. mathematics

Article

Evolutionary Game Analysis of Digital Financial Enterprises and
Regulators Based on Delayed Replication Dynamic Equation

Mengzhu Xu !, Zixin Liu ¥**, Changjin Xu 3

check for
updates

Citation: Xu, M,; Liu, Z.; Xu, C.;
Wang, N. Evolutionary Game
Analysis of Digital Financial
Enterprises and Regulators Based on
Delayed Replication Dynamic
Equation. Mathematics 2024, 12, 385.
https://doi.org/10.3390/
math12030385

Academic Editor: Hendrik Richter

Received: 10 November 2023
Revised: 12 January 2024
Accepted: 18 January 2024
Published: 24 January 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Nengfa Wang !

School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, China;
xmz6501@163.com (M.X.)

Guizhou Key Laboratory of Big Data Statistical Analysis, Guizhou University of Finance and Economics,
Guiyang 550025, China

Guizhou Key Laboratory of Economics System Simulation, Guizhou University of Finance and Economics,
Guiyang 550025, China; xcj403@mail.gufe.edu.cn

*  Correspondence: xinxin905@126.com

Abstract: With the frequent occurrence of financial risks, financial innovation supervision has become
an important research issue, and excellent regulatory strategies are of great significance to maintain
the stability and sustainable development of financial markets. Thus, this paper intends to analyze
the financial regulation strategies through evolutionary game theory. In this paper, the delayed
replication dynamic equation and the non-delayed replication dynamic equation are established,
respectively, under different reward and punishment mechanisms, and their stability conditions and
evolutionary stability strategies are investigated. The analysis finds that under the static mechanism,
the internal equilibrium is unstable, and the delay does not affect the stability of the system, while in
the dynamic mechanism, when the delay is less than a critical value, the two sides of the game have
an evolutionary stable strategy, otherwise it is unstable, and Hopf bifurcation occurs at threshold.
Finally, some numerical simulation examples are provided, and the numerical results show the
correctness of the proposed algorithm.

Keywords: digital financial innovation; digital financial supervision; static and dynamic mechanism;
delayed replication dynamic equation; Hopf bifurcation

MSC: 91A25; 34C23; 34K18

1. Introduction

Digital finance is a combination of internet information technology and traditional fi-
nancial services. The emergence of digital finance is conducive to the development of social
technology and industry [1,2]. However, when looking at the reality, not all digital financial
innovations are compliant, and innovations using illegal digital technologies happen from
time to time. On the one hand, financial innovation has given rise to accomplishments such
as digital currency, technology finance, and big data risk control, thereby enhancing the
operational efficiency of the financial industry and fostering the growth and prosperity of
the financial market. Conversely, there have also emerged instances of financial turmoil
like P2P online lending, shadow banking, and illegal fundraising that have resulted in
frequent financial risks and widespread incidents, significantly impacting financial security
and social order. The complexity and multifunctionality inherent in regulating financial
innovation itself along with the imperfections and delays within the existing regulatory
system may be identified as pivotal factors contributing to this issue.

While digital finance is beneficial to the development of various industries and
economies, at the same time, it has presented significant regulatory challenges [3]. Compli-
ance innovation can bring more opportunities to the development of the financial industry.
If financial institutions choose illegal innovation, even if they will get temporary excess
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returns, various financial risks will come one after another, such as information technology
risks, systematic financial risks, and trading reputation risks. Research on financial regula-
tory strategies is of great significance for preventing financial risks, maintaining market
stability, and protecting investors’ rights and interests. In the supervision of financial
innovation, government departments should not only strengthen supervision and maintain
market stability, but also relax restrictions and promote financial innovation, while both
will inevitably increase the complexity of supervision. Thus, to maintain a balance between
financial innovation and stability, an effective regulatory system should be established as
soon as possible [4-6]. Hanson et al. [7] discussed how to deal with many phenomena
observed in the financial crisis between 2007 and 2009. Chao et al. [8] believed that the role
of intelligent regulatory technology in financial regulation can be fully utilized. In [9], the
authors made a thorough analysis of various strategies needed in the process of financial
supervision. Zhou et al. [10] indicated that regulatory penalties can be effective in curbing
irregularities in financial innovation. Most of these research results are derived from the
perspective of static analysis.

As a dynamic game theory, evolutionary game theory provides a new method and
perspective for the study of financial regulation strategies. Evolutionary game theory
is a combination of game and evolution theory. It has been widely used in the analysis
of practical problems in the financial field, such as internet finance, financial innovation
and supervision [9], credit markets [11], blockchain [12], supply chains [13], and digital
finance [14]. Evolutionary games focus on the dynamic adjustment process of players’
strategies, which can better explain the long-term evolution of the market and the inter-
action between players. In the field of financial regulation, applying evolutionary game
theory can better reflect the dynamic characteristics of the market, predict the future de-
velopment trend, and provide theoretical support for the formulation of more effective
regulatory strategies.

In the existing research, many scholars have used this method to analyze the evolu-
tionary process and game relationship of financial innovation and regulation, and obtained
corresponding theoretical results. Liu et al. [15] analyzed the game model between the
government, enterprises, and consumers, and discussed the evolution strategy between
them. Deng et al. [16] constructed an evolutionary game model for government Internet
regulation based on prospect theory and mental accounts. Xu et al. [17] demonstrated the
behavioral strategies and game results of regulators and financial institutions based on
the data of a commercial bank. Gunarso [18] found that reasonable benefits can be gained
through cooperation between regulators and fintech companies. Song et al. [19] found
that if the regulatory intensity of innovation is greater than a given threshold, both can
achieve a win-win situation. If the dynamic balance between supervision and innovation is
maintained, compliance innovation and effective regulation will evolve in tandem [20].

Although the innovation and regulation of digital finance have been analyzed by
many scholars from various angles and methods, they have not considered the impact of
time delay on evolutionary game analysis. In the evolution of the classical game theory, the
interaction between individuals is generally considered to be instantaneous, but usually, it
is not. Many biological and social processes need some time to complete. This fact leads to
the emergence of time delay. Time delay affects replicator dynamics, so time delay should
be taken into account in evolutionary game analysis [21-26]. Hu et al. [23] studied three
models and found that the existence of delay has a significant effect on the stability of the
studied system. Jan et al. [24] studied the stability of internal equilibrium points in discrete
delay replication factor dynamics. Cheng et al. [25] considered delayed game models
with three strategies. In [26], the stability of game models with fixed and random delay
is analyzed.

In general, although some scholars have conducted relevant studies on the innovation
and regulation of digital finance, the objective existence of time delay is not considered,
and its influence on the analysis of system stability is ignored. The introduction of time
delay factors, first, makes the model analysis more consistent with the objective facts, and
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second, may make the originally stable system become unstable. Inspired by this, this
paper establishes several evolutionary game models of financial innovation and regulation
based on the introduction with and without delay under different reward and penalty
mechanisms, illustrating their logical relationship in Figure 1. The stability analysis of
models and properties of Hopf bifurcation is carried out, and the results are verified by
numerical simulation examples. Finally, relevant suggestions are put forward.

Static Dynamic
Mechanism Regulators Mechanism
Active regulation Negative regulation
} Digital
Compliance h ; lllegal
innovation financial innovation
enterprises

Figure 1. The relationship between regulators and digital financial enterprises.

The organization of this article is as follows. In Section 2, the basic hypotheses
are presented and the payment matrix is obtained. The evolutionary game models are
established and the stable strategies are discussed in Sections 3 and 4. In Section 5, the
direction of Hopf bifurcation and the stability of periodic solutions at critical values are
analyzed. In Section 5, numerical examples are given and simulations are performed. In
Section 6, relevant conclusions and suggestions are drawn.

2. Basic Assumptions and Payoff Matrix

This section mainly sets the corresponding parameters for the establishment of models
and obtains the payment matrix. Before proceeding, the following assumptions are needed.
The assumptions of some parameters are similar to the literature [27,28].

Hypothesis 1. Game subject: digital financial enterprises and requlators.

Hypothesis 2. Digital financial enterprises have two pure strategies: “compliance innovation”
and “illegal innovation”, and the probability of selecting compliance innovation is p, and illegal
innovation is 1 — p. Regulators also have two pure strategies: “active regqulation” and “negative
requlation”, with a probability of q for active requlation and a probability of 1 — q for negative
regulation, and the trend of p,q € (0,1).

Hypothesis 3. When enterprises choose compliance innovation, the income and cost are I and Sy,
respectively, while when choosing illegal innovation, its excess income and cost are E(E > 0) and
Sy, respectively.

Hypothesis 4. If financial enterprises choose compliance innovation, the healthy development
of the social economy will bring corresponding benefits, and the requlators will achieve I. If the
financial enterprises opt for illegal innovation, the loss of public interest caused by the financial
enterprises is D, and the regulators obtain I3. The costs of active supervision and passive supervision
by the regulators are Sz and Sy, respectively.

Hypothesis 5. When the regulators are active in supervision, there will be a reward and punishment
mechanism. If the financial enterprises choose compliance innovation, they will obtain a reward
R; otherwise, they will be fined F. When the regulators are passive in supervision, there will be no
reward and punishment.

Based on the above hypotheses, the following Table 1 can be obtained.
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Table 1. Payoff matrix.

Active Regulation (g)  Negative Regulation (1 — gq)

Compliance innovation (p) 1112+ 1;3— 5112, 1112 _ SS 5
e — o4
Illegal innovation (1 — p) LiF e D b+ E -5

3. Evolutionary Models under a Static Mechanism
3.1. Static Mechanism Evolutionary Model without Time Delay

From Table 1, we can obtain a two-dimensional replicated dynamic equation concern-
ing the two-party game between digital financial enterprises and regulators,

{ R(p) = §f = p=p)a(R+F)+5: =51 ~ E, M
Fi(q) = 3 =9(1 —q)[p(=R—F) = S3+ F + 54].

In System (1), if F;(p) = 0 and F;(g) = 0, we can obtain five equilibrium points for
a replicated dynamical system, which are ¥1(0,0), ¥2(0,1), ¥3(1,0), ¥4(1,1), ¥5(p1,91),
where p; = 54&%; E g = Slgs% The ESS of system can be obtained according to its
Jacobian matrix [; [29]. If the equilibrium point of Det/; > 0 and TrJ; < 0O, then this is an

ESS. The Jacobian matrix of System (1) is

= (1-2p)[q(R+F)+ Sy —S1 — E| p(L1—=p)(R+F)
! q(1—q)(~R—F) (1-2q)[p(~R—F) + F+ 54— S|’

Because of Tr]1(¥5) = 0, ¥5 is not an ESS. The values of TrJ; and Det]; for the other
four points are shown in the following Table 2.

Table 2. The values of Tr]; and Det]; in equilibrium.

Points TrJ; Det]1
Y, Sp—S1—E+F—S53+54 (P—53+S4)(52—51—E)
Y, R+S,—S5—E+S3—54 —(F—S3+S4)(R+F+Sz—51—E)
Y3 —(S2—=S51—E)+S4—S—R —(S2 =51 —E)(S4— 53— R)
Yy —(F+S,—S1—E)+S3—5, (—R—S3+4+S4)(R+F+S,—S5—E)

From Table 2, if E > Sp — S and F < S3 — Sy, the ESS of system (1) is ¥;(0,0); if
S3—S4 < F<Eand S; —S; > R,theESSiSTz(O,l);ifE < S, —S7and S4 — S3 < R, the
ESSis ¥3(1,0); and if F > Eand S; — Sp < R < Sy — S3, the ESSis ¥4(1,1).

F < S3 — 54 indicates that the difference in supervision costs is greater than the
amount of penalty received; E > Sp — S; means that the excess return is greater than
the difference in cost required. The ESS is (illegal innovation, negative regulation), and
System (1) will present the phenomenon of frequent security accidents in digital finance.
S3 — S4 < F < E shows that regulators can receive a large fine, but the excess income of
financial firms is greater than the fine; S; — S > R means that they can receive a small
reward for compliance innovation, and the ESS is (illegal innovation, active regulation).
E < S, — S indicates that the excess return is less than the cost to be paid; S4 — S3 < R
shows that the incentive paid by regulators for compliance innovation is greater than the
difference in supervision costs, and the ESS is (compliance innovation, negative regulation).
F > E means that the fines of digital financial firms are greater than the excess returns,
and S; — 5o < R < S4 — S3 means that the cost of active supervision is less than negative
regulation, so the ESS is (compliance innovation, active regulation), indicating that active
regulation plays an important role in promoting compliance innovation.
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3.2. Delayed Static Mechanism Evolutionary Model and Stability Analysis

The coordinated development and win-win cooperation between financial enterprises
and regulators need to be based on information sharing. Only by establishing a sound
information sharing platform to provide information exchange and separate supervision
for financial regulators can coordination and cooperation be achieved. However, in reality,
there is information asymmetry in the process of information sharing, the complexity of
the regulatory objects and other objective factors. The regulators lag in the development of
information updates for digital financial enterprises, and digital financial companies also
lag in updating information on relevant policies and measures of government departments.
The payoff of both parties at the present moment may depend on the strategy at delay 7.

Based on the above discussion, this paper assumes the payoff of the strategy adopted
by the digital financial enterprises at the time t depends on the strategy adopted by the
regulators at time t — 7y; if the strategy of “active regulation” is adopted by the regulators at
time ¢ — 11, then the financial enterprises will be fined F. Additionally, suppose regulators
have a delay 1, if the illegal innovation is adopted at time t — 1o, the profit of the regulators
will increase by F. From System (1), the delayed static mechanism evolutionary model can
be established as follows.

{ Ba(p) = §f = p=p)la(t—7)C— 4], ®
F(g) =g =91 - q)p(t - =) (-C) + B],

where A =851 — Sy +E,B=S54—53+F,C=R+F,¥5(p1,41) is an interior equilibrium
point of system (2). Let p(t) = ¢1(t) + p1, q(t) = la2(t) +q1, (1(t — 1) = p(t — 12) — p1,
l(t — 1) = q(t — 71) — g1, then System (2) becomes

{ dgcllt(t) (01(t) +p1) (1 = £1(t) — pO) (2t — 1) +91)C — A], 3)
40 — (0,() +41)(1 = () — q)[(41(t— 1) + p1)(—C) + B].

It is easy to see the linearized approximation of Equation (3) is

{ G (1 — py) ot — 1), "
e — 11— q)[a(t - ) (—C)].

The characteristic equation of Equation (4) is

P(A) = A% 4 C2eqe0e M = 0. )]
wheree; = p1(1—p1), e2=q(l—q1), T=1 + .

Lemma 1 ([30]). A sufficient and necessary condition for uniform asymptotic stability of the zero
solution of x'(t) = Ax(t — r) is that all the roots of det(AI — Ae="") = 0 are distributed in the
left half, i.e.,

ReA <0, (VA).

According to Lemma 1, we can obtain the following result for System (2).

Theorem 1. The internal equilibrium point ¥s(p1, q1) of System (2) is unstable, and the stability
of the system is not affected by a time delay.

Proof. If T =0,
P(A) = A% 4 C2¢qey, (6)

then based on P(A) = 0, Ay, A, = +iC,/e1€; can be solved. This shows that when 7 = 0,
all eigenvalues are distributed along the imaginary axis.
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When 7 increases slightly from 0, the change in A can be judged according to the sign
of ReA'(T)(A = fiw,w > 0). Taking the derivative of both ends concerning 7, we obtain

2/\‘31—? + Czslsze_“(—r% —A)=0. (7)
From Equation (5), we know A? = —C2¢1e5¢ "7, and then Equation (7) can be trans-
formed into % = zjr—)‘TzA Substituting A = +iC,/e1e; , we gain
dA Cc?
Re<Z = =12 5,
dr A=+iC,/e18; 2

The eigenvalues passes through the imaginary axis into the right half plane, and 7 con-
tinues to increase. At T = 7, the roots intersect the imaginary axis, and the corresponding
roots are denoted by A = i@ (@ # 0); similar to Equation (7), we have

262

= ~2=2
i A+ @O°T

dA

R -
edT

> 0.

This indicates that the roots on the imaginary axis will again enter the right half plane
as T increases slightly from T. O

Remark 1. The proof process of Theorem 1 shows that when T = 0, the eigenvalues of Equation (5)
fall on the imaginary axis, and when it increases gradually from 0, the roots enter the right half
plane, and if it continues to increase from T, the eigenvalues will not enter the left half plane, so
no matter how much t(t > 0) increases, the internal equilibrium ¥s(p1, g1) of System (2) is not
uniformly asymptotically stable.

Remark 2. Under the static mechanism, the stability analysis results of the without delay model
(1) and delay model (2) show that the equilibrium ¥s5(p1,q1) of both sides of the game is not
evolutionarily stable, and the stability of the system is not affected by delays.

Remark 3. The conclusion of Theorem 1 is mainly based on Ty # 1. A natural problem is that if
Ty = Ty, that is, under the static mechanism, if the delay time of the enterprises and regulators is
basically the same, the stability of the equilibrium point is the above Theorem 1 of a special situation,
and from the proof process of Theorem 1, it is easy to draw the following corollary.

Corollary 1. When 11 = T, that is, T = 21y > 0, the internal equilibrium ¥s5(p1,41) of
System (2) is also unstable.

4. Evolutionary Models under a Dynamic Mechanism

From the previous analysis, the equilibrium ¥5(pj,q1) of System (1) and System (2) is
not an ESS, so a dynamic mechanism with more realistic, flexible supervision and higher
liquidity can be introduced to improve the stability of the system. Based on this, the
non-delay and delay replication dynamic equations can be established, and their stability
is analyzed , respectively.

4.1. Dynamic Mechanism Evolutionary Model without Time Delay

Suppose that the regulator’s reward for digital financial firms is ¢(p) = pR, ¢(p) < R
and punishmentis (p) = (1 — p)F, (p) < F, then the replication dynamic equation is

1-p)la(e(p) +¢(p)) + 52— S1 — E], 8)
(

—p
—q)[p(=¢(p) —¥(p)) — S3 +¢(p) + S4].
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The equilibrium points of the dynamic system (8) are ¥/ (0,0), ¥/,(0,1), ¥5(1,0),

_ 2 _ 2_(F— —
¥4(L,1), ¥a(pr, qu). K = S — Sy, ppy = - VRN 4 = Apzi(FEFR)I({;(j:K)K)’

then the Jacobian matrix is

= an g1 =) [1=p)¢'(p) —pe'(p) — ¢(p) — ¥(p)]
p(L—p)(¢(p) +¢(p)) (I =29){pl—¢(p) —v(p)] +v(p) —K} [

where a1 = (1-2p){ql¢(p) + ¢(p)] — Al} + pa(1 — p)[¢'(p) + ¢'(p)]. According to J5,
the stability of System (8) can be analyzed, and the following table presents the relevant
results.

It is evident from the results in Table 3, that ¥ (p11,411) is a unique ESS of System (8).
From the values of p;; and 41, the evolutionary stability strategy of financial enterprises
and regulators is related to the difference between the supervision cost and the ceiling of
reward and punishment of regulatory departments, and also to the difference between the
cost and excess return of digital financial enterprises.

Table 3. Stability of the equilibrium points in System (8).

Points Det]> TrJ Stability
b 4 — saddle
Y, - saddle
Y — saddle
Y — saddle
YL + — ESS

4.2. Dynamic Mechanism Evolutionary Model with Time Delay and Stability Analysis

Based on System (8), which is similar to System (2), it is assumed that the payoff of
the strategy adopted by the financial enterprises at time t depends on the strategy adopted
by the regulators at time t — 73. Similarly, suppose that the benefits of the regulators are
influenced by the financial enterprises at the time of t — 14, then the replicated dynamic
system under the dynamic mechanism can be obtained.

{ Fy(p) = p(1 = p)lq(t — ) (o(p) + ¢(p)) — Al
Fy(q) = q(1 = q)[p(t — @) (—=p(p(t — 1)) — p(p(t — 1)) + P(p(t — 1)) —

Let p(t) = 53(1') + P11, q<t> = €4(t) + q11, é3(t — T4) = p(t — T4) — P11, 54(1' — T3) =
q(t — 13) — q11, then System (9) at equilibrium ¥%(p11,411) becomes

K, ©

0 = (03(4) + p11) (1 — €3(t) — pra) [(Ealt — T3) + q10) ((63(8) + pr)R
+(1 4 () pll) ) A]/ (10)
d%t(t) = (Ly(t) +q11) (1 — €y(t) — q11) [(63(t — @) + p11) (= (b3(t — ) + p11)R
*(1 I3 (t*T4) p11)F)+(1*€3(t*T4)*PH)F*K}.
The linearization result of Equation (10) is
dZS(t) =pu(l— Pn)‘hl(R F)é3(t) + pur(1—p11)
x\/F2 — R)(F — 1<)£ (t—13), (11)
dia(t) _ —qu(l — g1)2/FZ = (F=R)(F — K)l5(t — 13).

The characteristic equation of Equation (11) is

P(A) = A2 — A + BHze ™ =0, (12)
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where

&1 =pu(1—pu)gu(R—F),

& = pn(1—pn)yVF? - (F - R)(F - K),
& = qu(1—q11)2y/F2 — (F = R)(F - K),
™ =1+ 1.

Theorem 2. The sufficient and necessary condition for the equilibrium Y5 (p11,911) of System (9)
to be uniformly asymptotically stable is

0<t" <1,

e 147272
where T = wilarctan( él) @ = (M)%

Proof. If 7" = 0, P(A) = A? — {14 + &¢3 = 0, then by Vieta’s theorem, we can obtain

{ M+Ay=¢1 <0,
AMAg = 8283 >0,

and therefore, A1, Ay < 0. That is to say, when 7" = 0, all roots are distributed in the left
half plane.

Suppose that when 7* is further added, for equilibrium ¥i(p11,411), the system
becomes uniformly asymptotically unstable, and if T* = 7" is the minimum 7* that makes
the equilibrium points unstable, then P(A) = 0 has roots across the imaginary axis; that is,
@1 > 0 exists such that P(£i@,) = 0 is true.

When A =0, P(A) = {283 > 0, so it does not go through the origin. If we substitute
A = i@, into Equation (12), we obtain

P(ian) = (idn)? — &ricn + Erlze 1T
= —@? + &z cos 1 T — (8107 + Ealasin@ TY),

the sufficient and necessary condition for P(i@;) = 0 is

Erlzcos Tt = @2, 13)
G101 + 8283sin@ TF =0,

and this is equivalent to

2

wi
cos T = gzgw (14)
sin T = §12§;‘

It can be solved by Equation (14)

4, 222
2 2 w” + 51wy

sin“ @1 7" + cos” @ TF = s =1,
6563

ie, wt + C%(IJ% — if%@% = 0, and a further calculation can be obtained

o TGt YE GG

1= 2 s
and because of tanw T = é—l then @1 T* = arctan(— él ) +nmr,n=0,1,2--- . When
n=01 = arctan( £ ) soif 0 < 7" < 1, the equ111br1um point of System (9) is

stable.
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As T* increases from 77" and considering how the eigenvalues change in the complex
plane, on both sides of the equation about T*derivative gain

dA L dA

dA .
2N =81 AT ~A) =0
o Clgys T 6ebse (-7 Epe )=0,
from &&e T = —A2 + & A, this equation can be simplified to
2 _ 13
da _ $A=— A , (15)
dt* 24— & — T*EA + T*AZ
and ) s
<2 4 o
Red—)\* = " ~21;L)1 + ful " 5 > 0.
dt* |, _yig, (61 +7@7)* + (201 — 1A

This shows that as 7" increases slightly from 7, the roots will enter the right half plane.
Let 7" continue to increase, then at 7" = 75 corresponding roots back to the imaginary axis.
Similarly,

a
dt*

2 ~2 ~3
w5 + 20
= 12 2 > 0.

Re - —
Aetic,  (C1+T03)? + (200 — T E1A)?

This means that when 7* increases slightly from 7, the characteristic roots will again
enter the right half plane. In general, when 7 > 1, the roots of Equation (12) never enter
the left half plane again. [

Remark 4. From the proof of Theorem 2.

(i) If0 < T < 1, the equilibrium ¥5(p11,q11) of System (9) is asymptotically stable. If
T > 1, the equilibrium is unstable.
(i) If T = 1, System (9) changes from stable to unstable, and undergoes a Hopf bifurcation.

Remark 5. Theorem 2 shows that, under the dynamic mechanism, when the delay of financial
enterprises and regulators is less than the threshold, they will eventually achieve evolutionary
stability. The conclusion of Theorem 2 is mainly based on the fact that T3 is not equal to t4. For
a special case of Theorem 2, 173 = 14, that is, when the delay time of financial enterprises and
requlators is basically the same under the dynamic mechanism, the following corollary can be easily
obtained from the proof process of Theorem 2.

Corollary 2. When 13 = 1y, that is, T" = 273, the equilibrium Y5 (p11,q11) of System (9) is stable
if0 < 1" < 14 is satisfied.

5. Properties of Hopf Bifurcation

In this section, we focus on the condition of 73 = &4 = 7%, 7 = 57, applying the
central manifold theorem and normal form to analyze the Hopf bifurcation direction of
System (9) and the stability of periodic solutions.

For the sake of simplicity, let x1(t) = p(t) — p11, x2(t) = q(t) — q11, x1(s) = p(sT),
x2(s) = q(s1), TF = 19 + 0, 0 € R, then System (9) is equivalent to

21(t) = (10 + ) [Erx1 () + Gaxa(t — 1) + fruxf () + froxr (D) xa(t — 1) + fi3
xx3(t)xa(t — 1) + frax3 (t) + fisx5 () xa(t — 1)), (16)
X(t) = (1 +0)[—8x1(t — 1) + farx3(t — 1) + faox1(t — D)xa(t) + fo3
X% (t—1)xa(t) + faaxr (= 1)x3(t) + fosxg (t — 1)x3(8)],
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where

fir = (1=2p11)qu(R —F),

fiz = [puR+ (1 — p11) FI(1 = 2p11) + (1 — p1)pu(R = F),
fi3=F+R=3[puR+(1-pn)F],
fia = qu(R—F),

f15 = F - Rr

f21 = (1—q11)911(F — R),

f22 = =2[pnR + (1 — p11) F|(1 — 2q11),
f23 = (F=R)(1—2q11),

f2e = =2[puR + (1 — p11)F],

f25 =R-F.

In C = C([-1,0], R?), System (9) can be transformed to

%(t) = Lo(x¢) + f(0, xt), (17)

o=l o) (o) vl §)(am)
£(o,0) = (19 +0) (ﬁ)

where

{ fi = f113(0) + f1201(0)v2(—1) + f1307(0)v2(—1) + f1403(0) + f1507(0)va(—1),
fo= f21v%(—1) + faov1(—1)v2(0) +f23v%(—1)v2(0) +f24vl(—1)v%(0) —|—f25v%(—1)v§(0).
By the Riesz representation theorem, there is a bounded variational function 7 («, o),
such that L,v = fEl dy(a, 0)v(a),

q(oc,a):(ro+(7)(% g)(s(a)—(row)( %3 %)5(a+1).

We define
_Joae[-1,0), ~ (0,007, & € [-1,0),
Que)v = {fol dn(o,s)v(s),a =0 Qalo)v = {f((f,v),oc =0.
System (17) is equivalent to
X(t) = Q1(0)xt + Qa(0)xt, (18)

For u € C}([—1,0], (R?)*), the adjoint operator Q} of Q; is defined as

—i,s € [-1,0),

QTV(S) = {fOl dUT(t,S)‘M(S),S —0,

and a bilinear form
0 ra
(u(s), 0(@)) = FO)(0) = [ [ (&~ @)dn(@)()ds. (19)

According to the previous section, +=7Ty@; are the eigenvalues of Q1 and Q7F, so we
can easily calculate the eigenvectors y(«), 7*(s) corresponding to the eigenvalues, re-
spectively. Suppose that y(a) = (1,71)Te!™1%, 4*(s) = N(1,72)e™%1%, by Q;(0)y(a) =
T0@1Y(a), Q7 (0)7*(s) = —10@17*(s), and the definition of Q; and Q}, we obtain

i) — & Epe 0 0
T0 (_gae—i‘rodll i@ v(a) = 0/’
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i@y — & —Ge @ (0
TO( gzefl"fo(:l] _Zd)l r)/ (S) - 0 .

Zze 04 —in —&

i1 -8y _ _
or 1 = iw; 7 T2 = (;‘3871#0“-)1 or vy =

[;K 6*1'[0(4)1

By calculation we obtain y; = —

—iTy@1
Ezeiwl . To make sure (y*(s),v(a)) = 1, it is necessary to compute N, and from (19),

we have

o 6 7a)) = RO R ) [ [ (A e () (1,) T g
= N[l + 71172 — (1 Ta)oe 01 iy (a )(1,71)Td§]
= N[1+m%2 = (1L72) Qi (0)ae™¥1%(1,71)T]

[1 +1172 + (G372 — 5271)1706_”0‘:’1}-

Thus, N = (1+ 7172 + (8372 — S271) 70 0) 1.

Then, by using the relevant algorithms in the literature [31,32] and similar calculation
processes, we can come up with several coefficients for determining the direction of Hopf
bifurcation and the stability of bifurcated periodic solutions.

Goo = 210N[fi1 + froy1e” 091 + Yo (fo1e” 20V + frrype” 091 )],
Gi1 = N[2f11 + fio (7167091 + F1€091) + 95 (21 + foo (17091 + 12/ 0%1))],
Goz = 2N [f11 + f1271€ 091 + Yo (162091 + frpy1€0D1)],

Gar = N { fu[2W43) (0) + AW (0)] + fral Wiy (0) 7191 + 2W ] (0) 7m0
W) (1) + Wi (~1)] +f13(2’Y1€”0“’1 + dryre D) 461y
+10NY2{.fn1 [ZWZ(O)( 1)ei0n +4W1(1)( 1)e @] +f22[71W2%)(—1)
+271W1(1)( 1)+ 2W1(1)(0> —iT@1 4 W2(O)<O) irocin] + 2f23(2’71 4 716*2”0“71)
+ o4 (2736091 + 4yy 1o~ T00n) }

Among them, the calculation results of Wy (a) and Wy;(a) are

iGyo T @ Goz _ i~ it
W = L y(0)e0@ _ 02 3(0)e IOWIE 4 [, 2001
() = 7,700 S 0 he
Wll (DC) _ Gll (O)Ei'fodfllx _ Gll —(0)671100_]1“ + 12’
ITpan Ty

where Iy = (I11, 1), I = (Ip1, Ip) are constant vectors.

N = 2( fir+ (fiz+ fis + fi5)y1e A0 4 fiy - >
(fZZ'Yl +f24’)/%)g*lw1To + (fZl +f23')’1 _._f25,)/%)6721w1r0

_ fuir + (fiz + fiz + fi5)Re{v1} + fia
a2 = 2<f21 + (f2 + fo3)Re{m1} + (fos + fos5)Re{] })

pue (Bl )

— e @10 0

_ (6 —C
Ba= ( g 0 )
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which leads to
Iy = 2 fut (fa+ fs+ fis)ne 0+ frg —Zpe im0
21l (fam1 + fu7])e ™0 + (fa1 + fasm1 + fasp)e 2T 0o I
[, — 2 | 2@ —G S+ (fo+ fis+ fis)me 0+ g
27| —gae 0 (foom + foarD)e TN + (1 + faami + fosn)e MO0
Iy = 2 fur + (fiz + fis + fis)Re{m} + fia ) —&2 ,
1220 fo1 + (fa2 + fa3)Re{m1} + (fas + fos)Re{7{} 0
Iy = 2 —G1 fur + (fiz + fis + fis)Re{m1} + fia .
[22l] G5 for + (fa2 + fa3)Re{ 71} + (fos + fos)Re{ 77}

In this way, the following formulas can be used to obtain the properties of bifurcation
on the central manifold,
i

1
C1(0) = 5= <G20G11 ~2(Gu[* - 3|G02|2) +

__Re{Gi(0)}
27 RefV(w)}’
ﬁz = ZRE(Cl (O)),
_Im{C1(0)} + poIm{A'(10)}

T = - .
Tow1

Gt
2 7

If up > 0, then the direction of bifurcation is supercritical, the bifurcated periodic
solution is stable if 8, < 0 and the period of the bifurcating periodic solution increases if
T, > 0.

6. Numerical Simulations

To visually and vividly reflect the evolutionary game behavior between two plays
in the above models, we conduct numerical simulation analysis. Based on the parameter
settings mentioned in the relevant literature [14], we set the parametersas F = 6,R =1,
E=1,54=1,5=3,5=3and 51 =4.

6.1. Numerical Analysis under Static Mechanism

Given the set parameters, the equilibrium point ¥5(p1, 1) in System (1) can be solved
as (p1,q1) = (0.5,0.25). Assume that p and g are both 0.5, then the evolution curves of
Systems (1) and (2) are shown in Figure 2a,b, respectively. Figure 2 shows that neither
System (1) nor System (2) are evolutionarily stable at the equilibrium point ¥5(p1,41).
What is more, the curve of System (1) is a closed-loop line in Figure 2a, whereas System (2)
is a time-delay replication dynamic system, and it does not evolve towards equilibrium,
confirming that under the static mechanism, the stability of enterprises and regulators is
not affected by the delay .

To analyze the effect of different delays on System (2), let 7 = 7 = 0.04 and 7y = 0.01,
T = 0.02. In Figure 3, System (2) is unstable regardless of whether the time delay is the
same or different, and the amplitude of the evolution curve’s fluctuation is roughly the
same, but the frequency of the fluctuation is different. The larger the delay 7(7 = 7 + 1©2),
the smaller the fluctuation frequency, and the smaller the delay 7, the larger the fluctuation
frequency, indicating that although the stability strategies of enterprises and regulators are
not affected by delay, it will affect the evolutionary process between them.
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Figure 2. (a) Evolutionary progress of Systems (1); (b) Evolutionary progress of Systems (2). The line

represents the evolution path of p and 4.

(a) (b)
Figure 3. (a) Evolution curve when 71 = 7 = 0.04, (b) Evolution curve when 7; = 0.01, 7 = 0.02.

6.2. Numerical Analysis under Dynamic Mechanism

For Systems (8) and (9), the equilibrium (p11,411) = (0.38,0.45) and 7;7 = 0.1832
can be obtained by keeping the parameter settings unchanged. For System (9), it can be
established from Theorem 2 that as long as 0 < 7" < 77 holds, the dynamic System (9) is
evolutionarily stable for any 7;" = 13 + 7. When 13 = 0.05 and 74 = 0.06, the evolution
processes of Systems (8) and (9) are shown in Figures 4 and 5, respectively. In the figures, the
evolution curves between the enterprises and regulators in both the non-delayed dynamic
system and the time delay dynamic system present a spiral convergence trend and finally
reach stability.

When 3 = 7y = 19 = %1'1* = 0.0916, System (9) undergoes a Hopf bifurcation.
Substituting numerical values for the formulas in Section 5, we obtain

C1(0) = —2.0359 — 1.4262i,
1y =1.8201 > 0,

By = —4.0717 < 0,

T, = 3.5291 > 0,

where y = 1.8201 > 0 indicates that the Hopf bifurcation of the system (9) is supercritical;
that is, the system is stable before bifurcation and unstable after bifurcation, which is
reflected in Figures 5-7. In this case, the stability change in the system is continuous, and
according to the signs of B, and T, it is concluded that the periodic solution of Hopf
bifurcation is stable, and the period of the periodic solution increases gradually.
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Figure 4. (a) Evolution curve of System (8) when 13 = 0.05, 74 = 0.06; (b) The evolution progress of p
and g as t changes.
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Figure 5. (a) Evolution curve of System (9) when ™ = 13 + 14 = 0.05 + 0.06 = 0.11 < T'; (b) The
evolution progress of p and g as t changes.
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Figure 6. (a) Evolution curve of System (9) when 13 = 74y = 19 = %Tl* ; (b) The evolution progress of p
as t changes; (c) The evolution progress of g as t changes.
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Figure 7. (a) Evolution curve of System (9) when 7 = 13 + 14 = 0.15+ 0.1 = 0.25 > 77 = 0.0916;
(b) The evolution progress of p as t changes; (c) The evolution progress of g as ¢ changes.

Figure 7 is the evolution process of the delayed dynamic System (9) when 7* =
73+ 17 =0.15+0.1 = 0.25 > 7. Itis obvious from the figure that there is no ESS between
the two sides, and the path is a closed-loop line around (0.38, 0.45). It is also known from
the figure that the players of both sides present periodic behavior patterns. Figures 5-7
prove the objective fact that time delay affects the stability of the system; when it is less
than threshold, the system remains stable and goes through Hopf bifurcation at threshold,
and when it is greater than the critical value, there is a qualitative change in the system. In
real life, before reaching critical conditions, if players’ strategies can not be adjusted, that
means digital financial enterprises and regulators need to control the delay of obtaining
information and establish a good information sharing platform.

Effect of Initial Value on Amplitude of State Curve of System (9)

Based on the setting of the previous parameters, the impact of different initial values
on the evolutionary curve of System (9) are compared. When the probability p = 0.38 for
enterprises to adopt compliance innovation, 4 = 0.3 and g = 0.8 are taken as the initial
values of active supervision by the regulators; when g = 0.45,p = 0.3 and p = 0.8 are taken
as the initial values of financial enterprises. The corresponding evolution curves are shown
in Figure 8.

p and q oscillate in the initial stage, and the larger the initial values of p and g, the
larger the oscillation amplitude. It can be seen from the evolution curve that the greater
the possibility of compliance innovation of financial enterprises in the initial stage, the
greater the fluctuation of its evolutionary stability curve, and the smaller the possibility of
regulators’ active regulation at the beginning, the smaller the fluctuation of its evolutionary
stability curve. If the strategy in the initial stage is (illegal innovation, negative regula-
tion), then both sides of the game can quickly achieve evolutionary stability, and market
fluctuations will be relatively small, which is more conducive to market coordination and
long-term development.
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Figure 8. (a) The evolution process of p as t changes when g is set to 0.3 and 0.8; (b) The evolution
process of g as t changes when p is set to 0.3 and 0.8

7. Conclusions and Recommendations
7.1. Conclusions

In this paper, from the establishment and analysis of the models, we draw the follow-
ing conclusions.

Firstly, under the static condition, the internal equilibrium point ¥5(p1, 1) is not ESS
for Systems (1) and (2), and whether the delay exists or not does not affect its stability. It
shows that regulators and digital financial enterprises cannot reach a stable state, and their
evolution process shows a cyclical movement. According to the theoretical results, there
are boundary stability strategies between them under certain conditions. Among them, if
the fines of digital financial firms are greater than the excess returns, and the cost of active
regulation is less than negative regulation, then (compliance innovation, active regulation)
is ESS, indicating that active regulation plays an important role in promoting compliance
innovation and can achieve this by increasing the penalties and reducing regulatory costs
to regulate the behavior of innovation.

Secondly, under the dynamic mechanism, for Systems (8) and (9) ESS equilibrium
exists, and its stability changes with the change in delay. The system is stable before
the delay reaches the critical value, Hopf bifurcation occurs at threshold, the bifurcation
direction is forward, the periodic solution of the bifurcation is stable and the period
gradually increases, and the system becomes unstable if the delay exceeds the threshold.
In the process of evolution, regulators and firms can achieve a stable state, which shows
the superiority of dynamic mechanisms. However, this stable state only exist under
certain conditions, so digital financial enterprises and regulators need to limit the delay of
information acquisition to a certain range when making decisions.

7.2. Recommendations

A few suggestions can be made from the theoretical results of this paper.

For regulators, first, improve the financial regulatory framework and rules, and im-
prove risk compensation, emergency response, service withdrawal, and other mechanisms.
They must control financial industry overall risk, limit excess competition in the financial
sector, and promote the healthy and stable financial sector in accordance with the law.
Second, promote the idea of compliance innovation, and conduct reasonable guidance and
constraints on innovation activities. Third, regulators can take the initiative to supervise
financial institutions through technological means. Big data, cloud computing, artificial
intelligence, and other technologies can be used to build data platforms and analysis plat-
forms for financial regulation.The use of digital regulatory means to continuously and
dynamically monitor the operation status of innovative applications can in a timely manner
locate, track, prevent, and resolve risks and hidden dangers. Through the digital expression
of regulatory policies and compliance requirements, the establishment of an information
sharing platform can effectively solve the problem of information asymmetry, which is
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conducive to easing regulatory delays, improving regulatory penetration, and enhancing
regulatory uniformity.

Digital financial enterprises should consciously innovate in compliance with regu-
lations and improve their professional quality. They should establish and improve the
self-supervision system, self-supervision management, and internal control management.
Financial innovation is conducive to the improvement in financial efficiency, the effective
allocation of resources, and the promotion of economic development, but the innovation
of financial models, products, services, and tools must be carried out under certain insti-
tutional constraints to avoid the occurrence of financial risks and realize the healthy and
sustainable development of financial innovation.

7.3. Weaknesses and Prospects

Although this paper introduces the delay factor and obtains the relevant theoretical
results, the influencing factors of financial innovation are not comprehensively considered.
In addition, this article focuses on a two-party evolutionary game, which has certain
limitations. Future work can consider building a three-party evolutionary game model; for
example, the public can be added into the game model. In addition, it will be interesting to
explore the influence of different delay types on the system’s stability, and the addition of a
delay feedback controller to control critical values, and we will conduct further research on
these issues in the future.
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