
Citation: Muravnik, A.B. On Global

Solutions of Hyperbolic Equations

with Positive Coefficients at Nonlocal

Potentials. Mathematics 2024, 12, 392.

https://doi.org/10.3390/

math12030392

Academic Editor: Denis Borisov

Received: 28 November 2023

Revised: 17 January 2024

Accepted: 23 January 2024

Published: 25 January 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

On Global Solutions of Hyperbolic Equations with Positive
Coefficients at Nonlocal Potentials
Andrey B. Muravnik

Nikol’skii Mathematical Institute, RUDN University, Miklukho–Maklaya ul. 6, 117198 Moscow, Russia;
amuravnik@mail.ru

Abstract: We study hyperbolic equations with positive coefficients at potentials undergoing transla-
tions with respect to the spatial independent variable. The qualitative novelty of the investigation is
that the real part of the symbol of the differential-difference operator contained in the equation is
allowed to change its sign. Earlier, only the case where the said sign is constant was investigated.
We find a condition relating the coefficient at the nonlocal term of the investigated equation and the
length of the translation, guaranteeing the global solvability of the investigated equation. Under
this condition, we explicitly construct a three-parametric family of smooth global solutions of the
investigated equation.
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1. Introduction

The fact that reasonable models of mathematical physics cannot be exhausted by
differential equations and, therefore, equations containing other operators apart from dif-
ferential ones (they are called functional-differential equations) are to be studied as well,
which is known to researchers over many decades. Unlike differential operators, those
operators might be bounded, but the main novelty of this enhancement approach is that
such functional-differential equations link values of the desired function at different points.
This nonlocal nature of functional-differential equations qualitatively causes new prop-
erties of their solutions, provides a possibility to use them in applications not covered
by the classical theory of differential equations, and demonstrates close relations to the
theory of nonlocal problems, which is quite important for various applications as well
(see, e.g., [1,2]).

Ordinary functional-differential equations are studied at least from the middle of
the previous century (see [3] and references therein). The theory of partial functional-
differential equations is relatively younger: one can refer to [4] as a pioneering work. It
should be noted that even the term “elliptic” is to be carefully clarified in the functional-
difference case because the traditional classification of partial differential equations does not
work in the functional-differential case. Thus, the notion of elliptic functional-differential
equations is not trivial at all. For the current state of the general theory of elliptic functional-
differential equations, we refer to [5,6].

Though the present paper is devoted to hyperbolic functional-differential equations,
the general elliptic theory is important within its framework due to the following circum-
stance: once we are able to define elliptic functional-differential operators, we can say
that each equation of the kind ut − Lu = f is parabolic and each equation of the kind
utt − Lu = f is hyperbolic, where L is an arbitrary elliptic functional-differential operator.
In this paper, we concentrate our attention on the important class of functional-differential
equations, called differential-difference ones. They are equations containing translation
operators (apart from differential ones). It is important that translation operators are
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Fourier multipliers and, therefore, there is a natural way to introduce the ellipticity of such
operators, basing on the signs of the real parts of their symbols.

In this paper, we study hyperbolic differential-difference equations containing sums
of differential operators and (spatial) translation operators (in other words, hyperbolic
equations with nonlocal potentials). Such equations are investigated since [7], where the
prototype equation

∂2u
∂t2 − ∂2u

∂x2 = au(x + h, t). (1)

is studied under the assumption that the coefficient a is negative (this restriction for the
sign of the coefficient means the positivity of the real part of the symbol of the differential-
difference operator with respect to the spatial variable). In [8–10], the investigation is
successively extended to more general hyperbolic equations with nonlocal potentials, but
the requirement for the sign of the said real part is still preserved.

Here, we take this restriction off, allowing the coefficient a to be positive. Now, the
real part of the symbol of the differential-difference operator might change its sign, but we
are still able to construct smooth global solutions of the investigated equation.

2. Results and Proofs

Let a > 0 and h ∈ R1. In R2, consider Equation (1). Assuming that ah2 < 2, consider
the function f (ξ) := ξ2 − a cos hξ. Its derivative is equal to

2ξ + ah sin hξ = 2ξ

(
1 +

ah2

2
sin hξ

hξ

)
,

i.e., the continuous function f monotonously increases on (0,+∞). Further, f (0) = −a < 0
and f (ξ) > 0 for each ξ exceeding

√
a. Thus, the function f has one and only one positive

zero, and it belongs to (0,
√

a ]. Denote this zero by ξ0.
If sin hξ0 ̸= 0, then the function

φ(ξ) =
1
2

arctan
a sin hξ

|ξ2 − a cos hξ| (2)

can be defined (as a continuous function) at the point ξ0: its left-side and right-side limits

at that point are equal to
π

4
sgn(sin hξ0).

If sin hξ0 = 0, then ξ0 satisfies the following system of equations:{
sin hξ0 = 0
a cos hξ0 = ξ2

0,

which means that

√
1 −

ξ4
0

a2 = 0, i.e., the only positive root of the above system is
√

a. To

compute the limit of the function φ at the point
√

a, compute the value of the fraction

(sin hξ)′

(ξ2 − a cos hξ)′
=

h cos hξ

2ξ + ah sin hξ

at the said point. It is equal to
h

2
√

a
and, therefore, the function φ can be redefined (as a

continuous function) at the point
√

a by the value
1
2

arctan
h
√

a
2

. Taking into account the

oddness of function (2), we conclude that it is continuous in (−∞, ∞).
Note that the function

ρ(ξ) =
(

ξ4 − 2aξ2 cos hξ + a2
) 1

4 (3)
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is well defined in (−∞, ∞) because the radicand is not exceeded by

ξ4 − 2aξ2 + a2 = (ξ2 − a)2 > 0.

The following assertions are valid.

Theorem 1. If the inequality
ah2 < 2 (4)

holds, then each function
αF(x, t; ξ) + βH(x, t; ξ), (5)

where
F(x, t; ξ) = etG1(ξ) sin

[
tG2(ξ) + φ(ξ) + xξ

]
, (6)

H(x, t; ξ) = e−tG1(ξ) sin
[
tG2(ξ)− φ(ξ)− xξ

]
, (7)

and

G{ 1
2}(ξ) = ρ(ξ)

{
sin
cos

}
φ(ξ), (8)

is an infinitely smooth function satisfying Equation (1) for each real α, each real β, and each ξ from
(−∞,−ξ0) ∪ (ξ0, ∞).

Proof. Let ξ ∈ (−∞,−ξ0) ∪ (ξ0, ∞) and, therefore, φ(ξ) =
1
2

arctan
a sin hξ

ξ2 − a cos hξ
. Subs-

titute function (6) in Equation (1):

∂F
∂t

= G1(ξ)etG1(ξ) sin
[
tG2(ξ) + φ(ξ) + xξ

]
+ G2(ξ)etG1(ξ) cos

[
tG2(ξ) + φ(ξ) + xξ

]
,

∂2F
∂t2 = G2

1(ξ)e
tG1(ξ) sin

[
tG2(ξ) + φ(ξ) + xξ

]
+G1(ξ)G2(ξ)etG1(ξ) cos

[
tG2(ξ) + φ(ξ) + xξ

]
+G1(ξ)G2(ξ)etG1(ξ) cos

[
tG2(ξ) + φ(ξ) + xξ

]
−G2

2(ξ)e
tG1(ξ) sin

[
tG2(ξ) + φ(ξ) + xξ

]
=

[
G2

1(ξ)− G2
2(ξ)

]
etG1(ξ) sin

[
tG2(ξ) + φ(ξ) + xξ

]
+2G1(ξ)G2(ξ)etG1(ξ) cos

[
tG2(ξ) + φ(ξ) + xξ

]
,

and
∂2F
∂x2 = −ξ2etG1(ξ) sin

[
tG2(ξ) + φ(ξ) + xξ

]
.

Further, G2
1(ξ) − G2

2(ξ) = ρ2(ξ) sin2 φ(ξ) − ρ2(ξ) cos2 φ(ξ) = −ρ2(ξ) cos 2φ(ξ) and
2G1(ξ)G2(ξ) = ρ2(ξ) sin 2φ(ξ).

Now, we note that −π

4
< φ(ξ) <

π

4
on R1 by definition. Then, 2φ(ξ) ∈

(
−π

2
,

π

2

)
on

R1 and, therefore, the function cos 2φ(ξ) is positive everywhere. Then,

cos 2φ(ξ) =
1√

1 + tan2 2φ(ξ)
=

[
1 +

a2 sin2 hξ

(ξ2 − a cos hξ)2

]− 1
2

=

√
(ξ2 − a cos hξ)

2

ξ4 − 2aξ2 cos hξ + a2 .

Note that the denominator of the last fraction can vanish only under the assumption that
cos hξ = 1, but the numerator is equal to the denominator in that case. Thus, the last
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relation has a sense under the assumptions of the theorem. Further, the denominator of the

last fraction is equal to ρ4(ξ). Therefore, cos 2φ(ξ) =

√
(ξ2 − a cos hξ)

2

ρ2(ξ)
.

If ξ ∈ (−∞,−ξ0) ∪ (ξ0, ∞), then the function ξ2 − a cos hξ is positive. Hence,

cos 2φ(ξ) =
ξ2 − a cos hξ

ρ2(ξ)

and, therefore,

sin 2φ(ξ) = tan 2φ(ξ) cos 2φ(ξ) =
a sin hξ

ξ2 − a cos hξ

ξ2 − a cos hξ

ρ2(ξ)
=

a sin hξ

ρ2(ξ)
.

Thus,
∂2F
∂t2 − ∂2F

∂x2 = −ρ2(ξ) cos 2φ(ξ)etG1(ξ) sin
[
tG2(ξ) + φ(ξ) + xξ

]
+ρ2(ξ) sin 2φ(ξ)etG1(ξ) cos

[
tG2(ξ) + φ(ξ) + xξ

]
+ξ2etG1(ξ) sin

[
tG2(ξ) + φ(ξ) + xξ

]
=

(
a cos hξ − ξ2

)
etG1(ξ) sin

[
tG2(ξ) + φ(ξ) + xξ

]
+a sin hξetG1(ξ) cos

[
tG2(ξ) + φ(ξ) + xξ

]
+ξ2etG1(ξ) sin

[
tG2(ξ) + φ(ξ) + xξ

] (9)

= aetG1(ξ)
(

cos hξ sin
[
tG2(ξ) + φ(ξ) + xξ

]
+ sin hξ cos

[
tG2(ξ) + φ(ξ) + xξ

])
= aetG1(ξ) sin

[
tG2(ξ) + φ(ξ) + xξ + hξ

]
= aetG1(ξ) sin

[
tG2(ξ) + φ(ξ) + (x + h)ξ

]
= aF(x + h, t),

i.e., function (6) satisfies (in the classical sense) Equation (1) in the half-space Rn+1 for each
ξ from (−∞,−ξ0) ∪ (ξ0, ∞).

Now, substitute function (7) in Equation (1):

∂H
∂t

= −G1(ξ)e−tG1(ξ) sin
[
tG2(ξ)− φ(ξ)− xξ

]
+G2(ξ)e−tG1(ξ) cos

[
tG2(ξ)− φ(ξ)− xξ

]
,
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∂2H
∂t2 = G2

1(ξ)e
−tG1(ξ) sin

[
tG2(ξ)− φ(ξ)− xξ

]
−G1(ξ)G2(ξ)e−tG1(ξ) cos

[
tG2(ξ)− φ(ξ)− xξ

]
−G1(ξ)G2(ξ)e−tG1(ξ) cos

[
tG2(ξ)− φ(ξ)− xξ

]
−G2

2(ξ)e
−tG1(ξ) sin

[
tG2(ξ)− φ(ξ)− xξ

]
=

[
G2

1(ξ)− G2
2(ξ)

]
e−tG1(ξ) sin

[
tG2(ξ)− φ(ξ)− xξ

]
−2G1(ξ)G2(ξ)e−tG1(ξ) cos

[
tG2(ξ)− φ(ξ)− xξ

]
= −ρ2(ξ) cos 2φ(ξ)e−tG1(ξ) sin

[
tG2(ξ)− φ(ξ)− xξ

]
−ρ2(ξ) sin 2φ(ξ)e−tG1(ξ) cos

[
tG2(ξ)− φ(ξ)− xξ

]
=

(
a cos hξ − ξ2

)
e−tG1(ξ) sin

[
tG2(ξ)− φ(ξ)− xξ

]
−a sin hξe−tG1(ξ) cos

[
tG2(ξ)− φ(ξ)− xξ

]
,

and
∂2H
∂x2 = −ξ2e−tG1(ξ) sin

[
tG2(ξ)− φ(ξ)− xξ

]
.

Hence,
∂2H
∂t2 − ∂2H

∂x2 = ae−tG1(ξ)
(

cos hξ sin
[
tG2(ξ)− φ(ξ)− xξ

]
− sin hξ cos

[
tG2(ξ)− φ(ξ)− xξ

])
= ae−tG1(ξ) sin

[
tG2(ξ)− φ(ξ)− xξ − hξ

]
= ae−tG1(ξ) sin

[
tG2(ξ)− φ(ξ)− (x + h)ξ

]
= aH(x + h, t),

(10)

i.e., function (7) is a classical solution of Equation (1) for each ξ from (−∞,−ξ0)∪ (ξ0, ∞).

Theorem 2. If inequality (4) holds, then each function (5), where F(x, t; ξ) and H(x, t; ξ) are
defined by relations (6) and (7), respectively, while

G{ 1
2}(ξ) = ρ(ξ)

{cos
sin

}
φ(ξ), (11)

is an infinitely smooth solution of Equation (1) for each real α, each real β, and each ξ from (−ξ0, ξ0).

Proof. Assuming that ξ ∈ (−ξ0, ξ0) and, therefore, φ(ξ) =
1
2

arctan
a sin hξ

a cos hξ − ξ2 , we

conclude that φ(ξ) ∈
(
−π

4
,

π

4

)
, i.e., 2φ(ξ) ∈

(
−π

2
,

π

2

)
on R1 and, therefore, the function

cos 2φ(ξ) is positive everywhere. Therefore,

cos 2φ(ξ) =
1√

1 + tan2 2φ(ξ)
=

[
1 +

a2 sin2 hξ

(a cos hξ − ξ2)2

]− 1
2

=

√
(a cos hξ − ξ2)

2

ξ4 − 2aξ2 cos hξ + a2 .

The denominator of the last fraction can vanish only if cos hξ = 1. However, its numerator
is equal to its denominator in that case and, therefore, it vanishes as well. This is possible
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only under the assumption that ξ = ξ0, but this contradicts the assumptions of the theorem.
Thus,

cos 2φ(ξ) =
1√

1 + tan2 2φ(ξ)
=

a cos hξ − ξ2√
ξ4 − 2aξ2 cos hξ + a2

=
a cos hξ − ξ2

ρ2(ξ)
,

sin 2φ(ξ) = tan 2φ(ξ) cos 2φ(ξ) =
a sin hξ

a cos hξ − ξ2
a cos hξ − ξ2

ρ2(ξ)
=

a sin hξ

ρ2(ξ)
.

(12)

Now, taking into account that, unlike the case of Theorem 1, G2
1(ξ)− G2

2(ξ) = ρ2(ξ) cos
2φ(ξ), substitute function (6) in Equation (1):

∂2F
∂t2 − ∂2F

∂x2 = ρ2(ξ) cos 2φ(ξ)etG1(ξ) sin
[
tG2(ξ) + φ(ξ) + xξ

]
+ρ2(ξ) sin 2φ(ξ)etG1(ξ) cos

[
tG2(ξ) + φ(ξ) + xξ

]
+ ξ2etG1(ξ) sin

[
tG2(ξ) + φ(ξ) + xξ

]
=

(
a cos hξ − ξ2

)
etG1(ξ) sin

[
tG2(ξ) + φ(ξ) + xξ

]
+a sin hξetG1(ξ) cos

[
tG2(ξ) + φ(ξ) + xξ

]
+ ξ2etG1(ξ) sin

[
tG2(ξ) + φ(ξ) + xξ

]
,

which coincides with (9). Therefore, function (6) satisfies Equation (1) (in the classical sense).
Function (7) is substituted in Equation (1) in the same way: as above,

∂2H
∂t2 =

[
G2

1(ξ)− G2
2(ξ)

]
e−tG1(ξ) sin

[
tG2(ξ)− φ(ξ)− xξ

]
−2G1(ξ)G2(ξ)e−tG1(ξ) cos

[
tG2(ξ)− φ(ξ)− xξ

]
,

but G2
1(ξ)− G2

2(ξ) = cos 2φ(ξ) now (under the assumptions of Theorem 2). Therefore,

∂2H
∂t2 = ρ2(ξ) cos 2φ(ξ)e−tG1(ξ) sin

[
tG2(ξ)− φ(ξ)− xξ

]
−ρ2(ξ) sin 2φ(ξ)e−tG1(ξ) cos

[
tG2(ξ)− φ(ξ)− xξ

]
.

Now, taking into account relations (12), we conclude that

∂2H
∂t2 − ∂2H

∂x2 = e−tG1(ξ)
(
(a cos hξ − ξ2) sin

[
tG2(ξ)− φ(ξ)− xξ

]
−a sin hξ cos

[
tG2(ξ)− φ(ξ)− xξ

])
+ξ2e−tG1(ξ) sin

[
tG2(ξ)− φ(ξ)− xξ

]
= aH(x + h, t)

in the same way as in (10).
Thus, function (7) satisfies Equation (1) (in the classical sense) as well.

3. Heuristic Considerations

As we see above, Theorems 1 and 2 are proven directly: we just take function (5) and
substitute in Equation (1). Such a proof is strict and clear, but it does not explain how to
find the solution. In this section, we show how to apply the well-known Gel’fand–Shilov
operational scheme (see, e.g., [11], Section 10) in the considered case.

Formally applying the Fourier transformation with respect to the variable x to Equation (1),
which is a partial differential-difference equation, we obtain the following ordinary differential
equation depending on the parameter ξ:

d2û
dt2 +

(
|ξ|2 − a cos hξ − ia sin hξ

)
û = 0. (13)
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Its general solution (up to arbitrary constants depending on the parameter ξ) is equal to

1
ρ(ξ)

(
e−t G1(ξ)ei[t G2(ξ)−φ(ξ)] − et G1(ξ)e−i[t G2(ξ)+φ(ξ)]

)
,

where the functions G{ 1
2}(ξ), φ(ξ), and ρ(ξ) are defined by relations (8), (2), and (3),

respectively.
Now, it remains to (formally) apply the inverse Fourier transformation, to eliminate

terms with odd integrands, and to choose the arbitrary constants depending on the param-
eter ξ such that purely imaginary terms are to be eliminated. Note that those remaining
actions of the Gel’fand–Shilov procedure cannot be performed in our case because no
convergence of the arising improper integral with respect to ξ is guaranteed. However,
if we truncate the Gel’fand–Shilov procedure before integration with respect to the dual
variable ξ and treat that variable as a parameter, then the obtained function, which is
represented by (5), satisfies Equation (1). To verify this, we substitute it in Equation (1) in
Section 2 above.

4. Novelty Nature Notes

As we note above, the crucial novelty of the presented results is as follows: earlier,
the coefficient at the nonlocal potential was always assumed to be negative. In more
general cases (for instance, if there are more than one nonlocal term or the dimension
of the spatial variable is greater than one), that restriction is more complicated, but its
sense is the same: the real part of the symbol of the differential-difference operator acting
with respect to spatial variables is required to be of a constant sign. In no way this is a
technical restriction: in the classical case of differential equations, the sign-constancy of the
symbol is the criterion of the ellipticity. However, the said classical case is much more
simple: symbols of differential operators are just polynomials. Moreover, second-order
homogeneous differential operators reduced to the canonical form are most frequently
studied in the classical case; their symbols are just quadratic forms. In the case of an elliptic
operator (i.e., if the operator has no real characteristics), the corresponding quadratic form
has a constant sign. If the operator is hyperbolic, then the sign of the corresponding
quadratic form varies and its sign-constancy sets are divided from each other by the conical
surface (a pair of lines in the case of a one-dimensional spatial variable) that is the only real
characteristic of the operator.

In the differential-difference case studied here, the symbol is not a polynomial any-
more, and this causes a qualitatively greater diversity: we can omit the sign-constancy
requirement for the symbol.

However, under the assumptions imposed in this paper, we actually have the mono-
tonicity of the specified symbol ξ2 − a cos hξ. This deserves a special attention because
no symbol monotonicity arises in the classical theory of differential equations (as far as
the author is aware). It is clear that the monotonicity is a scalar property. Therefore,
only the monotonicity of symbols of operators acting with respect to the selected (coor-
dinate) directions might arise in the general multidimensional case, but this seems to be
reasonable because differential-difference equations are actually differential equations with
translations acting along selected directions.

5. Conclusions

In this paper, we continue the investigation of differential-difference hyperbolic equa-
tions with nonlocal potentials, taking off restrictions for signs of real (or imaginary) parts
of symbols of operators contained in the investigated equations. The prototype case of
Equation (1) is considered and the coefficient a at the nonlocal potential is assumed to be
positive; earlier, only the case of negative values of the said coefficient was considered.

For Equation (1), we impose Condition (4), which neither means the smallness of
the coefficient at the nonlocal term nor the smallness of its translation. Under the said
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assumption, we explicitly construct the following three-parameter family of smooth global
solutions of Equation (1):

u(x, t) = αF(x, t; ξ) + βH(x, t; ξ),

where {
F
H

}
(x, t; ξ) = e±tG1(ξ) sin

[
tG2(ξ)± φ(ξ)± xξ

]
,

G{ 1
2}(ξ) =

{
ρ(ξ)

{
sin
cos

}
φ(ξ) for |ξ| > ξ0,

ρ(ξ)
{ cos

sin
}

φ(ξ) for |ξ| < ξ0,

φ(ξ) =
1
2

arctan a sin hξ
ξ2−a cos hξ

for |ξ| > ξ0,

arctan a sin hξ
a cos hξ−ξ2 for |ξ| < ξ0,

ρ(ξ) =
(

ξ4 − 2aξ2 cos hξ + a2
) 1

4 ,

ξ0 is the only positive root of the equation ξ2 = a cos hξ, α and β are arbitrary real constants,
and ξ is an arbitrary value from R1\{−ξ0, ξ0}.
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