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Abstract: In this paper, we study the approximation of continuous functions on a subclass of singular
space—the subcartesian space. As is well known, the orbit space of the proper action of a Lie group
on a smooth manifold is a subcartesian space. We prove that continuous functions on the orbit space
can be approximated by smooth functions.
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1. Introduction

There has long been perceived the need for an extension of the framework of smooth
manifolds in differential geometry, which is too restrictive and does not admit certain basic
geometric intuitions. Sikorski’s [1] theory of differential spaces studies the differential
geometry of a large class of singular spaces, which both contains the theory of manifolds
and allows the investigation of singularities. Analogous to algebraic geometry, which is the
investigation of geometry in terms of polynomials, the theory of differential space is the
investigation of geometry in terms of differentiable functions.

Precisely, a differential structure on a topological space S is a family C∞(S) of real-
valued functions on S satisfying the following conditions:

1. The family
{ f−1(I)| f ∈ C∞(S)and I is an open interval inR}

is a subbasis for the topology of S.
2. If f1, · · · , fn ∈ C∞(S) and F ∈ C∞(Rn), then F( f1, · · · , fn) ∈ C∞(S).
3. If f : S → R is a function such that, for every x ∈ S, there exists an open neighborhood

U of x, and a function fx ∈ C∞(S) satisfying

fx|U = f |U ,

then f ∈ C∞(S). Here, the subscript vertical bar | denotes a restriction. (S, C∞(S)) is
said to be a differential space. Functions f ∈ C∞(S) are called smooth functions on S.

It follows that a smooth manifold M can be characterized as a differential space
(M, C∞(M)), with C∞(M) being all smooth functions on the smooth manifold M, such
that every point has a neighborhood U diffeomorphic to an open subset V of Rn, where n
is the dimension of the manifold, the differential structures on U and V are generated by
restrictions of smooth functions of M and Rn, respectively, and diffeomorphism is in the
sense of differential space. This definition can be weakened by not requiring V to be open
in Rn and allowing n to be an arbitrary non-negative integer.
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Definition 1. A differential space S is said to be subcartesian [2] if every point of S has a neighbor-
hood U diffeomorphic to a subset of some Cartesian space Rn. (U, Φ,Rn) is said to be a local chart
of p, where Φ : U → Φ(U) ⊆ Rn is the diffeomorphism.

The theory of subcartesian spaces has been developed by Śniatycki et al. in recent
years. See [2] for a systematic treatment of this topic. From the above definition, any subset
of a Euclidean space endowed with the differential subspace structure is a subcartesian
space. Another typical example of subcartesian space is the orbit space of the proper action
of a connected Lie group on a smooth manifold [2–4].

In this paper, we investigate the following problem: given any continuous function
f on a subcartesian space S, we ask whether it can be approximated by smooth functions
on S.

It is well known that a continuous function on a smooth manifold can be approximated
by a smooth function [5,6], as stated by the following theorem.

Theorem 1 ([5]). Let M be a smooth manifold and f : M → R be a continuous function. Then,
for any δ > 0, there exists a smooth function h ∈ C∞(M), such that

|h(x)− f (x)| < δ,

for all x ∈ M.

However, for a subcartesian space S, we cannot infer that a continuous function on
S can be approximated by smooth functions on S. The first obstruction is that, given
p ∈ S, with (U, Φ,Rn) being its local chart, we cannot infer that the continuous function f
restricting to U can be extended to a continuous function f̃ on an open subset of Rn that
contains Φ(U) such that f̃ ◦ Φ(x) = f (x), for each x ∈ U.

In this paper, we investigate a special class of subcartesian space—orbit space R of
the proper action of a connected Lie group G on a smooth manifold M. We overcome
the obstructions described above by taking advantage of the geometric structure of the
orbit space, which is obtained by the reduction of the symmetry of smooth manifolds.
Precisely, we first investigate the local approximation problem, which is defined on an open
neighborhood of p ∈ R, and then study passages from local to global. Since continuous
or smooth functions on R can be lifted to G-invariant continuous or smooth functions on
M, respectively, the local problem can be solved by approximating G-invariant continuous
functions by G-invariant smooth functions on M. This can be solved by using the geometry
of the symmetry of smooth manifolds together with Theorem 1. For the problem of passages
from local to global, the geometric structure of the symmetry of smooth manifolds also
plays a central role. We obtain the following theorem that gives a positive answer to the
problem proposed above.

Theorem 2. Let f : R → R be a continuous function on the orbit space R. Then, for any δ > 0,
there exists h ∈ C∞(R), such that

|h(y)− f (y)| < δ,

for any y ∈ R.

To the best of our knowledge, this is the first result on the approximation of functions
in subcartesian space. We have not seen any approximation theorem in subcartesian space
in the existing literature.

The paper is organized as follows. In Section 2, we recall some basic definitions in
the subcartesian space. In Section 3, we recall some basic facts about the orbit space. In
Section 4, we prove our main results.
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2. Subcartesian Space

Definition 2 ([2]). Let S1 and S2 be two differential spaces. A map ϕ : S1 → S2 is C∞ if
ϕ∗ f = f ◦ ϕ ∈ C∞(S1) for every f ∈ C∞(S2). A C∞ map ϕ between differential spaces is a
diffeomorphism if it is invertible and its inverse is C∞.

An alternative means of constructing a differential structure on a set S is as follows.
Let F be a family of real-valued functions on S. Endow S with the topology generated by a
subbasis

{ f−1(I)| f ∈ F and I is an open interval inR}.

Define C∞(S) by the requirement that h ∈ C∞(S) if, for each x ∈ S, there exists an open
subset U of S, functions f1, · · · , fn ∈ F , and F ∈ C∞(Rn) such that

h|U = F( f1, · · · , fn)|U .

Clearly, F ∈ C∞(S). It is proven in [2] that C∞(S) defined here is a differential structure
on S. We refer to it as the differential structure on S generated by F .

Let S be a differential space with a differential structure C∞(S), and let T be an arbitrary
subset of S endowed with the subspace topology (open sets in T are of the form T ∩ U,
where U is an open subset of S). Let

S(T) = { f |T | f ∈ C∞(S)}.

Definition 3 ([2]). The space S(T) of restrictions to T ⊆ S of smooth functions on S generates a
differential structure C∞(T) on T such that the differential-space topology of S coincides with its
subspace topology. In this differential structure, the inclusion map i : T → S is smooth.

In other words, S(T) is the space of restrictions to T of smooth functions on S.
Now, consider an equivalence relation ∼ on a differential space S with differential

structure C∞(S). Let R = S/∼ be the set of equivalence classes of ∼, and let ρ : S → R be
the map assigning to each x ∈ S its equivalence class ρ(s).

Definition 4 ([2]). The space of functions on R, given by

C∞(R) = { f : R → R|ρ∗ f ∈ C∞(S)},

is a differential structure on R. In this differential structure, the projection map ρ : S → R
is smooth.

It should be emphasized that, in general, the quotient topology of R = S/∼ is finer
than the differential-space topology defined by C∞(R).

A condition for the differential-space topology to coincide with the quotient topology
is given below.

Proposition 1 ([2]). The topology of R induced by C∞(R) coincides with the quotient topology
of R if, for each set U in R that is open in the quotient topology, and each y ∈ U, there exists a
function f ∈ C∞(R) such that f (y) = 1 and f |R\U = 0, where R\U denotes the complement of U
in R.

3. Orbit Space

Consider the smooth and proper action

Φ : G × M → M

(g, x) → Φ(g, x) = Φg(x) = gx (1)
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of a locally compact connected Lie group G on a manifold M. Recall that the action is
proper if, for every convergent sequence (xn) in M and a sequence (gn) in G such that the
sequence (gnxn) is convergent, the sequence (gn) has a convergent subsequence (gnk ) and

lim
k→∞

(gnk xnk ) = ( lim
k→∞

gnk )( lim
k→∞

xnk ).

The isotropy group Gx of a point x ∈ M is

Gx = {g ∈ G|gx = x}.

Gx is compact [2]. The orbit Gx of G through x is defined by Gx = {gx|g ∈ G}. The
function f on M is said to be G-invariant, if f (x) = f (gx), for any x ∈ M and g ∈ G. The
subset A ⊆ M is said to be G-invariant if gx ∈ A, for any x ∈ A, g ∈ G.

We endow the orbit space R = M/G with the quotient topology. In other words, a
subset V of R is open if U = ρ−1(V) is open in M, where ρ : M → R is the canonical
projection (the orbit map). Let

C∞(R) = { f : R → R|ρ∗ f ∈ C∞(M)}.

C∞(R) is a differential structure on R.

Proposition 2 ([2]). The topology of R induced by C∞(R) coincides with the quotient topology.

In the following, we introduce the definition of a slice, which plays a central role in
the geometric structure of the symmetry of smooth manifolds.

Definition 5 ([2]). A slice through x ∈ M for an action of G on M is a submanifold Sx of M
containing x such that

1. Sx is transverse and complementary to the orbit Gx of G through x. In other words,

Tx M = TxSx ⊕ Tx(Gx).

Specifically,
Tx M = TxSx + TxGx, TxSx ∩ TxGx = {0}.

2. For every x′ ∈ Sx, the manifold Sx is transverse to the orbit Gx′; in other words,

Tx′ M = Tx′Sx + Tx′(Gx′).

3. Sx is Gx-invariant. Specifically, gy ∈ Sx for any g ∈ Gx and y ∈ Sx.

4. Let x′ ∈ Sx. If gx′ ∈ Sx, then g ∈ Gx.

Given a G-invariant Riemannian metric k on M, we denote by verTM the generalized
distribution on M consisting of vectors tangent to G-orbits in M, and by horTM the k-
orthogonal complement of verTM. The existence of a slice through x ∈ M is ensured by
the following result.

Proposition 3 ([2]). There is an open ball B in horTx M centered at 0 such that Sx = expx B
is a slice through x for the action of G on M, where expx v is the value at 1 of the geodesics
of the G-invariant Riemannian metric originating from x in the direction v. Further, the set
GSx = {gq|g ∈ G and q ∈ Sx} is a G-invariant open neighborhood of x in M.

Let H = Gx. By construction, Sx = expx B, where expx is an H-equivariant map from a
neighborhood of 0 in Tx M to a neighborhood of x in M, and B is a ball in horTx M invariant
under a linear action of H centered at the origin. The action of H on Tx M is linear, and it
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leaves horTx M invariant. Hence, it gives rise to a linear action of H on horTx M. Moreover,
the restriction of expx to B gives a diffeomorphism ψ : B → Sx, which intertwines the linear
action of H on horTx M and the action of H on Sx.

Since B is an H-invariant open subset of horTx M and the action of H on horTxSx
is linear, via the theorem of G. W. Schwarz [7], smooth H-invariant functions on Sx are
smooth functions of algebraic invariants of the action of H on horTx M. Let R[horTx M]H

denote the algebra of H-invariant polynomials on horTx M. Hilbert’s Theorem [8] ensures
that R[horTx M]H is finitely generated. Let σ1, · · · , σn be a Hilbert basis for R[horTx M]H

consisting of homogeneous polynomials. The corresponding Hilbert map

σ : horTx M → Rn : v → σ(v) = (σ1(v), · · · , σn(v)) (2)

induces a monomorphism σ̃ : (horTx M)/H → Rn : Hv → σ(v), where Hv is the orbit of
H through v ∈ horTx M treated as a point in (horTx M)H. Let Q be the range of σ. By the
Tarski–Seidenberg Theorem [9], Q is a semi-algebraic set in Rn. Let

ϕ : (horTx M)/H → Q ⊆ Rn (3)

be the bijection induced by σ̃. ϕ is a diffeomorphism [2].
Since B is an H-invariant open neighborhood of 0 in horTxSx, it follows that B/H is open

in (horTx M)/H. Hence, B/H is in the domain of the diffeomorphism ϕ : (horTx M)/H →
Q, which induces a diffeomorphism of B/H onto ϕ(B/H) ⊆ Q ⊆ Rn. Thus, B/H is
diffeomorphic to a subset of Rn. However, B/H is diffeomorphic to Sx/H, and Sx/H is
diffeomorphic to GSx/G. Therefore, GSx/G is diffeomorphic to a subset of Rn. Hence, we
have the following.

Theorem 3 ([2]). The orbit space R = M/G of a proper action of G on M with the differential
structure C∞(R) is subcartesian.

4. Approximating Continuous Function on Orbit Space by Smooth Functions

In this section, we prove Theorem 2. We first study the local approximation problem.

Lemma 1 ([5]). Let M be a smooth manifold and f be a continuous function on M. Given ϵ > 0,
then there exists h ∈ C∞(M) such that |h(p)− f (p)| < ϵ, for p ∈ M.

Lemma 2 ([10]). Let U, V be two open subsets of the smooth manifold M satisfying that cl(U) is
compact and cl(U) ∩ cl(V) = ∅, where cl(U) and cl(V) denote the closure of U and V. Then,
there exists a smooth function f ∈ C∞(M) such that

f (x) = 1, x ∈ cl(U),

0 < f (x) < 1, x ∈ M\(cl(V) ∪ cl(U)),

f (x) = 0, x ∈ cl(V). (4)

Now, consider the subcartesian space (R = M/G, C∞(R)). The following result
provides a positive solution to the local approximation of a continuous function on R by a
smooth function.

Lemma 3. For each y0 ∈ R, there exists a local neighborhood V of y0 satisfying that, for any
continuous function f on V and any δ > 0, there exists a smooth function f1 ∈ C∞(V), where
(V, C∞(V)) is a differential subspace of R, such that

| f1(y)− f (y)| < δ,

for any y ∈ V.



Mathematics 2024, 12, 386 6 of 10

Proof. Let x0 ∈ M such that ρ(x0) = y0. Let H be the isotropy group of x0 and Sx0 = expx0
B

be a slice through x0 ∈ M, where expx0
is an H-equivariant map from a neighborhood of

0 in Tx0 M to a neighborhood of x0 in M, and B is a ball in horTx0 M invariant under the
linear action of H centered at the origin.

Then, for any continuous function f on ρ(GSx0), it follows that exp∗
x0
(ρ∗ f |Sx0

) is a
continuous function on B, where ρ : M → R is the orbit map. From Lemma 1, we know
that for any δ > 0, there exists a smooth function h ∈ C∞(B), such that

|h(v)− exp∗
x0
(ρ∗ f |Sx0

)(v)| < δ,

for any v ∈ B.
Now, consider the smooth function h ◦ exp−1

x0
on Sx0 , which satisfies that |h ◦ exp−1

x0
(v)−

ρ∗ f |Sx0
(v)| < δ, for any x ∈ expx0

B. Since H is compact, we may average h ◦ exp−1
x0

over
H, obtaining a H-invariant function

h̃ =
∫

H
Φ∗

g(h ◦ exp−1
x0

)dµ(g),

where dµ(g) is the Haar measure on H normalized so that volH = 1.
The set GSx0 is a G-invariant open neighborhood of x0 in M. We can define a G-

invariant smooth function f̃1 on GSx0 as follows. For each x′′ ∈ GSx0 , there exists g ∈ G
such that x′′ = gx′ for x′ ∈ Sx, and we set

f̃1(x′′) = h̃(x′).

f̃1 is well defined. Let x′′ = g1x1, where g1 ∈ G and x1 ∈ Sx. From the above definition,
we have f̃1(x′′) = h̃(x1). On the other hand, since g1x1 = gx′, we have g−1

1 gx′ = x1.
Since x′, x1 ∈ Sx, it follows from Definition 5 and Proposition 3 that g−1

1 g ∈ H. Hence,
h̃(x1) = h̃(g−1

1 gx′) = h̃(x′) since h̃ is H-invariant; this yields that f̃1 is well defined. From
the definition of f̃1, we know that f̃1 is G-invariant, which descends to a function f1 on
ρ(Sx0) such that ρ∗ f1 = f̃1. Moreover, for each y ∈ ρ(expx0

B), we have

| f1(y)− f (y)| = |h̃(x)− ρ∗ f (x)|

= |
∫

H
(Φ∗

g(h ◦ exp−1
x0

))(x)dµ(g)−
∫

H
(Φ∗

g(ρ
∗ f ))(x)dµ(g)|

= |
∫

H
(Φ∗

g(h ◦ exp−1
x0

)− Φ∗
g(ρ

∗ f ))(x)dµ(g)|

≤
∫

H
|(Φ∗

g(h ◦ exp−1
x0

)− Φ∗
g(ρ

∗ f ))(x)|dµ(g)

<
∫

H
δdµ(g)

= δ, (5)

where x ∈ expx0
B satisfies that ρ(x) = y. We claim that f1 ∈ C∞(ρ(Sx0)), where

(ρ(Sx0), C∞(ρ(Sx0))) is the differential subspace of (R, C∞(R)). For any x ∈ GSx0 , let
0 ∈ W ⊆ V ⊆ horTx M be Gx-invariant open subsets of horTx M such that expx(V) ⊆ GSx0 .
It follows from Lemma 2 that there exists a smooth function η : horTx M → R such that

η(x) = 1, x ∈ cl(W),

0 < η(x) < 1, x ∈ V\cl(W),

η(x) = 0, x ∈ horTx M\V, (6)
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which yields a smooth function η ◦ exp−1
x on Sx. Since V, W are H-invariant, then by aver-

aging η ◦ exp−1
x over Sx, we obtain a Gx-invariant smooth function η̃ on Sx satisfying that

η̃(x) = 1, x ∈ expx(cl(W)),

0 < η̃(x) < 1, x ∈ expx(V\cl(W)),

η̃(x) = 0, x ∈ Sx\ expx(V), (7)

which can be extended to a smooth G-invariant function η̃1 on M. Now, consider the
function η̃1 f̃1 on M. Since expx V ⊆ GSx0 , it follows that η̃1 f̃1 is a smooth G-invariant
function on M satisfying that η̃1 f̃1

∣∣
G expx(cl(W)) = f̃1

∣∣
G expx(cl(W)). Since η̃1 f̃1 descends to

η1 f1 ∈ C∞(R), it follows that η1 f1|ρ(expx(cl(W))) = f1|ρ(expx(cl(W))), where ρ(expx W) is an
open neighborhood of ρ(x) in R. Since x is arbitrary in Sx0 , it follows that f1 ∈ C∞(ρ(GSx)),
where (ρ(GSx), C∞(ρ(GSx))) is a differential subspace of R. This completes the proof of
the claim.

Hence, for y0 ∈ R and for x ∈ ρ−1(y0), there exists a local neighborhood ρ(GSx) of
y0 satisfying that, for any continuous function f on ρ(GSx) and any δ > 0, there exists a
smooth function f1 ∈ C∞(ρ(GSx)), where (ρ(GSx), C∞(ρ(GSx))) is a differential subspace
of R, such that

| f1(y)− f (y)| < δ,

for any y ∈ ρ(GSx). Hence, the result follows.

In the following, we investigate passages from local to global for the approximation
problem on R.

Lemma 4. Let x ∈ M and let 0 ∈ W ⊆ V ⊆ U ⊆ B be H-invariant open subsets of horTx M
such that cl(W) ⊆ V and cl(V) are compact, where B satisfies that expx B = Sx, and cl(W) and
cl(V) denote the closure of W and V. Let T be an open subset of R and (ρ(expx U), ψ) be the local
coordinate for R induced by the Hilbert map (2). Let f : R → R be a continuous map satisfying that
f |T ∈ C∞(T), where (T, C∞(T)) is a differential subspace of (R, C∞(R)). Then, for any δ > 0,
there exists a continuous map h : R → R, such that

(1) h(y) = f (y), for any y ∈ R\ρ(expx(V));
(2) h|T∪ρ(expx W) ∈ C∞(T ∪ ρ(expx W));
(3) |h(y)− f (y)| < δ, for all y ∈ R.

Proof. It follows from Lemma 2 that there exists smooth function η : horTx M → R
such that

η(x) = 1, x ∈ cl(W),

0 < η(x) < 1, x ∈ V\cl(W),

η(x) = 0, x ∈ horTx M\V, (8)

which yields a smooth function η ◦ exp−1
x on Sx. Since V, W are H-invariant, then by aver-

aging η ◦ exp−1
x over Sx, we obtain a Gx-invariant smooth function η̃ on Sx satisfying that

η̃(x) = 1, x ∈ expx(cl(W)),

0 < η̃(x) < 1, x ∈ expx(V\cl(W)),

η̃(x) = 0, x ∈ Sx\ expx(V), (9)
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which can be extended to a smooth G-invariant function on M. Hence, we obtain a function
η̄ ∈ C∞(R) satisfying that

η̄(y) = 1, y ∈ ρ(expx(cl(W))),

0 < η̄(y) < 1, y ∈ ρ(expx(V\cl(W))),

η̄(y) = 0, y ∈ R\ρ(expx(V)). (10)

It follows from Lemma 3 that the function f |ρ(GSx) can be approximated by smooth
functions on ρ(GSx). In other words, for any δ > 0, there exists a smooth function
h0 ∈ C∞(ρ(expx(U))) such that |h0(y)− f (y)| < δ, for y ∈ ρ(GSx).

Since f = (1 − η̄) f + η̄ f , we define

h = (1 − η̄) f + η̄h0.

Since η̄(y) = 0, y ∈ R\ρ(expx(V)), it follows that h(y) = f (y), for any y ∈ R\ρ(expx(V));
Since η̃h0 ∈ C∞(R) and f |T ∈ C∞(T), it follows that h|T ∈ C∞(T). Since η̄(y) = 1,
y ∈ ρ(expx(cl(W))), it follows that h|ρ(expx W) = η̃h0|ρ(expx W) ∈ C∞(ρ(expx W)). Hence,
h|T∪ρ(expx W) ∈ C∞(T ∪ ρ(expx W)), since both T and ρ(expx W) are open in R. Since
h(y)− f (y) = η̃h0(y)− η̃h(y), it follows immediately that |h(y)− f (y)| < δ, for all y ∈ R.
Then, the result follows.

Lemma 5 ([5]). Let X be a second, countable, locally compact Hausdorff topological space. Then,
there exist countable many sets G1, G2, · · · , Gk, · · · satisfying that

(1) cl(Gj) is compact, j = 1, 2, · · · ;
(2) cl(Gj) ⊆ Gj+1, j = 1, 2, · · · ;
(3) ∪Gj = ∪cl(Gj) = X,

where cl(Gj) denotes the closure of Gj, j = 1, 2, · · · .

Lemma 6. There exist locally finite open covers (Uj)j∈Z>0 , (Vj)j∈Z>0 , (Wj)j∈Z>0 of R such
that cl(Uj) ⊆ Vj, cl(Vj) ⊆ Wj, and cl(Uj), cl(Vj), cl(Wj) are compact, for each j > 0, where
(Wj,Rnj , ϕj) is a local chart of R induced by the Hilbert map (2).

Proof. From Lemma 5, we know that there exist countable open sets G1, · · · , Gk, · · · on R
satisfying conditions (1), (2) and (3) in Lemma 5. It follows that cl(Gh)\Gh−1 is compact,
Gh+1\cl(Gh−2) is open and cl(Gh)\Gh−1 ⊆ Gh+1\cl(Gh−2). On the other hand, we know
that the local charts induced by the Hilbert map σ (see (2)) of R form an open cover of
R. Then, for y ∈ cl(Gh)\Gh−1, there exists a local chart (V, ϕ) of y induced by the Hilbert
map σ. Consider the H invariant open set σ−1(ϕ(Gh+1\cl(Gh−2)) ∩ V)

)
in horTx M, where

ρ(x) = y. There exists an open ball Bϵ such that cl(Bϵ) ⊆ σ−1(ϕ(Gh+1\cl(Gh−2)) ∩ V)
)

centered at 0. Let W = ϕ−1 ◦ σ(Bϵ). Hence, W is an open subset containing y such that
cl(W) ⊆ (Gh+1\cl(Gh−2)) ∩ V.

It follows that
(1) y ∈ W ⊆ (Gh+1\cl(Gh−2)) ∩ V; (2) ϕ(y) = 0 and ϕ(W) & ϕ(V).
Since cl(W) = σ(cl(Bϵ)) and cl(Bϵ) is compact, it follows that cl(W) is compact.
Let W1 = σ(Bϵ1), where 0 < ϵ1 < ϵ. Then, W1 is an open set containing y such that

cl(W1) ⊆ W. Denote by V = W1. Moreover, let W2 = ϕ−1 ◦ σ(Bϵ2), where 0 < ϵ2 < ϵ1.
Then, W2 is an open set containing y such that cl(W2) ⊆ V. Denote by U = W2. Then, we
have cl(U) ⊆ V and cl(V) ⊆ W.

Since cl(Gh)\Gh−1 is compact, there exist finitely many points yh,1, yh,2, · · · , yh,kh
∈

cl(Gh)\Gh−1, such that the corresponding open sets Uh,1, Uh,2, · · · , Uh,kh
form an open

cover of cl(Gh)\Gh−1. We claim that the corresponding open sets

{U1,1, U1,2, · · · , U1,k1 ; U2,1, U2,2, · · · , U2,k2 ; · · · },
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and
{V1,1, V1,2, · · · , V1,k1 ; V2,1, V2,2, · · · , V2,k2 ; · · · },

and
{W1,1, W1,2, · · · , W1,k1 ; W2,1, W2,2, · · · , W2,k2 ; · · · },

satisfy the conditions in the lemma. We only need to prove the local finiteness of {Wi,j}.
Given y ∈ R, assume that y ∈ Gr, for some r ∈ {1, 2, · · · }; then, it follows from the above
construction that there exist many finite Wi,j that intersect Gr. In fact,

Wi,j ∩ Gr = ∅, i ≥ r + 2, 1 ≤ j ≤ ki.

This completes the proof of the lemma.

Now, we begin to prove Theorem 2.

Proof. From Lemma 6, we know that there exist locally finite open covers (Uj)j∈Z>0 ,
(Vj)j∈Z>0 , (Wj)j∈Z>0 of R such that cl(Uj) ⊆ Vj, cl(Vj) ⊆ Wj, and cl(Uj), cl(Vj), cl(Wj) are
compact, for each j > 0, where (Wj,Rnj , ϕj) is a local chart of R induced by the Hilbert
map (2).

Set W0 = ∅, f0 = f . Assume that we have continuous function fk on R such that fk|Gk
is smooth, where

Gk = ∪k
j=0Wj.

Then, it follows from Lemma 4 that there exists continuous function fk+1 on R, such that
fk+1|Gk+1 is smooth, where

Gk+1 = ∪k+1
j=0 Wj,

is a subset of R.
Moreover, fk+1|M\Vk+1

= fk, and

| fk+1(y)− fk(y)| <
δ

2k+1 , (11)

for all y ∈ R.
Hence, let

h(y) = lim
k→∞

fk(y).

It follows from (11) that, for fixed y ∈ R, { fk(y)} is a Cauchy sequence in R. Hence, h is
well defined. Moreover,

|h(y)− f (y)| < δ,

for any y ∈ R.
We claim that h ∈ C∞(R). For y ∈ R, there exists l ∈ Z>0, such that y ∈ Wl . Now,

consider the functions fl , fl+1, · · · , which are smooth on Wl . It follows that ρ∗ fl , ρ∗ fl+1, · · ·
are smooth functions on the open subsets ρ−1(Wl) of M, which satisfies

|ρ∗ fk+1(x)− ρ∗ fk(x)| < δ

2k+1 , (12)

for k ≥ l and x ∈ ρ−1(Wl). It follows that limk→∞ ρ∗ fk ∈ C∞(ρ−1(Wl)). Moreover,
since ρ∗ fk(gx) = ρ∗ fk(x), for any x ∈ ρ−1(Wl), g ∈ G, it follows that limk→∞ ρ∗ fk(gx) =
limk→∞ ρ∗ fk(x). Hence, we find that limk→∞ ρ∗ fk is G-invariant and hence descends to g on
W. Hence, h|Wl ∈ C∞(Wl). Since y is arbitrary and Wl is open, it follows from condition 3
in the definition of differential space that h ∈ C∞(R). This completes the proof.

Theorem 4. Let f : R → Rn be a continuous function on R. Then, for any ϵ > 0, there exists
h ∈ C∞(R;Rn), such that

|h(y)− f (y)| < ϵ,
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for any y ∈ R. Moreover, h is homotopic to f .

Proof. Let δ = ϵ/
√

n. It follows from Theorem 2 that there exist smooth functions
h1, · · · , hn ∈ C∞(R) such that

|hi(y)− fi(y)| < δ,

for any y ∈ R, where f = ( f1, · · · , fn). Consider the smooth map h = (h1, · · · , hn). We
have that

|h(y)− f (y)| < ϵ,

for any y ∈ R. Moreover, define

F(t, y) = (1 − t)h(y) + t f (y),

for (t, y) ∈ I × R. It is obvious that F defines a homotopy from h to f . Hence, the result
follows immediately.

5. Conclusions

In this paper, we have considered the problem of approximating continuous functions
by smooth functions on a subclass of singular spaces—subcartesian spaces. We have
investigated a special class of subcartesian spaces—the orbit space of the proper action of a
Lie group on a smooth manifold. By taking advantage of the geometric structure of the
symmetry of the smooth manifold, we have shown that continuous functions on the orbit
space can be approximated by smooth functions. In the future, we would like to investigate
more subclasses of subcartesian spaces on which the approximation theorem holds.
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