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Abstract: This paper proposes several methodologies whose objective consists of securing copula
density estimates. More specifically, this aim will be achieved by differentiating bivariate least-squares
polynomials fitted to Deheuvels’ empirical copulas, by making use of Bernstein’s approximating
polynomials of appropriately selected orders; by differentiating linearized distribution functions
evaluated at optimally spaced grid points; and by implementing the kernel density estimation
technique in conjunction with a repositioning of the pseudo-observations and a certain criterion for
determining suitable bandwidths. Smoother representations of such density estimates can further
be secured by approximating them by means of moment-based bivariate polynomials. The various
copula density estimation techniques being advocated herein are successfully applied to an actual
dataset as well as a random sample generated from a known distribution.
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1. Introduction and Preliminary Considerations
1.1. Introduction

Copulas are principally utilized for modeling dependency features in multivariate
distributions. Thus far, they have found applications in numerous fields of scientific
investigation, including finance, reliability theory, machine learning, signal processing,
geodesy, hydrology, and biostatistics. Of note, they are increasingly used in several areas
of forecasting such as portfolio optimization, water systems management, values at risk,
irradiation effects, and stock price projections. Such applications are discussed in the
following recent papers among others: Quintero et al. [1], Kim et al. [2], Sreekumar et al. [3],
Wang et al. [4], Karmakar and Khadotra [5], Müller and Reuber [6], Sahamkhadam and
Stephan [7], and Wang et al. [8]. As well, a chapter of the monograph authored by Patton [9]
is devoted to their use in connection with the forecasting of multiple time series.

Copulas enable one to represent the joint distribution of two or more random variables
in terms of the marginal distributions and a specific correlation structure so that the effect of
the dependence between the variables can be separated from the contribution of each of the
marginals. This paper addresses the two-dimensional case, which is not overly restrictive
as will be explained in Section 4. Certain definitions and results that will be needed in the
sequel are reviewed next.

A bivariate copula function is a distribution whose support is the unit square, 12 = [0 , 1]2,
and whose marginals are uniformly distributed. More formally, a function C : 12 7→ 1 is a
bivariate copula if it satisfies the following properties:

For every u, v ∈ 1, C(u, 1) = u, C(1, v) = v and C(u, 0) = C(0, v) = 0 ;
For every u1, u2, v1, v2 ∈ 1 such that u1 ≤ u2 and v1 ≤ w2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.
This last inequality ensures that C(u, v) is non-decreasing in both variables.
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The following result, which was introduced by Sklar (1959) [10], constitutes a seminal
contribution to the theory of copulas and its application.

Result 1 (Sklar’s Theorem). Let H(x, y) be the joint cumulative distribution function of the
random variables X and Y whose continuous marginal distribution functions are denoted by F(x)
and G(y). Then, there exists a unique bivariate copula C(·, ·) : 12 7→ 1, such that

H(x, y) = C(F(x), G(y)) (1)

where C(·, ·) is a joint cumulative distribution function having uniform marginals. Conversely,
for any continuous cumulative distribution functions F(x) and G(y) and any copula C(·, ·),
the function H(·, ·), as specified in Equation (1), constitutes a joint distribution function whose
marginal distribution functions are F(·) and G(·).

This result provides a technique for constructing copulas. Indeed, the function

C(u, v) = H
(

F−1(u), G−1(v)
)

(2)

is a bivariate copula, where the quasi-inverses F−1(·) and G−1(·) are given by

F−1(u) = inf {x | F(x) ≥ u}, ∀ u ∈ (0, 1), (3)

and

G−1(v) = inf {y | G(y) ≥ v}, ∀ v ∈ (0, 1). (4)

Copulas are invariant with respect to strictly increasing transformations. More specif-
ically, letting X and Y be two continuous random variables whose associated copula is
C(· , ·), if α(·) and β(·) are two strictly increasing functions and Cα,β(· , ·) is the copula
obtained from α(X) and β(Y), then for all (u, v) ∈ 12, Cα, β(u, v) = C(u, v).

We shall denote the probability density function (pdf) corresponding to the copula
C(u, v) by

c(u, v) =
∂ 2C(u, v)

∂u∂v
. (5)

The following relationship between the joint density function of X and Y, denoted
by h(·, ·), and the associated copula density function c(· , ·) can be readily obtained by
differentiating the right-hand side of Equation (1) with respect to x and y:

h(x, y) = f (x) g(y) c(F(x), G(y)) (6)

where f (x) and g(y) respectively denote the marginal density functions of X and Y. Ac-
cordingly, the copula density function can be expressed as follows:

c(u, v) =
h(F−1(u), G−1(v))

f (F−1(u)) g(G−1(v))
. (7)

Given a random sample (x1, y1), . . . , (xn, yn) generated from the distributions of the
continuous random variables X and Y, let

(ui, vi) = (F(xi), G(yi)), i = 1, . . . , n,

where F(·) and G(·) are the usually unknown marginal cumulative distribution functions
(cdf’s) of X and Y. Throughout this paper, X and Y are assumed to be continuous random
variables, and n will denote the sample size. For the estimation of copulas having discrete
marginals, the reader is referred to Genest and Nes̆lehová [11]. Now, since the underlying
distributions of the variables are herein assumed to be continuous, the xi’s are, in theory, all



Mathematics 2024, 12, 398 3 of 35

distinct, and so are the yi’s. Should a dataset happen to contain replicates due to rounding,
for instance, the observations could be randomly perturbed in a minimal way, which would
ensure that the ranks associated with each variable will be distinct.

The pseudo-observations (ûi, v̂i), i = 1, . . . , n, are then defined in terms of the empiri-
cal marginal cdf’s denoted by F̂(·) and Ĝ(·), that is,

(ûi, v̂i) = (F̂(xi), Ĝ(yi)), i = 1, . . . , n, (8)

where the empirical cdf’s (ecdf’s) are given by

F̂(x) =
1
n

n

∑
i=1

I(xj ≤ x) and Ĝ(y) =
1
n

n

∑
i=1

I(yj ≤ y), (9)

with I(A) denoting the indicator function which is equal to 1 if condition A is verified and
0 otherwise. Equivalently, one has

(ûi, v̂i) = (ri/n, ρi/n), (10)

where ri is the rank of xi among {x1, . . . , xn} and ρi, the rank of yi among {y1, . . . , yn}.
Actually, the pseudo-observations (û1, v̂1), . . . , (ûn, v̂n) form the support of the empirical
copula probability mass function (pmf) which can only take on the values 0 and 1/n and is
defined as follows:

Ĉ(u, v) =
1
n

n

∑
i=1

I(F̂(xi) = u) I(Ĝ(yi) = v) , 0 ≤ u, v ≤ 1 ,

=
1
n

n

∑
i=1

I(ri/n = u) I(ρi/n = v) , 0 ≤ u, v ≤ 1 ,
(11)

the corresponding empirical copula (cdf), as specified by Deheuvels (1979) [12], being
given by

Ĉ(u, v) =
1
n

n

∑
i=1

I(F̂(xi) ≤ u) I(Ĝ(yi) ≤ v)

=
1
n

n

∑
i=1

I(ri/n ≤ u) I(si/n ≤ v).
(12)

Incidentally, Ĉ(u, v) is a consistent estimator of the copula C(u, v). Additional theoretical
results related to copulas are presented in Cherubini et al. [13,14], Denuit et al. [15], Joe [16],
Nelsen [17], and Sklar (1959) [10], among others.

It is explained in the next subsection that it can prove advantageous to reposition the
pseudo-observations.

1.2. Repositioning the Pseudo-Observations

Given a random sample consisting of n bivariate observations, it is propounded that
the favored positioning of the pseudo-observations ought to be at the center of the cell
they occupy in an n × n grid of the unit square. Thus, the corresponding centered pseudo-
observations, that is, (û∗

i , v̂∗i ), are obtained by subtracting 1/(2 × n) from each coordinate
of (ûi, v̂i), i = 1, . . . , n.

For illustrative purposes, consider the sample {(2, 4), (3, 12), (7, 2), (8, 3)} of size n = 4,
which is plotted in Figure 1. In this instance, the ranks of the first component observa-
tions are (1, 2, 3, 4), whereas those of the second component observations are (3, 4, 1, 2).
Accordingly, the pseudo-observations, (ûi, v̂i), i = 1, . . . , 4, as defined in Equation (10),
are {(1/4, 3/4), (1/2, 1), (3/4, 1/4), (1, 1/2)}. These pseudo-observations and the cen-
tered pseudo-observations obtained by subtracting 1/8 from each coordinate, that is,
{(1/8, 5/8), (3/8, 7/8), (5/8, 1/8), (7/8, 3/8)}, are respectively shown in Figures 2 and 3.
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Figure 1. The four data points.

Figure 2. The pseudo-observations.

Figure 3. Centered pseudo-observations.

When making use of pseudo-observations in the context of kernel density estimation,
undesirable boundary effects ensues; as well, the resulting copula density estimates will
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be less concentrated near the origin and more concentrated near the coordinate (1,1) than
they would be in the centered case. Recall that, ideally, copula marginals ought to be
uniformly distributed.

An approach that is suggested in the literature for mitigating the edge effects consists
of multiplying the pseudo-observations by n/(n + 1), which, with n = 4, will produce the
following points {(1/5, 3/5), (2/5, 4/5), (3/5, 1/5), (4/5, 2/5)}. These modified pseudo-
observations are plotted in Figure 4. As can be seen from this graph, these points occupy
haphazard positions within the corresponding grid cells, and their uneven distribution
will result in a copula density that will be less concentrated in the vicinity of both ends
of the unit intervals than it would be with centered pseudo-observations whose marginal
probabilities are 1/n at the points (2i − 1)/(2n), i = 1, . . . , n, for each variable.

The empirical copulas as determined from the pmf of the pseudo-observations which
is equal to 1/4 at the points shown in Figure 2 and, as obtained, the pmf of their centered
counterparts shown in Figure 3, which is equal to 1/4 at those points, are respectively plot-
ted in Figures 5 and 6. The marginals are manifestly closer to being uniformly distributed
in the latter case.

Figure 4. Pseudo-observations × n
n+1 .

Figure 5. Empirical copula as evaluated from the pseudo-observations.
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Figure 6. Empirical copula as evaluated from the centered pseudo-observations.

Wang and Fang [18] and Pérez et al. ([19], p. 100) discussed the following measure of
divergence of a sample S = {x1, x2, . . . , xn} with respect to the distribution function F(x),
which is referred to as F-discrepancy:

DF(S) = supx∈ℜ |Fn(x)− F(x)|,

where Fn(x) denotes the empirical distribution function as determined from S and ℜ, the
set of real numbers. We observe that DF(S) is in fact the Kolmogorov–Smirnov statistic for
assessing goodness-of-fit with respect to F(x). It was established that in one dimension,

{F−1( 2i−1
2n ), i = 1, 2, . . . , n}

is the set of points having the lowest F-discrepancy. In that sense, these n points form the
most representative sample with respect to the distribution specified by F(x). Thus, when
F(·) is the distribution function of a uniform distribution on the unit interval, the sample of
size n having the lowest F-discrepancy is { 2−1

2n , . . . , 2n−1
2n }, which is precisely the support of

each of the marginals of the distribution of the empirical copula pmf when the centered
pseudo-observations are utilized.

Referring to the previous example, if one makes use of four cuboidal kernels whose
height is 4 and whose bases are squares of dimension 1/4 × 1/4 that are centered at
the centered pseudo-observations, (û∗

i , v̂∗i ), i = 1, 2, 3, 4, as defined at the beginning of
this subsection, one obtains continuous uniform marginals on the unit interval from the
resulting joint density function, which can be clearly observed by inspecting the copula
density function appearing in Figure 7 and the corresponding bona fide copula plotted in
Figure 8—obtained via integration of the joint density function shown in Figure 7. This
clearly would not be the case with any other repositioning of the pseudo-observations.
Uniform marginals could be similarly secured for bivariate samples of size n, in which case
the cuboidal kernels would be of dimension 1/n × 1/n × n . As there are n distinct ranks
with respect to each coordinate, each row and each column of the n × n grid of the unit
square will contain exactly one pseudo-observation, whether centered or not.
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Figure 7. Copula density estimate obtained from cuboidal kernels.

Figure 8. Copula resulting from the cuboidal kernel density estimate.

Since the centered points are not lying on the boundary of the support of the copula,
the edge issues being encountered in the context of kernel density estimation are ipso facto
attenuated. Accordingly, we shall make use of the centered pseudo-observations whenever
kernel density estimates (kde’s) are sought.

1.3. Moment-Based Polynomial Approximation Methodology

Once a copula density is determined by means of a nonparametric technique, it can
be approximated or smoothed by a function consisting of the product of a bivariate base
density function and a bivariate polynomial whose coefficients are determined from the
joint moments of the copula distribution. The proposed procedure for achieving this
is described in the next result which extends to two variables a proposition stated in
Provost [20]. Essentially, once the joint moments of the target distribution, as defined in
Equation (13)—be they exact or empirical—are secured, and those associated with an initial
bivariate density approximation, ψY(y1, y2), as specified in Equation (15), are determined,
the density function of the target distribution, namely fY(y1, y2), can be approximated
by taking the product of ψY(y1, y2) and a bivariate polynomial whose coefficients ξi,j
are obtained by solving the linear system (17). The methodology is described in the
following result.

Result 2 (Moment-Based Bivariate Polynomial Approximations). Let fY(y1, y2) be the density
function of a bivariate continuous random variable Y defined in the rectangle (l1, u1)× (l2, u2).
The joint moments of orders i and j obtained from fY(y1, y2) are denoted as

µY(i, j) ≡
∫ u1

l1

∫ u2

l2
yi

1 yj
2 fY(y1, y2)dy2 dy1. (13)
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Let ψY(y1, y2) be a base density function whose distributional features are analogous to those
of fY(y1, y2). In the case of a copula, a uniformly distributed base density is generally suitable. The
joint moments of orders i and j associated with ψY(i, j) are denoted as

mY(i, j) ≡
∫ u1

l1

∫ u2

l2
yi

1 yj
2 ψY(y1, y2)dy2 dy1. (14)

Assuming that the sequence µY(i, j), i = 0, 1, 2, . . . , j = 0, 1, 2, . . . uniquely defines the
distribution of Y, the density function of Y can be approximated by

fn(y1, y2) = ψ(y1, y2)
n

∑
i=0

n

∑
j=0

ξi,j yi
1 yj

2, (15)

where the polynomial coefficients ξi,j can be specified by solving the following system of equations:

∫ u1

l1

∫ u2

l2
yh

1 yg
2 fY(y1, y2)dy2 dy1 =

∫ u1

l1

∫ u2

l2
ψ(y1, y2)

n

∑
i=0

n

∑
j=0

ξi,j yi+h
1 yj+g

2 dy2 dy1, (16)

h = 0, 1, . . . , n; g = 0, 1, . . . , n, which can be re-expressed as

µY(h, g) =
n

∑
i=0

n

∑
j=0

ξi,j mY(i + h, y + g), (17)

h = 0, 1, . . . , n; g = 0, 1, . . . , n.
Thus, given the joint moments associated with fY(·, ·) and ψY(·, ·), one can determine the

polynomial coefficients ξi,j of fn(y1, y2) by solving the system of linear equations specified by (17).
The resulting polynomial function will be referred to as a moment-based bivariate polynomial
approximation of degree n (in each variable).

It should be noted that this result can readily be extended to accommodate approxima-
tions of differing degrees in each variable. Such approximating polynomials can be utilized
to express a copula estimate in a convenient form and, as the case may be, to smooth it. The
base function ψY(y1, y2) can be a uniform density function or some other density function
selected on the basis of the distributional features of the copula density. Whenever the
copula density estimate to be approximated appears to exhibit an irregular pattern that
cannot be related to a familiar copula density function, as is frequently the case, a uniform
density function whose support area slightly exceeds that of the copula ought to be taken
as the base density. Accordingly, unless specified otherwise, we will utilize such a base
density for the purpose of approximating or smoothing copula density functions.

Degree n used in the polynomial adjustment should be selected so that fn(· , ·) provides
an accurate approximation to the copula density estimate. In order to compare a copula
density or distribution function estimate to a reference copula density or distribution
function, we will make use of the integrated squared difference (ISD), which is equal
to the integral of the square of their difference over the domain of interest. When the
density estimates fluctuate erratically near the boundary, a subset of the unit square,
namely [0.1, 0.9]× [0.1, 0.9], will be utilized for comparison purposes. Moreover, in order
to ensure that the resulting density functions be bona fide within the unit square, the
final approximations will be taken to be c ( f̂ (y1, y2)) or c ( f̂ (y1, y2) + | f̂ (y1, y2)|)/2 when
c ( f̂ (y1, y2)) happens to take on negative values, as could possibly be the case with a
polynomial approximation, with c denoting the normalizing constant.

To ensure that the polynomial approximations be positive only within a certain neigh-
borhood of the set of pseudo-observations and zero elsewhere, we next introduce a tech-
nique for obtaining a suitable distributional support.
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1.4. Determining the Support of a Copula Density Function

When a copula density function is directly estimated by a polynomial, as is the case
for the differentiated least-squares copula estimates introduced in Section 2.1, or it is
being approximated by means of a moment-based bivariate polynomial, as is the case in
Section 2.4.2, some fluctuations may occur in certain areas located away from the pseudo-
observations. To address this issue, a technique is being proposed for determining a
distributional support denoted by S , outside of which polynomial density estimates or
approximants will be equal to zero.

The support is taken to be the union of all the points lying within a certain distance c
of the centered pseudo-observations. Thus, denoting the centered pseudo-observations by
(û∗

i , v̂∗i ), i = 1, 2, . . . , n, the support of the copula density is defined as

S =
n⋃

i=1

{(u, v) ∈ [0, 1]2 | (u − û∗
i )

2 + (v − v̂∗i )
2 ≤ c2}, (18)

where c, the radius of the circular neighborhood around each point, can be set as equal to
1/10 or another value that allows the density estimate to nearly reach zero on the boundary.

A bona fide copula density function is then obtained by multiplying its polynomial
representation by the indicator function,

I((u, v) ∈ S) =
{

1 when (u, v) ∈ S
0 otherwise,

and normalizing the resulting function.
Consider the Old Faithful geyser eruption data which will be used throughout

Section 2 for illustrative purposes. Scatter plots of the bivariate observations and the
set of centered pseudo-observations are respectively shown in Figures 9 and 10. The sup-
port of the distribution, that is, S , as determined by letting c = 1/10, is plotted in orange in
Figure 11. The polynomial copula density estimate appearing in Figure 12 was obtained
by applying the differentiated least-squares technique introduced in Section 2.1. The bona
fide copula density function, which is shown in Figure 13, was secured by bounding the
original density estimate by the support S and normalizing the resulting function.

Figure 9. Scatter plot of the data.
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Figure 10. Scatter plot of the centered pseudo-observations.

Figure 11. S , the support of the copula density.

Figure 12. Polynomial copula density estimate.
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Figure 13. Copula density estimate bounded by S .

1.5. Structure of the Paper

The remainder of this paper is organized as follows. Section 2 proposes four non-
parametric approaches for securing copula density estimates and specifies criteria for
determining their associated tuning parameters. Additionally, Section 2.5 illustrates that a
joint density estimate can be secured from a copula density estimate. The proposed copula
density estimation techniques are then applied to a sample generated from a bivariate
Student’s t distribution in Section 3. Several concluding remarks are then offered in the
last section.

2. Methodologies for Estimating Copula Densities
2.1. Differentiated Least-Squares Copula Estimates
2.1.1. Introduction

Let (x1, y1), . . . , (xn, yn) denote the dataset at hand and Ĉ(u, v) be the associated
empirical copula as specified in (12). A least-squares approximating polynomial of de-
gree t + 1 in each variable, which is denoted by PLS

t+1 (u, v), is fitted to the n2 points
(j/n, k/n, Ĉ(j/n, k/n)), j, k = 1, 2, . . . , n. The resulting polynomial is then differentiated
with respect to u and v and normalized to obtain a copula density estimate denoted by
ĉLSt (u, v), whose domain is delimited by the unit square. For a derivation of bivariate
least-squares regression polynomials, the reader is referred to Fox ([21], Section 5.2.1).

On plotting the density estimates ĉLSt (u, v) for t = 10, 15, 20, . . . , one will notice that
several successive plots turn out to be quite similar and that, past a certain value of t, higher-
degree polynomials will exhibit noticeably larger fluctuations. That several graphs show
nearly identical features over such a wide range of degrees provides a clear indication that
the copula density functions so obtained are representative of the underlying distribution.
Among these density estimates, the experimenter could select that which possesses the
desired smoothness level or the polynomial of lower degree for the sake of parsimony. A
suitable degree for ĉLSt (u, v) could as well be determined more precisely by evaluating the
integrated squared differences between copula estimates of orders t and t + 5 and choosing
the value of t beyond which the ISD’s no longer decrease markedly. Once normalized, the
copula density estimate of the selected degree will be a bona fide density estimate, which
could then be utilized as a yardstick to calibrate the tuning parameters of density functions
resulting from the application of alternative methodologies.

2.1.2. An Illustrative Example

For comparison purposes, all the proposed copula density estimation techniques
will be applied to the Old Faithful geyser eruption data, which consists of 272 bivariate
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observations whose first component represents the duration of an eruption in minutes and
the second one, the waiting time to the next eruption in minutes. As can be seen from
recently published articles such as Howlett [22] and Keller et al. [23], this dataset, as well as
related ones, are still of current interest as they are required to understand the subsurface
systems that give rise to the geysers. We selected this hydrogeological dataset, noting that
its empirical copula is not as typical as those generally associated with datasets arising, for
instance, in financial modeling, environmetrics, or epidemiology. The four nonparametric
copula density estimation methodologies advocated in this and the next three subsections,
which are also shown to be successful in modeling a challenging distribution in Section 3,
would presumably apply to sets of observations originating from a variety of disciplines.

A kernel density estimate of the joint distribution is shown in Figure 14. The points
Ĉ(j/272, k/272), j, k = 1, . . . , 272, as defined in Equation (12), are plotted in Figure 15. A
bivariate least-squares approximating polynomial of degree t + 1 (in each variable) is fitted
to the empirical copula points plotted in Figure 15 for t = 5, 10, . . . , 40, and differentiated
with respect to each variable as explained in Section 2.1.1; finally, the resulting bivariate
polynomial of degree t in each variable is normalized over the unit square. The copula
density estimates so determined are plotted in Figures 16–22. By mere visual inspection,
one can observe that the copula density estimates of degrees 20, 25, 30, and 35 are analo-
gous, while the estimate of degree 40 attains its maximum at a discernibly higher value
than the previous estimates. Such a stable distributional behavior over an ample range of
degrees—which incidentally are significantly lower that those required by the Bernstein
polynomial approximations discussed in the next subsection—explains why the differenti-
ated least-squares approach is discussed first and justifies employing the selected copula
density estimate resulting from its use as the initial reference density.

Figure 14. A bivariate kde.

Figure 15. The empirical copula.
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Figure 16. Estimated copula pdf, t = 10.

Figure 17. Estimated copula pdf, t = 15.

Figure 18. Estimated copula pdf, t = 20.
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Figure 19. Estimated copula pdf, t = 25.

Figure 20. Estimated copula pdf, t = 30.

Figure 21. Estimated copula pdf, t = 35.
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Figure 22. Estimated copula pdf, t = 40.

If smoothness is a key consideration, one ought to select the copula density of degree
20 in each of the variables as a yardstick for this copula distribution. This choice can be
mathematically corroborated by noting that the integrated squared differences between
successive copula estimates indicate that there is little to be gained by selecting copulas
of degrees greater than 20, which can be inferred from the ISD’s listed in Table 1 and the
graph shown in Figure 23. In actuality, the stability of the density estimates for such a wide
array of degrees beyond 20 is indicative of their reliability.

Table 1. ISD’s between successive density estimates that are five degrees apart.

t ISD

10 3.55799 × 10−6

15 1.06553 × 10−6

20 2.65551 × 10−7

25 3.15104 × 10−7

30 1.01601 × 10−7

35 1.11607 × 10−7

Figure 23. ISD’s between successive least-squares copula estimates.

In this example, least-squares polynomial estimates are underfitting when t < 20 as
they do not adequately capture the distinctive distributional features of the copula, whereas
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estimates of degrees that are at least 20 in each variable turn out to be comparable up
to degree 35. Beyond that degree, the estimates exhibit signs of overfitting. Thus, once
normalized, the differentiated least-squares polynomial of order 20 in each variable is
deemed to be a copula density estimate that is representative of the underlying copula
distribution. A bona fide reference copula estimate can then be secured via integration.

2.2. Bernstein’s Copula Density and Degree Selection
2.2.1. Introduction

This section initially presents relevant background information on Bernstein’s em-
pirical copula. A copula density function will be obtained by differentiating Bernstein’s
polynomial approximation of Deheuvels’ empirical copula, and a criterion for determin-
ing a suitable degree for such an approximant, will be proposed. Leblanc [24] made use
of Bernstein’s polynomials to estimate distribution functions that are defined on closed
intervals, establishing their pointwise convergence. He also showed that such estimators
are free of boundary bias.

First, we define Bernstein’s polynomials and describe some of their properties. A
Bernstein polynomial of order k is obtained as follows:

Bk(x) =
k

∑
v=0

βv bv,k(x), (19)

where the βv’s are called the Bernstein coefficients and bv,k(x) = (k
v)xv(1 − x)k−v is the

Bernstein basis polynomial of degree k, which is also a binomial probability mass function
when x ∈ [0, 1]. The Bernstein basis polynomials have the following properties:

bv,k(x) = 0, if v < 0 or v > k;
bv,k(x) ≥ 0 for x ∈ [0, 1];
bv,k(1 − x) = bk−v,k(x).

Moreover, their derivatives can be written as a combination of two polynomials of a
lower degree:

b
′
v,k(x) = k(bv−1,k−1(x)− bv,k−1(x)).

The Bernstein approximating polynomial of a continuous function f on the interval
[0, 1] is given by

Bk( f )(x) =
k

∑
v=0

f
(v

k

)
bv,k(x). (20)

It can be established that lim
k→∞

Bk( f ) = f uniformly on the interval [0, 1]. This approx-

imation approach can be generalized as follows to d dimensions. Letting g(x1, . . . , xd)
be a continuous function on [0, 1]d, g(x1, . . . , xd) can be approximated by the following
Bernstein polynomial of order k in each variable:

k

∑
v1=0

· · ·
k

∑
vd=0

g
(v1

k
, . . . ,

vd
k

) d

∏
j=1

bvj ,k(xj). (21)

Bernstein’s empirical copula was first introduced and investigated by Sancetta and
Satchell [25] for identically and independently distributed (i.i.d.) data. Bernstein’s approxi-
mation of order k, k > 0, of a copula function C, the so-called Bernstein copula function, is
defined as

Bk(u) =
k

∑
v1=0

· · ·
k

∑
vd=0

C
(v1

k
, . . . ,

vd
k

) d

∏
j=1

bvj ,k(uj), (22)
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for u = (u1, . . . , ud) ∈ [0, 1]d, where k plays the role of bandwidth parameter and bvj ,k(uj)

is the binomial probability mass function,

bvj ,k(uj) =

(
k
vj

)
u

vj
j (1 − uj)

k−vj . (23)

It has been shown that

lim
k→∞

Bk(u) = C(u), uniformly in u ∈ [0, 1]d.

In addition, under the conditions specified in Theorem 1 of Sancetta and Satchell [25],
it was established that Bk in (22) is itself a copula. Thus, in order to estimate the copula func-
tion C(·), they proposed the following estimator referred to as Bernstein’s empirical copula:

Ck,n(u) =
k

∑
v1=0

· · ·
k

∑
vd=0

Cn

(v1

k
, . . . ,

vd
k

) d

∏
j=1

bvj ,k(uj), for u = (u1, . . . , ud) ∈ [0, 1]d, (24)

where Cn denotes the standard empirical copula estimator given by

Cn(u) =
1
n

n

∑
i=1

d

∏
j=1

I (Fj;n(Xi,j) ≤ uj), for u = (u1, . . . , ud) ∈ [0, 1]d, (25)

where Fj;n is the empirical cumulative distribution function of the component Xj, and
n is the sample size. Janssen et al. [26] demonstrated that Bernstein’s copula estimator
outperforms the classical empirical copula estimator.

Whenever it exists, the copula density, denoted by c(u), is obtained from the copula
function C(u) as follows:

c(u) =
∂ dC(u)

∂u1 · · · ∂ud
. (26)

Since Bernstein’s copula function as specified in Equation (22) is absolutely continuous,
Bernstein’s copula density can then be defined as

ck(u) =
k

∑
v1=0

· · ·
k

∑
vd=0

C
(v1

k
, . . . ,

vd
k

) d

∏
j=1

P
′
vj ,k(uj), (27)

where P
′
vj ,k

(uj) is the derivative of Pvj ,k with respect to uj. Accordingly, Sancetta and
Satchell [25] proposed the following estimator of Bernstein’s copula density:

ĉn(u) =
k

∑
v1=0

· · ·
k

∑
vd=0

Cn

(v1

k
, . . . ,

vd
k

) d

∏
j=1

P
′
vj ,k(uj). (28)

Later, Bouezmarni et al. [27] made use of Bernstein’s copula density to estimate
the copula density in the presence of dependent data. More recently, Janssen et al. [28]
established the asymptotic normality of this estimator given independently and identically
distributed data.

In bivariate applications, the copula density given in (28) where the dimension d is
two will be utilized, and the degree k of the copula density estimate will be taken to be
such that there is no significant advantage in opting for a higher degree when compared to
the selected least-squares copula.

2.2.2. An Illustrative Example

We are now estimating the copula density associated with the Old Faithful geyser
eruption dataset by making use of Bernstein’s polynomial approximation technique.
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The reference copula density function of degree 20 obtained in the previous subsection
is shown in Figure 24, and Bernstein’s copula densities of degree 25, 50, 75, 100, 125, 150,
and 200 are plotted in Figures 25–31. The integrated squared differences (ISD’s) between
Bernstein’s copula approximants, that are twenty-five degrees apart, and the reference
copula are included in Table 2.

Figure 24. Reference least-squares copula density of degree 20.

Figure 25. Bernstein’s copula density of degree 25.

Figure 26. Bernstein’s copula density of degree 50.
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Figure 27. Bernstein’s copula density of degree 75.

Figure 28. Bernstein’s copula density of degree 100.

Figure 29. Bernstein’s copula density of degree 125.
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Figure 30. Bernstein’s copula density of degree 150.

Figure 31. Bernstein’s copula density of degree 200.

Table 2. ISD’s between the reference copula and Bernstein’s’ for various degrees.

t ISD

25 1.02525 × 10−4

50 3.47305 × 10−5

75 1.57839 × 10−5

100 1.12940 × 10−5

125 8.42562 × 10−6

150 7.08102 × 10−6

175 5.42979 × 10−6

200 5.96616 × 10−6

We observe that the ISD’s keep decreasing as the orders of Bernstein’s copulas keep
increasing from 25 to 175. However, beyond degree 125, the ISD’s with respect to the
selected least-squares copula turn out to be of the same order before they start increasing.

Accordingly, for the sake of parsimony, we may decide that Bernstein’s copula density
of degree 125 in each variable is suitable, which is in agreement with the assessment
resulting from a visual comparison with the selected least-squares density estimate. This
density estimate will be utilized as the reference copula density in connection with the
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approaches that are presented in the two subsequent subsections. It should be noted that
the Bernstein polynomial approximation technique readily produces bona fide copula
density estimates.

2.3. Kernel-Based Copula Density Estimates
2.3.1. Introductory Considerations

Given a bivariate sample x1, . . . , xn, arising from a distribution whose density function
is f (·), a kernel density estimate is given by

f̂ (x; V) =
1
n

n

∑
i=1

KV(x − xi)

where x = (x1, x2)
′); xi = (xi1, xi2); V is a 2 × 2 bandwidth matrix assumed to be sym-

metric and positive definite; and KV(x) = |V|−1/2K(V
−1/2

x), with the kernel K(x) being a
bivariate density function such as the standard bivariate Gaussian density function. For
additional considerations on bivariate kernel density estimation, the reader is referred to
Duong and Hazelton [29], Sheater and Jones [30], and Wand and Jones [31], among others.

For instance, Li and Silvapulle [32], Geenens et al. [33], and Wen and Wu [34] employed
kernel density estimates (kde’s) in the context of copula density estimation. Since the
support of copulas is finite, kde’s can produce what is referred to as ‘boundary bias’.
Gijbels and Mielniczuk [35] attempted to address this drawback by making use of a certain
mirror reflexion methodology. It will be explained that boundary effects can be alleviated
as well by repositioning the usual pseudo-observations and making use of kernels having
a finite support.

For illustrative purposes, let the pseudo-observations be {(1/4, 3/4), (1/2, 1),
(3/4, 1/4), (1, 1/2)}. It will be shown that, as explained in Section 1.3, centering them
within grid cells can significantly alleviate the boundary issues associated with the original
pseudo-observations in the context of kernel density estimation. Bi-weight kernels whose
density function is K(x) = (15/16)(1 − x2)2 I(x ≤ 1) are utilized in this example. The
resulting kde’s of the copula density, as secured from the original and centered pseuso-
observations, are plotted in Figures 32 and 33. The corresponding copulas, which were
obtained via integration, are shown in Figures 34 and 35.

Figure 32. kde obtained from the original pseudo-observations.
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Figure 33. kde obtained from the centered pseudo-observations.

Figure 34. Copula resulting from the original pseudo-observations.

Figure 35. Copula resulting from the centered pseudo-observations.
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It is seen that two of the kernels centered at the original pseudo-observations are
truncated. Moreover, as the graph of the cumulative distribution function indicates, the
resulting kde integrates to less than 0.8 over the unit square whereas, in this case, the
cumulative distribution function tends to one when the centered pseudo-observations
are utilized. Actually, a kde will never integrate to one within the unit square when the
selected kernel is centered at each of the usual pseudo-observations or defined on an infinite
support. In the current context, it is thus advisable to make use of finite-support kernels
whose modes occur at the centered pseudo-observations.

2.3.2. Kernel Bandwidth Selection

A mathematical criterion for selecting an appropriate kernel bandwidth is proposed in
this subsection. As centered pseudo-observations yield improved copula density functions,
kde’s of various bandwidths, which are centered at those points, are initially obtained
and then compared to a reliable reference copula density, such as the selected Bernstein or
least-squares copula density functions.

Once again, we rely on the Old Faithful geyser eruption observations for illustra-
tive purposes. In this instance, the selection criterion will be based on the integrated
squared difference between the selected Bernstein copula density shown in Figure 36 and
Epanechnikov kde’s of bandwidths 0.045, 0.04, 0.035, 0.030, and 0.025, which are plotted in
Figures 37–41.

Figure 36. Bernstein’s copula density of degree 125.

Figure 37. kde with a bandwidth of 0.045.
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Figure 38. kde with a bandwidth of 0.040.

Figure 39. kde with a bandwidth of 0.035.

Figure 40. kde with a bandwidth of 0.030.
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Figure 41. kde with a bandwidth of 0.025.

It is seen from the ISD’s listed in Table 3 that the smallest ISD corresponds to a
bandwidth of 0.035. Accordingly, the copula kde having this bandwidth is selected as being
the most suitable one, a conclusion that, incidentally, could also have been reached via
visual inspection.

Table 3. ISD’s between the reference copula density and kde’s of various bandwidths.

Bandwidth ISD

0.045 0.0310480

0.040 0.0249804

0.035 0.0241592

0.030 0.0407768

0.025 0.0796507

2.4. Differentiated Linearized Empirical Copulas
2.4.1. Methodology and Implementation

A novel approach to copula density estimation is described in this subsection. A
Deheuvels’ empirical copula is first determined for the dataset at hand by making use of
Equation (12). Next, the empirical copula is evaluated at grid points of the unit square
whose associated spacing along both directions is denoted by c. Then, linear interpolation
is applied to those points within each grid cell and the resulting surface is differentiated,
which yields an approximate density function. As the resulting copula density is obtained
by differentiating a linearized copula, it will be referred to as a DL copula density. The spac-
ing parameter c is chosen in such a way that the DL copula density function and a reference
copula density—for instance, the selected Bernstein polynomial approximation—share
similar distributional features. Mathematically, c is taken to be the minimizer of the inte-
grated squared difference between the chosen reference copula density and differentiated
linearized copula densities resulting from various values of the spacing parameter.

The grid points of the empirical copula as determined from the Old Faithful geyser
dataset, which are plotted in Figure 42, are c = 1/12 apart. Linear interpolation was applied
within each grid cell. The resulting linearized copula and DL copula density obtained
via differentiation are respectively plotted in Figures 43 and 44. As Table 4 indicates, the
appropriate spacing parameter c is 1/12 in this case. For comparison purposes, the DL
copula density functions are also plotted for c = 1/11 and c = 1/13 in Figures 45 and 46.
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Figure 42. Empirical copula at grid points that are 1/12 apart.

Figure 43. The resulting linearly interpolated surface.

Figure 44. DL copula density with spacing parameter c = 1/12.
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Figure 45. DL copula density with spacing parameter c = 1/11.

Figure 46. DL copula density with spacing parameter c = 1/13.

Table 4. ISD’s between the reference copula density and certain DL copula densities.

Spacing Parameter c ISD

1/11 0.396789

1/12 0.360477

1/13 0.488780

2.4.2. Smoothing a DL Copula Density Estimate by Means of a Polynomial

The selected DL copula density that is plotted in Figure 44 was smoothed by ap-
proximating it with an eleventh degree moment-based bivariate polynomial—as defined
in Result 2. The resulting bona fide density function that was obtained after normal-
ization is shown in Figure 47. In this instance, the base density was taken to be the
uniform distribution.
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Figure 47. Bivariate polynomial approximation of the selected DL copula density.

2.5. Estimating Joint Density Functions by Means of Copula Density Estimates
2.5.1. Introduction

The following formula, which can be deduced from Result 1 (Sklar’s theorem), ex-
presses a joint density function estimate in terms of estimates of the marginal density and
distribution functions and a copula density estimate denoted by c̃(·, ·):

h̃(x, y) ≈ f̃ (x) g̃(y) c̃(F̃(x), G̃(y)). (29)

Thus, once a copula density estimate has been secured, it is a rather simple matter
to obtain a joint density estimate. More specifically, one would proceed as follows: First,
the marginal density functions f (x) and g(y) associated with the random variables X and
Y are estimated and their respective distribution functions are obtained via integration;
then, a copula density estimate is determined by implementing one of the proposed
methodologies, and a joint density estimate is secured by making use of the representation
given in Equation (29). This alternative approach to determining joint density function
estimates allows for more flexibility than the direct approach. For instance, one has then the
option to rely on some prior information for selecting appropriate tuning parameters—such
as degrees or bandwidths—for each of the marginal density functions and for assigning a
suitable degree of smoothness to the copula density estimate.

2.5.2. An Illustrative Example

Consider once again the Old Faithful geyser eruption data. A kde of the copula
density whose suitable bandwidth was determined to be 0.035 is plotted in Figure 48.
Kernel density estimates of the marginal density functions are superimposed on histograms
of the observations on each of the variables in Figures 49 and 50. It is seen that the bivariate
kde shown in Figure 51, which was secured directly from the data, and the estimated joint
density obtained from Equation (29), which appears in Figure 52, exhibit similar features.
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Figure 48. Copula kde with a bandwidth of 0.035.

Figure 49. The estimated marginal density of the first variable and histogram.

Figure 50. The estimated marginal density of the second variable and histogram.
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Figure 51. Bivariate kde obtained directly from the observations.

Figure 52. Joint density estimate resulting from applying Sklar’s theorem.

3. Estimating a t-Distributed Copula Density
3.1. Introduction

The four density estimation techniques introduced in Section 2 are applied to a random
sample of size 2000 that was generated from a distribution whose associated copula is
distributed as a bivariate Student’s t on only one degree of freedom, the marginal distribu-
tions being respectively standard normal and uniform on the interval [0, 2]. It should be
noted that the selected copula proves challenging to model as its density function tends
to plus infinity at each of the four vertices of the unit square. Moreover, as pointed out
in Quintero et al. [1], heavy-tailed distributions are generally more difficult to model. The
exact joint and copula density functions are respectively plotted in Figures 53 and 54.
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Figure 53. The joint density function.

Figure 54. The bivariate Student’s t copula density on one degree of freedom.

3.2. Application of the Proposed Methodologies

Proceeding as explained in Section 2.1, it was determined that a suitable degree for
the differentiated least-squares bivariate polynomial approximation is 30. The resulting
copula density estimate is plotted in Figure 55. On following the methodology advocated
in Section 2.3.2, it was found that the kde-based estimate having 0.025 as its bandwidth,
shown in Figure 56, is appropriate.

Figure 55. Differentiated least-squares density estimate of degree 30.
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Figure 56. A kde whose bandwidth is 0.025.

Referring to Section 2.2, it was determined that an appropriate degree for Bernstein’s
copula density estimate is 100. This density function is plotted in Figure 57. Now, pro-
ceeding as explained in Section 2.4, the proper spacing for the DL copula density was
determined to be c = 1/12. This copula density is shown in Figure 58.

Figure 57. Bernstein’s copula density of degree 100.

Figure 58. DL copula density obtained with 1/12 as spacing parameter.
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All of these density estimates exhibit distributional features that are consistent with
those of the underlying distribution, which supports the validity of the various methodolo-
gies being advocated in this paper.

3.3. Identification of the Underlying Distribution

For illustration purposes, we assess whether the distribution of a previously deter-
mined Student’s t copula density estimate can be correctly identified when compared
to several parametric copula density functions by making use of the Hellinger distance
measure, which constitutes an alternative to the Kullback–Leibler divergence for comparing
density or distribution functions. Another distance measure is studied in Fournier and
Guillin [36].

If we denote the probability density functions of two bivariate distributions as f (·, ·)
and g(·, ·), the square of the Hellinger distance between them is given by

H2( f , g) =
1
2

∫∫ (√
f (x, y)−

√
g(x, y)

)2
dxdy. (30)

The Hellinger distances between Bernstein’s copula density approximation of degree 100,
which is plotted in Figure 57, and the following copula density functions were evaluated:
bivariate Student’s t on 1, 3, and 10 degrees of freedom; bivariate Gaussian; Farlie–Gumbel–
Morgenstern; Ali–Mikhail–Haq; Gumbel–Hougaard; Frank; and Clayton–Pareto. In this
instance, the lower and upper bounds of integration are zero and one in Equation (30).

As anticipated, the Hellinger distance between the estimated copula density and the
bivariate t copula density on one degree of freedom turned out to be the smallest.

4. Concluding Remarks

Four types of nonparametric copula density estimates were considered and criteria for
selecting their tuning parameters were proposed. Bernstein’s polynomial density estimates
enjoy the advantage of not having to be normalized. However, given the high orders that
they necessitate, they require longer computing times than alternative techniques. The
differentiated least-squares density estimates which turn out to be consistently of much
lower degrees, are actually easier to determine, as are kernel density estimates as well. As
illustrated in Section 2.4.2, moment-based polynomial approximations of even lesser orders
can also adequately serve as density estimates when applied, for instance, to differentiated
linearized copula density estimates. Additionally, on the basis of a random sample arising
from a known but atypical distribution, each one of the density estimation techniques
advocated in this paper yielded rather accurate copula density estimates.

Although distinct in nature, these methodologies were found to produce analogous
density estimates. They can, in fact, be extended to estimate the distribution of multi-
variate copulas, in which case they would rely on multivariate kernel density estimation,
polynomial interpolation in several variables, or multivariate Bernstein approximating
polynomials. We note that the bivariate case is of particular relevance in connection with
vine copulas which, as explained in Joe [16], constitute a flexible tool for modeling multi-
variate distributions.

In actuality, this work also constitutes an informative introduction to the theory of
copulas and its application. All of the calculations were carried out with the symbolic
computational package Mathematica (version 10.3; Wolfram, Champaign, IL, USA), with
the code being available upon request.
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