated Equation (25) twice with respect to ξ and neglecting the integration con-
stants gives

d2u
dξ2 = cu + 3au2 + au3, (26)

where

c =
2(ω2 − c2

0)

ν2R2k2(ω2 − c2
1)

and a = −
c2

0
ν2R2k2(ω2 − c2

1)
. (27)

According to the second step, we postulate Equation (26) has a solution in the form

u(ξ) =
N

∑
j=0

ajτ(ξ)
j, (28)

where aj is a constant required to be determined besides τ(ξ) satisfies a first order dif-
ferential Equation (22). Following Equation (24), we get N = 1. Hence, the assumed
solution becomes

u(ξ) = a0 + a1τ(ξ). (29)

Now, we are going to determine the constants a0, a1, β, δ, e in terms of the physical
parameters. Inserting the expression (29), taking into account the Equation (22), and
equating the coefficient of all powers of τ(ξ) to zero, we get the following algebraic system

a1(2β − aa2
1) = 0,

aa2
1(a0 + 1) = 0,

a1[c + βδ + 6aa0 + 3aa2
0] = 0,

a0[c + 3aa0 + aa2
0] = 0.

(30)

The only working solution of the algebraic system (30) is

a =
c
2

, a0 = −1, δ =
a
β

, a1 =

√
2β

a
,

where aβ > 0 is a condition for the solution (29) to be real. Thus, we consider the following
cases:

Case A: For a > 0, we have β > 0 and consequently δ > 0. For bounded solutions,
the only working case is Case 2 in Table 1. Thus, Equation (1) has the following solution if
e ∈]0, a

8β [

u(x, t) = −1 ±
√

2β

a
r2sn(r1

√
βk(x − ωt),

r1

r2
). (31)
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The solution (31) is a new periodic solution for Equation (1). For Table 2, the first
case in which δ > 0, β > 0 is the only working case in this table. Thus, Equation (1) has
the solution

u(x, t) = −1 ±
√

2β

a

√
δ

2
tanh

√
δβ

2
k(x − ωt). (32)

The solution (32) is a new kink solution for Equation (1). For unbounded wave
solutions, the working cases in Table 3 are Cases 4–7 and they are classified according to
values of e. Thus, we have

1. If e < 0, Equation (1) owns the following new solution

u(x, t) = −1 ± r1

√
2β

a
nc(

√
β(r2

1 − r2
2)k(x − ωt),

√
r2

2
r2

2 − r2
1
). (33)

2. If e = 0, we introduce a novel solution for Equation (1) in the form

u(x, t) = −1 ±
√

2βδ

a
sec

√
δβk(x − ωt). (34)

3. If e ∈]0, βδ2

8 [, the governing Equation (1) has a new solution

u(x, t) = −1 ± r1

√
2β

a
dc(r1k

√
β(x − ωt),

r2

r1
). (35)

4. If e > βδ2

8 , then

u(x, t) = −1 ± r1

√
2β

a
nd(|r1|

√
βξ, k3)

sc(|r1|
√

βξ, k3)
. (36)

is a new solution for Equation (1).

Case B: For the choice a < 0, β must be negative, i.e., β < 0 and hence δ > 0. Therefore, the
only working cases in Table 1 are Case 3 and Case 4. Let us consider them individually.

1. If e ∈ ( a
8β , 0), Equation (1) has a new solution in the form

u(x, t) = −1 +

√
2β

a
r2dn(r2

√
−βk(x − ωt),

√
1 −

r2
1

r2
2
). (37)

2. If e ∈]0, ∞[, then Equation (1) has the solution

u(x, t) = −1 +

√
2β

a
r2cn(k

√
−β(r2

2 − r2
1)(x − ωt),

r2√
r2

2 − r2
1

). (38)

As we see also in Table 2, the only working case is the second one. Hence, if e = e0 = 0
Equation (1) has the solution

u(x, t) = −1 ±
√

2βδ

a
sech

√
−δβk(x − ωt), (39)

which is a new solitary wave solution for Equation (1).

5. Physical Interpretations

This section aims to illustrate the obtained solutions graphically by introducing 2D
and 3D graphics, as well as the contour plots for different kinds of the obtained solutions
using Matlab and Mathematica programs. We presume that k = 0.1, ω = 0.3 in all the
subsequent computations.
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For real solutions, the selected values of a and β must satisfy the condition aβ > 0 and
consequently δ > 0. Hence, there are two possible choices of the two parameters, a and β.
They are either a > 0, β > 0 or a < 0, β < 0. Let us consider each of them individually:
Firstly, We consider the solutions introduced in Case A. We assume c = 0.8 and β = 1, and
so a = 0.4 and δ = 0.4. For these values, we have e1 = 0.02 and the roots of the quartic
polynomial (13) satisfy r2

1 = 0.2 −
√

0.08 and r2
2 = 0.2 +

√
0.08. By taking e = 0.01, the

periodic solution (31) for the Equation (1) is depicted in Figure 2. It also clarifies one of the
advantages of the proposed method, which is the ability to determine the type of solution
before it is constructed, simply by knowing the parameters.
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Figure 2. Graphic representation for the solution (31) with c = 0.8, β = 1, and e = 0.01.

Preserving the same values for c, and β and choosing different values of e, we will
construct several solutions which are completely different from mathematical and physical
points of views.

1. For e = e1 = 0.02, Figure 3 shows the graphical representation of the solution (32) by
presenting the 3D and 2D representation besides the 2D− contour plot.

2. For e = −0.5 ∈]− ∞, 0[, we have r2
1 = 0.2 −

√
1.1 and r2

2 = 0.2 +
√

1.1. Hence, the
quartic polynomial (13) has two real roots and two imaginary roots. Therefore, the
solution (33) can be visualized by Figure 4 which includes the 3D and 2D graphical
representation of the solution in addition to the 2D− contour plot.
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Figure 3. Graphic representation for the solution (32) with c = 0.8, β = 1, and e = 0.02.
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Figure 4. Graphic representation for the solution (33) with c = 0.8, β = 1, and e = −0.5.

Secondly, we consider the solutions which are presented in Case B. We postulate
c = −0.8 and β = −1, so, a = −0.4 and δ = 0.4. Depending on the value of e, the possible
solutions can be constructed.
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1. If e = 0.001 ∈ (0, ∞), Equation (1) admits the super periodic solution (38) which is
illustrated by Figure 5.

2. If e = 0, Equation (1) has the one soliton solution (39) which is clarified by Figure 6.
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Figure 5. Graphic representation for the solution (38) with c = −0.8, β = −1, and e = 0.001.
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Figure 6. Graphic representation for the solution (39) with c = −0.8, β = −1, and e = 0.

6. Conclusions

The current work focused on studying the governing equation describing the strain
wave equation of a flexible rod with a finite deformation. Based on the singularity analysis,
we have proved the non-integrability of the governing equation. We present a new modifi-
cation to the auxiliary equation method for constructing wave solutions for a large class
of non-linear partial differential equations. The formulation of this method relies on the
bifurcation theory for planar integrable systems. The formulation procedures furnish more
effective advantages for the new method. These advantages are summarized as:

(a) It is only applied to construct real (not complex) wave solutions for a large class of
partial differential equations by integrating the conserved quantities along the intervals
of real wave propagation. Moreover, with the same conditions on the parameters and
different intervals of real wave propagation, distinct solutions from mathematical and
physical points of view are constructed. For instance, for the choice δ > 0, β > 0 and
e ∈]e0, e1[, there are two solutions. One of them is periodic as illustrated by row 2 in
Table 1, while the other is unbounded as outlined by row 6 in Table 3 row.

(b) It enables us to know the kinds of solutions before establishing them.
(c) We can isolate all bounded wave solutions, which is useful in real applications.

This method has been applied to the governing equation aiming to illustrate its
applicability and effectiveness to present new solutions for the governing equation. Some
novel wave solutions that are assorted into periodic, super periodic, kink, and solitary
wave solutions have been introduced. By introducing 2D, 3D, and contour plots, some of
these solutions are graphically clarified.
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Appendix A

In this appendix, ARS algorithm is briefly displayed. Consider a non-linear partial
differential equation in the form:

L(ut, uS, uSS, uSSS, . . . ) = 0, (A1)

where L and u are a polynomial and a complex-valued function depending on the two
variables S, t, respectively. This appendix provides a brief description of Painlevé analysis.
Painlevé analysis is employed to determine whether the given Equation (A1) is integrable
or not. The solution of Equation (A1) is assumed as Laurent series

u(t, S) = ϕp
∞

∑
i=0

ui(t, s)ϕi(t, S), (A2)

where u0 ̸= 0 and p is a negative integer needed to be found. We follow the ARS- algorithm
that can be outlined in the subsequent steps [58]:
Step 1 (Dominate behavior): The leading order term in Laurent series (A2) is assumed
to be

u = u0ϕp. (A3)

Inserting the expression into Equation (A1), and balancing the dominant terms, we
found the value of p. The coefficient of leading term u0 is calculated by inserting the
Laurent series with the obtained value of p into Equation (A1) and equating the coefficient
of the leading term in the obtained equation, we obtain an equation determining u0.
Step 2 (Resonances): The resonances are defined as the powers at which the arbitrary
functions appear in the Laurent series. The resonance can be determined by inserting

u(t, S) = u0ϕp +
∞

∑
i=1

ui(t, S)ϕr+p, (A4)

into Equation (A1) and comparing different powers of ϕ. Notice that all the resonances
are non-negative integers except the resonance r = −1 which refers to the arbitrariness
of ϕ. Additionally, the resonance r = 0 indicates the coefficient u0 of the leading term is
arbitrary. If all the values of resonances are non-negative except r = −1, we are going to
the next step.
Step 3 (Compatibility conditions): This step aims to check the existence of a sufficient
number of arbitrary functions in the Laurent series (A2). This can be performed by inserting
the expression

u(t, S) = ϕp
rmax

∑
i=0

ui(t, S)ϕi(t, S), (A5)

into Equation (A1) and testing the existence of arbitrary functions corresponding to the
obtained resonances in Step 2, where rmax is the largest value of the resonances. If the
compatibility conditions are satisfied then, the given partial differential equation has
Painlevé property. Consequently, it is integrable in Painlevé sense, or sometimes it is
named Painlevé integrable.
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