
Citation: Zhai, M.; Wang, Z.

Optimizing Rack Locations in the

Mobile-Rack Picking System: A

Method of Integrating Rack Heat and

Relevance. Mathematics 2024, 12, 413.

https://doi.org/10.3390/

math12030413

Academic Editors: Huajun Tang,

Jun Wu, Huimin Jiang and Ivan Lai

Received: 31 December 2023

Revised: 23 January 2024

Accepted: 25 January 2024

Published: 26 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Optimizing Rack Locations in the Mobile-Rack Picking System:
A Method of Integrating Rack Heat and Relevance
Mengyue Zhai and Zheng Wang *

School of Maritime Economics and Management, Dalian Maritime University, Dalian 116025, China;
zhaimengyue@dlmu.edu.cn
* Correspondence: drwz@dlut.edu.cn

Abstract: The flexible movement of racks in the mobile-rack picking system (MRPS) significantly
improves the picking efficiency of e-commerce orders with the characteristics of “one order multi–
items” and creates a challenging problem of how to place racks in the warehouse. This is because
the placement of each rack in the MRPS directly influences the distance that racks need to be
moved during order picking, which in turn affects the order picking efficiency. To handle the rack
location optimization problem (RLOP), this work introduces a novel idea and methodology, taking
into account the heat degree and the relevance degree of racks, to enhance the efficiency of rack
placements in the MRPS. Specifically, a two-stage solution strategy is implemented. In stage 1, an
integer programming model (Model 1) is developed to determine the heat and relevance degree of
racks, and it can be solved quickly by the Gurobi. Stage 2 entails developing a bi-objective integer
programming model (Model 2) with the objective to minimize the travel distances of robots in both
heavy load and no-load conditions, using the rack heat and relevance degree as inputs. In light of the
challenge of decision coupling and the vast solution space in stage 2, we innovatively propose two
lower bounds by slacking off the distance between storage locations. A matheuristic algorithm based
on Benders decomposition (MABBD) is designed, which utilizes Benders-related rules to reconstruct
Model 2, introduces an enhanced cut and an improved optimal cut with RLOP characteristics, and
designs the warm start strategy and the master variable fixed strategy. Given the substantial size of
real-life problems, the Memetic algorithm (MA) is specifically devised to address them. Instances of
varying sizes are also employed to validate the science and efficacy of the model and algorithm.

Keywords: mobile-rack picking system; rack location optimization; degrees of rack heat and
relevance; Benders decomposition; Memetic algorithm

MSC: 90B06

1. Introduction

The rapid development of electronic commerce in recent years has posed substantial
implications and challenges for warehouse operation management. Given the demanding
timeliness and large-scale, diverse, small-batch nature of customer orders, the urgent
resolution of the problem of implementing precise and efficient order picking operations
is a critical concern for every warehouse enterprise [1,2]. The MRPS, operating as a semi-
automated picking system, provides a fresh way to address this problem [3]. This system
deviates from the traditional fixed rack storage system as its racks are smaller in size and
can be moved to any desired position within the warehouse. The picking operation is
executed by the robot, which carries the rack to the picking station, thereby implementing
the “parts to picker” mode. Instead of being stored in a fixed location like a traditional
warehouse, each Stock Keeping Unit (SKU) can be scattered and put on numerous mobile
racks, each rack holding varying amounts of different categories of SKUs [4,5]. The MRPS
significantly improves the flexibility of SKUs storage and efficiently addresses the difficulty
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of e-commerce order picking by allowing for the relocation of racks in the warehouse [6]. As
a result, it is highly desired by numerous e-commerce warehousing enterprises. Presently,
e-commerce giants such as JD, Walmart, and Alibaba have embraced MRPS [7].

Nevertheless, this system also gives rise to the challenge of optimizing rack location.
The positioning of each rack in the MRPS directly affects the distance traveled by the robots
during order picking, thereby impacting the efficiency of the order picking. How can the
arrangement of the rack in the warehouse be periodically adjusted, taking into account
the regularity of customer orders and the categories and quantities of SKUs stored on the
rack, with the objective of minimizing the travel distance of robots? This is a challenging
problem that every MRPS decision-maker faces, especially when dealing with e-commerce
order picking, in order to maximize efficiency and leverage the system’s advantages. This
problem is accompanied by the emergence of MRPS, which restricts the development of
a new generation of order picking systems. It is different from the location optimization
problem in the fixed rack storage system, its solution surpasses the applicability of existing
theoretical methods, and its NP-Hard characteristics significantly amplify the problem’s
difficulty, especially when addressing large-size customer orders [8,9].

In light of this, this paper studies the RLOP in MRPS. A novel approach is proposed to
optimize the location of racks by taking into account the categories and quantities of SKUs
on each rack, as well as the ordering regularity observed in a large number of customer
orders. This method employs the utilization of rack heat and relevance degree and can
further enhance the efficacy and scientific rigor of MRPS rack location optimization. The
contributions of this paper can be summarized as follows:

(1) A novel idea of “customer orders → racks usage frequency → racks location optimiza-
tion” is proposed to effectively model and solve the RLOP.

(2) The MABBD algorithm is proposed to solve the integer programming model, and two
lower-bound generation methods are designed based on the characteristics of RLOP,
which enriches the theoretical research in the field of warehousing optimization.

(3) A Memetic algorithm is specifically developed to address large-scale instances. This
method is well-suited to the RLOP, as it employs crossover/mutation operators to
rematch racks and locations throughout a broad range, resulting in the creation
of a new population. The tabu search operators will explore individual locally by
exchanging racks in the same type of locations or racks in the same heat.

The rest of this paper is organized as follows. Section 2 reviews the related work.
Section 3 formulates the problem. Section 4 develops the solution algorithm. Section 5
discusses the results of computational experiments. Section 6 concludes the paper and
provides future directions.

2. Literature Review

In terms of storage assignment, the traditional manual order picking system solely
requires determining the storage position of the SKUs on the rack. This is because the
racks have fixed storage locations, and pickers walk in the channels to retrieve SKUs from
the racks. In other words, it is a problem of assigning storage locations to SKUs [10].
Hausman et al. were the first to compare three storage assignment strategies: random
assignment, full turnover-based assignment, and class-based turnover assignment [11].
Subsequently, Kuo et al. assigned the storage locations with the objective of increasing
warehouse utilization and customer satisfaction by reducing customer waiting time [12].
Glock and Grosse studied the problem of storage assignment with the lowest warehouse
picking cost [13], while Bortolini et al. optimized SKUs storage locations based on the
best rack stability [14]. The objective-setting methods of the above studies are relatively
common. In addition, some scholars optimized SKUs storage locations by analyzing certain
attributes of the products themselves: Caron et al. proposed a storage strategy based
on the Cube-per-Order Index (COI) [15]. Li and Nof proposed a storage optimization
method to classify the SKUs based on their attributes [16]. Yang and Nguyen developed a
constrained clustering method integrated with principal component analysis to meet the
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need of clustering stored SKUs with the consideration of practical storage constraints [17].
Since there is a certain correlation between different SKUs in practice and they are often
purchased at the same time, other scholars take this correlation into consideration: Pan et al.
used the frequency of simultaneous purchases of SKUs to quantify the correlation between
products [18]. Xiao and Zheng proposed to classify all SKUs based on correlation and then
match them with classified storage locations [19]. Jane and Laih proposed to classify SKUs
according to association relationships, and similar SKUs are randomly placed in the same
area [20].

The above research focuses on the problem of storage assignment under the traditional
“picker-to-parts” model. Within the MRPS system, the robot transports the racks from the
storage area to the picking station using the “parts-to-picker” picking mode. Meanwhile,
the pickers stand still at the picking station, retrieving the SKUs from the racks to fulfill
the orders’ picking. After picking is completed, the robot needs to transport the racks
from the picking station back to the empty location for storage [21]. Therefore, the storage
assignment problem of MRPS can be divided into SKUs storage racks optimization and
rack location optimization. Some scholars have used a two-stage solution idea to study
the storage assignment problem of MRPS. In the first stage, correlation analysis methods
and clustering methods are used to perform correlation clustering on SKUs, so that SKUs
that are often purchased at the same time can be stored on the same rack, and to realize
that the SKUs stored on racks are maximized in overall relevance. In the second stage,
Li et al. proposed a new scattering storage strategy based on rack turnover rate, aiming
to decentralize the storage of racks with higher turnover rates to avoid congestion and
accumulation of a large number of AGVs in high-frequency operating areas at the same
time [22]. Yuan et al. considered rack turnover rate, relevance between racks, and work
balance in the lanes to construct an optimization model for minimizing the total travel
distance of robots and designed a hybrid algorithm that combines a greedy algorithm
and improved simulated annealing [23]. The above research considered both the two
sub-problems of SKUs storage optimization and rack location optimization. However,
in the real operation of the MRPS, the storage assignment of SKUs on the rack and the
adjustment of the rack position are two types of work with different frequencies at different
times, so they belong to two different levels of the problem.

Considering that the decision of rack storage location has an important impact on the
moving distance of the rack and the workload of the robot, many scholars have conducted
research on the RLOP of RMFS in recent years. Weidinger et al. formalized the rack location
problem as a special interval scheduling problem by calculating the movement distances
between racks and picking stations and introduced a mathematical approach based on
adaptive large neighborhood search to solve the problem. It is shown that a simple rack
location strategy like the shortest path storage can gain better results when the objective
is to minimize the distance between the racks and the picking stations [8]. Yuan et al.
developed a fluid model to analyze the performance of velocity-based storage policies.
They characterized the maximum possible improvement from applying a velocity-based
storage policy in comparison to the random storage policy. The result showed that class-
based storage with two or three classes can achieve most of the potential benefits and that
these benefits increase with greater variation in the rack velocities [5]. Merschformann
et al. introduced several rack repositioning policies such as random policy, fixed policy,
and nearest policy [24]. Cai et al. integrated the rack location assignment problem with
the path planning decisions to minimize the total travel time of robots [25]. Zhuang et al.
investigated the rack storage and robot assignment to racks problem during order process-
ing. They formulated this problem with the objective of minimizing the makespan of this
system and developed a matheuristic decomposition approach based on a rolling horizon
framework and the simulated annealing method. In the above study, the storage location
of the rack is constantly changing, and the rack may be assigned to a new storage location
for each completed pick. Merschformann et al. demonstrated that employing variable
storage locations is advantageous in numerous scenarios compared to a fixed strategy. This
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approach effectively minimizes the traveling time of robots, enabling them to promptly
accomplish subsequent tasks. However, this strategy may result in no longer useful racks
being stored in very prominent storage locations, which is likely to cause problems with
congestion and further robot travel distances during order picking later. Moreover, assign-
ing a new storage location after each rack use during the order picking process will greatly
increase the computational burden of the intelligent operating system [26,27].

In actual situations, customers have increasingly higher requirements on the delivery
time and cost of their orders. Owing to the impact of variables like sales, seasons, product
life cycles, and turnover rates, rack locations in MRPS must be changed on a regular basis
in order to accommodate these changes and satisfy customer demands. Given that the
racks carried to the picking station by the robot always storage numerous SKUs, this
paper establishes a correlation between the SKUs combination of customer orders and
the SKUs combinations on the racks. By analyzing the SKUs ordering rules disclosed in
numbers of customer orders, as well as the categories and quantities of SKUs present on
each rack, it is possible to ascertain the using frequency for each rack. Subsequently, the
rack locations can be rationally assigned to accommodate future order picking demands.
This paper introduces a novel approach to optimize rack location by considering rack heat
and relevance. In addition, we also propose a matheuristic algorithm based on Benders
decomposition and a memetic algorithm to handle larger-sized real-world cases. This work
aims to enhance the scientific rigor and efficacy of rack location optimization in MRPS.

3. Problem Description and Formulation
3.1. Problem Description and Analysis

The picking station in the MRPS is usually fixed in place on one side of the warehouse,
as depicted in Figure 1. The position of the rack within the warehouse influences the
distance between the rack and the picking station, which in turn, affects the overall travel
distance of the robot during picking. The rack’s location is regularly updated (every
few weeks or months) to accommodate future customer order picking demands, as the
categories and quantities of SKUs in the order change. The RLOP in MRPS necessitates the
precise arrangement of each rack in the warehouse to reduce the overall distance traveled
by the robot when fulfilling customer orders in the future. This paper assumes that orders
and their occurrence probabilities are known for the future period (the prediction procedure
for order probabilities is not contemplated in this paper). Additionally, it assumes that the
categories and quantities of SKUs on each rack are known. Then, the key to optimizing
the rack location is determining how to calculate the expected number of times the rack is
utilized based on the orders distribution regularity and provide the expected robot travel
distance for a given rack location solution.
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Upon analysis, it is obvious that the robot’s movements can be divided into two modes:
heavy load, when the robot carries the rack for travel, and no-load, when the robot does the
movement itself. The two modes are performed sequentially: during the heavy load mode,
the robot carries the rack from its storage location to the picking station, and subsequently
returns it from the picking station once the picking process is finished. As soon as the robot
completes handling the current rack, it will be no-load onto the next rack and resume the
handling operation. The heavy distance traveled by the robot is directly proportional to
the expected number of times each rack will be used, taking into account the probability
distribution of the orders and the specified rack location arrangement. The no-load distance
is determined by the number of times any two racks are carried in succession by the same
robot. Considering that various scheduling approaches will result in distinct robot paths,
this paper calculates the frequency at which two racks simultaneously serve the same order
by utilizing the probability distribution of the orders, in cases when the actual scheduling
method utilized by the warehouse is unknown. As the frequency increases, the likelihood
of both racks being carried by the same robot consecutively also increases. Therefore, this
paper employs such frequencies as a metric to determine the robot no-load travel distance.

Define the expected number of movements of rack i (∈ R, R is the set of racks) as hi,
denoting the “heat” of the rack. The number of times that two racks i and j are selected
to provide picking service for the same order is the “relevance degree” of the two racks,
expressed by gij. The higher the gij, the greater the possibility that the two racks will be
moved by the same robot in turn. The rack location optimization model can be built based
on rack heat and relevance degree. Therefore, we first establish the rack heat and correlation
generation model to obtain {hi}i∈R and

{
gij

}
i,j∈R, and then use them as parameters to

establish the rack location optimization model.

3.2. Mathematical Model
3.2.1. Rack Heat and Relevance Degree Generation Model (Model 1)

Model 1 aims to determine the appropriate rack to provide picking service for the
orders, so as to improve picking efficiency as much as possible. For the same batch of
customer orders, there will be a variety of rack selection solutions to meet the picking
requirements, but different schemes have different rack movement times. The more times
the robot shuttles between the picking station and the rack storage area, the higher the
overall distance. Therefore, Model 1 aims to minimize the expected number of rack moves
required to complete the picking task and obtain the rack heat and relevance degree
attributes. Then, based on these two attributes, the rack location optimization model
decides the specific location of each rack with the goal of minimizing the moving distance
of the robot.

Let O represent the set of orders to be picked in the future period (several weeks
or months), assuming the probability po(0 < po ≤ 1) of order o(∈ O) is known (order
distribution can be obtained through prediction, and the prediction method is not included
in this paper.). All SKUs K required for order picking are stored on racks in set R. The
storage capacity of SKU k(∈ K) on rack i(∈ R) is bik, and the total supply of items can
satisfy the picking demand of orders, and there is no out-of-stock phenomenon. The
parameters and decision variables used in Model 1 are defined in Table 1.

Then, Model 1 can be formulated as follows:

min∑
i∈R

∑
o∈O

po·xio (1)

s.t.
yiok ≤ dok·xio, ∀o ∈ O, k ∈ Ko, i ∈ Rk (2)

∑
i∈Rk

yiok ≥ dok, ∀o ∈ O, k ∈ Ko (3)
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∑
k∈K

yiok ≤ bik, ∀o ∈ O, i ∈ R (4)

xio ∈ {0, 1}, ∀i ∈ R, o ∈ O (5)

yiok ∈ N+, ∀o ∈ O, k ∈ Ko, i ∈ Rk (6)

Formula (1) is the objective function that minimizes the expected times of moving
racks for picking orders. Constraint (2) formulates the relationship among x and y. It
ensures that rack r must not provide items for an order (yiok = 0) when items of an order
are not picked from the rack (xio = 0). Constraint (3) ensures that the items of an SKU
required by an order must be satisfied by one or more racks. Constraint (4) guarantees
that the number of an SKU items picked from a rack must not exceed the number of items
stored on the rack. Constraints (5)–(6) define the domains of the variables.

Table 1. Notations used in Model 1.

Parameters

R The set of
racks. O The set of

orders. K The set of
SKUs.

Ko The set of the SKUs that order o(∈ O) contains.
Rk The set of racks where SKU k(∈ K) is stored.
bik Storage quantity of SKU k(∈ K) on rack i(∈ R).
dok The number of the items of SKU k(∈ K) that order o(∈ O) requires.
po Occurrence probability of order o(∈ O).

gij
The relevance degree between rack i(∈ R) and rack j(∈ R), that is, the number of
times they provide picking services for the same order.

hi
Rack heat, that is, the number of times rack i(∈ R) needs to be moved to
complete picking task.

Decision Variables

xio A binary variable that equals 1 if order o(∈ O) is picked from rack i(∈ R).

yiok
Non-negative integer variable indicating the number of the items of SKU k(∈ Ko)
picked from rack i(∈ R) for order o(∈ O).

3.2.2. Rack Location Optimization Model (Model 2)

On the one hand, rack heat indicates the anticipated number of moves of each rack
for future orders; therefore, based on the rack location scheme, we can estimate the travel
distance of the robot’s heavy load during order picking. The rack relevance degree, con-
versely, denotes the frequency with which two racks serve the same orders; the greater
the frequency, the more likely it is that both racks are sequentially moved by the same
robot. Since the number of times two racks are carried sequentially by the same robot
depends on the robot scheduling method used in the warehouse, and in the case where the
scheduling method is unknown, we cannot accurately know the robot’s no-load traveling
distance, so this paper calculates the robot’s no-load traveling distance based on the rack
relevance degree.

It is crucial to highlight that the picking efficiency is influenced to different degrees by
the driving speeds of the robot with a heavy load compared to the robot moving with no
load (the heavy load has a slower driving speed). Hence, this paper proposes a bi-objective
integer programming model to optimize the racking location by minimizing both the heavy
load and no-load distances of the robots. The heavy load distance is given higher priority,
while the no-load distance is given lower priority. The parameters and decision variables
used in Model 2 are shown in Table 2.
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Table 2. Notations used in Model 2.

Parameters

R The set of racks. L The set of rack locations.
du The distance between the rack location u(∈ L) and the picking area.
duv The distance between rack location u(∈ L) and rack location v(∈ L).

gij
The relevance degree between rack i(∈ R) and rack j(∈ R), that is, the number of
times they provide picking services for the same order.

hi
Rack heat, that is, the number of times rack i(∈ R) needs to be moved to complete
picking task.

η1, η2 Prioritization or weighting of optimization objectives.

Decision Variables

miu A binary variable that equals 1 if rack i(∈ R) is stored in location u(∈ L).
nij Non-negative variable indicates the distance between rack i(∈ R) and rack j(∈ R).

Then, Model 2 can be formulated as follows:

F = minη1 ∑
i∈R

∑
u∈L

hi·du·miu + η2 ∑
i∈R

∑
j∈R
j>i

gij·nij (7)

s.t.
∑
u∈L

miu = 1, ∀i ∈ R (8)

∑
i∈R

miu ≤ 1, ∀u ∈ L (9)

nij ≥ duv·
(
miu + mjv − 1

)
, ∀i, j ∈ R, j > i; u, v ∈ L, u ̸= v (10)

miu ∈ {0, 1} ∀i ∈ R; u ∈ L (11)

nij ≥ 0, ∀i, j ∈ R (12)

Formula (7) is the objective function that optimizes the weighted sum minimization of
the robot’s heavy travel distance and no-load travel distance. Constraint (8) ensures that
each rack can only be placed in one location. Constraint (9) guarantees that each location
can store a maximum of one rack. Constraint (10) formulates the relationship among m and
n. Constraints (11)–(12) define the domains of the variables.

4. Solution Algorithm

Given that Model 1 can solve the instance with the size of |O|= 6000; |R|= 200 in
a short time by Gurobi, for larger instances, a simple batch strategy can be adopted to
quickly solve. Hence, Model 1 adeptly addresses the real problem, and the associated
intelligent algorithm is not devised in our work. Since the RLOP is a typical unbalanced
assignment issue, the complexity of Model 2 is NP-hard. This makes solving realistic large-
size problems extremely challenging. When Model 2 encounters an instance with 40 racks
and 52 locations, Gurobi achieves a Gap of 81.21% after one hour. Once the number of racks
and locations rises to several hundred, solving the model becomes more difficult. Therefore,
this section focuses on the optimization method of rack location. Initially, two high-quality
lower bounds are derived based on the specific attributes of the RLOP. Subsequently, the
matheuristic algorithm based on Benders decomposition (MABBD) is developed to enhance
the efficiency of solving Model 2 by taking into account its unique properties. The Memetic
algorithm (MA) is specifically developed to address complex problems on a large scale.

4.1. Lower Bound (LB)

In order to improve the performance of the algorithm in this paper, two lower bound
acquisition methods are proposed in this section.
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The objective function of Formula (7) is relaxed:

F = minη1 ∑
i∈R

∑
u∈L

hi·du·miu + η2 ∑
i∈R

∑
j∈R
j>i

gij·nij

> minη1 ∑
i∈R

∑
u∈L

hi·du·miu+minη2 ∑
i∈R

∑
j∈R
j>i

gij·nij

= F1 + F2

(13)

First, the lower bound FLB
1 of F1 is solved. Select |R| locations closest to the picking

station and sort them in ascending order of distance, represented by the set L1. The racks
are sorted by their heat from high to end, represented by the set R1; Then, a lower bound of
F1 is given by:

FLB
1 = η1 ∑

i∈R1

∑
u∈L1

hi·du (14)

Next, the lower bound FLB
2 of F2 is solved, and two methods are designed.

(1) Arrange gij(i, j ∈ R, j > i) in ascending order, represented by the set G1. Similarly,
arrange duv(u, v ∈ L, v > u) in ascending order by taking the first |R|(|R| − 1)/2 values in
descending order, represented by the set DR1. Then, a lower bound of F2 is given by:

FLB
2

1
= η2 ∑

(i,j)∈G1

∑
(u,v)∈DR1

gij·duv (15)

(2) For each location u ∈ L, select the nearest |R| − 1 locations L2
u and calculate the

sum of distances from location u ∈ L to these locations dsu = ∑v∈L2
u

duv. Arrange {dsu}u∈L
in ascending order, the first |R| locations are represented by the set L2, and their associated
distance {duv}u∈L2,v∈L2

u
in descending order is represented by the set DR2. Then, the other

lower bound of F2 is given by:
FLB

2 = min
{

FLB
2

1, FLB
2

2
}

. In summary, a lower bound for the original problem can be
obtained as:

Theorem 1. The total travel distance of the robots F is bounded from below by the optimal value
of LB.

4.2. Matheuristic Algorithm Based on Benders Decomposition (MABBD)

Since Model 2 contains two types of decision variables, rack location assignment
{miu}i∈R,u∈L and the distance between racks

{
nij

}
i∈R,j∈R,j>i, Model 2 is reconstructed

based on the relevant rules of Benders decomposition. First, the no-load travel distance
of the robot in Model 2 is relaxed, and the master problem formed mainly solves the
heavy load travel distance of the robot. When the relevant decision variable {miu}i∈R,u∈L is
gained, the subproblem solves the no-load travel distance of the robot; that is, it is a linear
programming problem and can be solved quickly. In order to address the algorithm’s
drawback of sluggish convergence, the optimal cut is improved, and the enhanced cut is
generated based on the attributes of Model 2. Subsequently, multiple heuristic algorithms
are devised to generate compact initial cuts by utilizing warm start strategies that take into
account the specific attributes of the RLOP. Ultimately, a solution pool is explicitly built to
store approximate optimal solutions. Through the observation of value regularity in these
approximate optimal solutions, we identify and choose locations and racks that are highly
frequently matched and partially fix their decision variables. Simultaneously, variables that
correspond to storage locations and racks that are utilized infrequently are eliminated in
order to reduce the search range of the solution space. The algorithm flow is shown in the
Figure 2.
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4.2.1. Master Problem Model

q is defined as the lower bound of the no-load travel distance of the robot in the
objective function. The constraints related to the no-load travel of the robot are relaxed to
obtain the master problem model as follows:

min η1 ∑
i∈R

∑
u∈L

hi·du·miu + η2·q (16)

s.t.
Constraints (10), (11), (13)

q ≥ FLB
2 (17)

CUTS (18)

The objective function (16) minimizes the weighted sum of the robots’ heavy-load
distance and the lower bounds of the robots’ no-load distance. Constraint (17) represents
the lower bound of the no-load travel distance on the global search space.

4.2.2. Subproblem Model

When the master problem model is solved, the storage location of each rack {miu}i∈R,u∈L
can be determined, and then the subproblem becomes the weighted distance between the
racks to minimize the no-load driving distance of the robot. The subproblem model is
as follows:

q(n) = min∑
i∈R

∑
j∈R
j>i

gij·nij (19)

nij ≥ duv·
(
miu + mjv − 1

)
, ∀i, j ∈ R, j > i; u, v ∈ L, u ̸= v (20)

nij ≥ 0, ∀i, j ∈ R, j > i (21)

Since the subproblem model must have an optimal solution, it is further simplified as:

q(n) = ∑
i∈R

∑
j∈R
j>i

∑
u:miu=1

∑
v:mjv=1

gij·duv (22)
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4.2.3. Benders Cutting

In order to improve the efficiency of the model, this paper further proposes two kinds
of Benders cutting.

q ≥ q
(∼

n
)
−

(
q
(∼

n
)
− LBsp

) ∑
i,u:

∼
miu=0

miu + ∑
i,u:

∼
miu=1

(1 − miu)

 (23)


∑

i,u:m̂iu=0
miu ≥ 1

∑
i,u:m̂iu=1

(1 − miu) ≥ 1
(24)

When a new upper bound of the original problem is found, cut (23) is generated and
added to the master problem. This cut indicates that when the new optimal solution of
RLOP is obtained, the no-load distance of robots is at least q

(∼
n
)

, that is, in the subsequent
iteration process, the cut will automatically exclude the current solution, and there is no
need to solve it again. When a feasible solution to the original problem is found, cut (24) is
generated and added to the master problem. This cut indicates that the current solution is
not optimal and need not be considered again. The above valid cuts can convey effective
information to the master problem, hence enhancing the solution of the master problem and
continuously increasing the lower bound. The process is iterated until either the optimal
solution of the RLOP is achieved or the computation time limit is reached.

4.2.4. Warm Start Strategy

According to the characteristics of the RLOP, a variety of heuristic algorithms are
designed to tighten the feasible domain, which is relatively relaxed in the initial iteration,
and to generate some tight initial cuts and upper bound (UB) of the RLOP.

(1) Bi-direction matching strategy. Firstly, the importance of each rack is calculated
wi = η1hid1 + η2gid2, where d1 is the average distance from the storage location to
the picking station, d2 is the average distance between storage locations, and gi is
the average relevance degree of rack i. Secondly, the importance of each storage
location is calculated as ωu = 1

η1d1h+η2d2g
, where h is the average heat, and g is the

average correlation degree. Finally, the racks and storage locations are matched one
by one according to the descending sequence of rack importance and the descending
sequence of location importance.

(2) Two-stage solution strategy. In stage 1, the storage locations are divided into ABC
areas from near to far according to the distance from the picking station, and the
proportion of the number of locations in each area is A = 20%, B = 30%, and C = 50%,
respectively. The racks are divided into three areas according to heat. In stage 2, for
each area, the rack with the highest heat is selected for priority storage, and then the
associated racks of this rack are stored nearby according to the relevance degree.

(3) Integrated matching strategy. The storage location is arranged in ascending sequence
of distance from the picking station, and locations that have the same distance from
the picking station are considered to be the same location. Racks are allocated for each
kind of location in descending sequence of rack heat. When the same type of locations
is matched to the same heat of racks, the priority is given to the rack that has a greater
relevance degree with racks that have been assigned a location.

(4) Generate feasible solution based on Model 2. The current upper and lower bounds
are added to the original model as constraints to solve the linear relaxation solution
of the model. The solution is feasible according to the rack importance and location
importance of strategy (1).

Through the warm start strategy, four feasible solutions can be obtained, and the
feasible solution with the smallest objective value F is taken as the UB of RLOP, and the
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optimal cut is generated using this feasible solution. Accordingly, the other three feasible
solutions generate enhanced cuts.

Theorem 2. The total travel distance of the robots F is bounded from above by the optimal value
of UB.

4.2.5. Master Variables Fixation Strategy

Considering the warehouse layout, the racks with high heat should be placed as close
to the picking station as possible, and the location far away from the picking station is often
not the optimal choice, so the value of some decision variables is dominant. This paper
introduces a solution pool to store 100 best approximate optimal solutions and record the
value rule of each decision variable. When the algorithm is no longer updating the optimal
solution in multiple searches, this paper extracts 5% of the decision variables with small
changes in their values from the solution pool to fix them, and the model is feasible by
checking and deleting the constraints and valid inequalities. Naturally, employing this
strategy may discard some of the potential optimal solutions. To effectively prevent this
scenario, the strategy permits a maximum usage of six times. In other words, the size
of the decision variables we elect to fix must not exceed 30%. Appendix A provides a
comprehensive explanation of the justification for the design, utilizing both theoretical
analysis and experimentation.

4.3. Memetic Algorithm (MA)

The Memetic algorithm is specifically developed to address the RLOP for large-scale
instances. The Memetic algorithm is an optimization technique that combines popula-
tion intelligence methods with local search methods [28]. Classical intelligent algorithms
often have the shortcomings of slow convergence and difficulty finding high-precision
solutions when confronted with large-scale and intricate RLOP. Based on these algorithms,
the Memetic algorithm introduces a local search strategy to further search the feasible solu-
tions, which will effectively improve the solving efficiency and accuracy of the intelligent
algorithm [29,30].

The analysis of RLOP revealed that the choice of rack position has an impact not only
on the distance between the rack and the picking station but also on the distance between
the racks themselves. Considering the attributes of the warehouse layout, there will be
several storage locations equidistant from the picking station, along with several racks that
have the same heat. However, the distances between these locations or the relevance degree
between the racks may vary. Hence, the crossover/mutation operators of the MA will
rematch racks and locations over a wide range to produce a new population. Conversely,
the tabu search operators will explore individual locally by exchanging racks in the same
type of locations or racks in the same heat. The algorithm flow is shown in Figure 3.

Mathematics 2024, 12, 413 12 of 20 
 

 

The analysis of RLOP revealed that the choice of rack position has an impact not on-
ly on the distance between the rack and the picking station but also on the distance be-
tween the racks themselves. Considering the attributes of the warehouse layout, there 
will be several storage locations equidistant from the picking station, along with several 
racks that have the same heat. However, the distances between these locations or the rel-
evance degree between the racks may vary. Hence, the crossover/mutation operators of 
the MA will rematch racks and locations over a wide range to produce a new population. 
Conversely, the tabu search operators will explore individual locally by exchanging 
racks in the same type of locations or racks in the same heat. The algorithm flow is 
shown in Figure 3. 

 
Figure 3. The framework of MA. 

4.3.1. Initial Solution Generation 
The warm start strategies mentioned in Section 4.2.4 were used to generate multiple 

initial solutions to form the initial population. 

4.3.2. Search Operators 
Parameter 𝛽  is introduced to denote the stickiness of rack 𝑖  with location 𝑢 , ሼ𝛽ሽ∈ோ = ௪ఠೠ௨:ೠୀଵ, where the sticky degree 𝛽  embodies the suitability of matching be-

tween a rack and a location. Obviously, the larger the 𝛽, the better the location assigned 
to rack 𝑖. Let �̅� = ∑ 𝛽∈ோ /|𝑅| for the average sticky degree, and racks with a sticky de-
gree lower than �̅� are filtered, denoted by the set 𝑅ீௌ. 
(1) Crossover operator 

Select 𝜃ሺ𝜃 ൏ |𝑅ீௌ|ሻ racks from 𝑅ீௌ and use the bi-directional matching strategy in 
Section 4.2.4 to re-match their locations. 
(2) Mutation operator 𝛿ሺ𝛿 ൏ 𝑚𝑖𝑛ሼ|𝑅ீௌ|, |𝐿| − |𝑅|ሽሻ  racks are selected from 𝑅ீௌ , and 𝛿  idle locations are 
randomly selected, and the bi-directional matching strategy in Section 4.2.4 is used to re-
match these locations and racks. 
(3) Local search operators 

Theorem 3. In the local search process of the algorithm, the heavy loaded travel distance 𝐹1 of the 
robots is unchanged. 

Figure 3. The framework of MA.



Mathematics 2024, 12, 413 12 of 19

4.3.1. Initial Solution Generation

The warm start strategies mentioned in Section 4.2.4 were used to generate multiple
initial solutions to form the initial population.

4.3.2. Search Operators

Parameter βi is introduced to denote the stickiness of rack i with location u,
{βi}i∈R = wi

ωu
u : miu = 1

, where the sticky degree βi embodies the suitability of matching

between a rack and a location. Obviously, the larger the βi, the better the location assigned
to rack i. Let β = ∑i∈R βi/|R| for the average sticky degree, and racks with a sticky degree
lower than β are filtered, denoted by the set RGS.

(1) Crossover operator

Select θ(θ < |RGS|) racks from RGS and use the bi-directional matching strategy in
Section 4.2.4 to re-match their locations.

(2) Mutation operator

δ(δ < min{|RGS|, |L| − |R|}) racks are selected from RGS, and δ idle locations are
randomly selected, and the bi-directional matching strategy in Section 4.2.4 is used to
re-match these locations and racks.

(3) Local search operators

Theorem 3. In the local search process of the algorithm, the heavy loaded travel distance F1of the
robots is unchanged.

Operator 1: The racks are classified according to heat, and the racks with the same heat
are classified as one class. Two racks of the same class are randomly selected to exchange
their location.

Operator 2: The locations are classified according to the distance to the picking station,
and the locations with the same distance are classified as one class. The two racks stored in
the same location are randomly selected for location exchange.

4.3.3. Fitness Function

The fitness function represents the improved value of the optimization objective.
Given the unique nature of the RLOP, adjusting the position of each rack only impacts its
distance from the picking station and other locations. Therefore, there is no requirement to
solve the entire problem again. It is sufficient to calculate the change in travel distance of
the racks resulting from the change in location to determine the overall improvement in
the problem.

Fitness function of the crossover/mutation operator:

∆FGS = η1 ∑
i∈R′

hi·
(
di

u′ − di
u
)
+ η2 ∑

i∈R′
∑

j∈R−R′
gij·

(
di

u′v′ − di
uv
)

+η2 ∑
i∈R′

∑
j∈R′

j>i

gij·
(
di

u′v′ − di
uv
) (25)

Fitness function of the local search operators:

∆FNS1 = η2 ∑
i∈R′

∑
j∈R−R′

gij·(du′v − duv) (26)

5. Computational Results

To evaluate the effectiveness and performance of the proposed solution approaches, we
conducted computational experiments on a computer equipped with an AMD Ryzen7 CPU,
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16 GB RAM, and the Windows 10 (64-bit) operating system. All methods presented in this
paper are implemented using C#. Gurobi is selected as the solver of mathematical models.

5.1. Instance Generation and Parameter Setting

The rack storage area of the MRPS is composed of multiple blocks; each storage
block contains multiple adjacent locations, and the blocks are separated by horizontal and
vertical lanes, and the robot can travel in each lane. This paper builds the warehouse
layout diagram, as shown in Figure 4, according to the actual layout of the MRPS of a
large e-commerce company. The distance of each grid is 1, with a total of 1500 locations.
Part of the orders, racks, and SKUs are extracted from the actual business data to form 10
small-scale instances and 20 large-scale instances. The values of relevant parameters are
shown in Table 3.

Mathematics 2024, 12, 413 14 of 20 
 

 

 
Figure 4. Warehouse layout. 

Table 3. The values of relevant parameters. 

Algorithm Parameters Values RLOP Parameters Values 
Proportion of master variables fixed 0.05 Size of racks  [4, 1359] 

Capacity of solution pool 100 Size of locations  [2, 1500] 
Population size 50 Distance to picking station [4, 107] 

Elitism retention rate 0.4 Distance between station [1,120] 
Crossover probability 0.9 Location vacancy rate [0, 0.3] 
Mutation probability 0.1 Size of orders [15, 30,000] 
Global iterations 𝑇  100 Size of SKUs [5, 5000] 

Local search iterations 𝑇ே 𝑇 = 100 − 𝑇  
The categories of SKUs included in an order [1, 7] 

Tabu tenure 10 
The maximum number of un-updated 

iterations of the global optimal solution. 5 The quantity of each SKU in an order [1, 5] 

The maximum number of un-updated 
iterations of the local optimal solution. 

𝑚𝑖𝑛ሼ10, 𝑇ሽ priority 𝜂ଵ = 0.7 𝜂ଶ = 0.3 

5.2. Algorithm Performance Comparison 
To evaluate the performance of the MABBD proposed in this paper, this section 

conducts a comprehensive comparison of the results from our MABBD, MA, Gurobi, 
and a meta-heuristic (the improved Partheno–Genetical algorithm, IPGA) that has 
shown good performance for the storage assignment problem. These comparisons are 
performed across instances of various sizes, with a maximum solution time of 3600 s. 

Table 4 displays the results of Gurobi when applied to Model 2, as well as the out-
comes of the MABBD, MA, and IPGA proposed in this paper for 10 small and medium-
sized instances. In Table 4, 𝐺𝑎𝑝ீ௨ represents the disparity in results between an algo-
rithm and Gurobi. If the solution time of Gurobi is less than 3600 s, it indicates that 
Gurobi has found the optimal solution; if the solution time is 3600, it signifies that Guro-
bi has returned a best-found solution. The solution and running time of other algorithms 
are the output results after the termination condition of the algorithm is satisfied. 

Table 4. Comparison of the solution results on small and medium-sized instances. 

No. Instances |𝑶|-|𝑹|-|𝑳| 𝒉ഥ 𝒈ഥ 
Obj 𝑮𝒂𝒑𝑮𝒖𝒓𝒐𝒃𝒊 Time (s) 

Gurobi MABBD MABBD MA IPGA Gurobi MABBD MA IPGA 
1 15-4-5 1.8 1.2 85.94 85.94 0.00% 0.00% 0.00% 0.08 0.63 5.06 4.13 
2 20-6-8 2.1 1.4 159.95 159.95 0.00% 0.00% 0.00% 1.8 289.3 6.44 4.89 
3 28-8-10 1.6 1.1 219.84 219.84 0.00% 0.00% 0.00% 110.17 887.96 8.1 9.7 
4 35-10-13 2.1 1.2 254.45 254.45 0.00% 0.00% 0.81% 3600 2150 13.22 13.46 

Figure 4. Warehouse layout.

Table 3. The values of relevant parameters.

Algorithm Parameters Values RLOP Parameters Values

Proportion of master
variables fixed 0.05 Size of racks [4, 1359]

Capacity of solution pool 100 Size of locations [2, 1500]

Population size 50 Distance to picking
station [4, 107]

Elitism retention rate 0.4 Distance between
station [1, 120]

Crossover probability 0.9 Location vacancy rate [0, 0.3]
Mutation probability 0.1 Size of orders [15, 30,000]
Global iterations TG 100 Size of SKUs [5, 5000]

Local search iterations TN Tn = 100 − TG The categories of
SKUs included in an

order

[1, 7]Tabu tenure 10
The maximum number of

un-updated iterations of the
global optimal solution.

5 The quantity of each
SKU in an order [1, 5]

The maximum number of
un-updated iterations of the

local optimal solution.
min{10, Tn} priority η1 = 0.7

η2 = 0.3

5.2. Algorithm Performance Comparison

To evaluate the performance of the MABBD proposed in this paper, this section
conducts a comprehensive comparison of the results from our MABBD, MA, Gurobi, and a
meta-heuristic (the improved Partheno–Genetical algorithm, IPGA) that has shown good
performance for the storage assignment problem. These comparisons are performed across
instances of various sizes, with a maximum solution time of 3600 s.
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Table 4 displays the results of Gurobi when applied to Model 2, as well as the outcomes
of the MABBD, MA, and IPGA proposed in this paper for 10 small and medium-sized
instances. In Table 4, GapGurobi represents the disparity in results between an algorithm
and Gurobi. If the solution time of Gurobi is less than 3600 s, it indicates that Gurobi has
found the optimal solution; if the solution time is 3600, it signifies that Gurobi has returned
a best-found solution. The solution and running time of other algorithms are the output
results after the termination condition of the algorithm is satisfied.

Table 4. Comparison of the solution results on small and medium-sized instances.

No. Instances
|O|-|R|-|L| h g

Obj GapGurobi Time (s)

Gurobi MABBD MABBD MA IPGA Gurobi MABBD MA IPGA

1 15-4-5 1.8 1.2 85.94 85.94 0.00% 0.00% 0.00% 0.08 0.63 5.06 4.13
2 20-6-8 2.1 1.4 159.95 159.95 0.00% 0.00% 0.00% 1.8 289.3 6.44 4.89
3 28-8-10 1.6 1.1 219.84 219.84 0.00% 0.00% 0.00% 110.17 887.96 8.1 9.7
4 35-10-13 2.1 1.2 254.45 254.45 0.00% 0.00% 0.81% 3600 2150 13.22 13.46
5 76-14-18 2.5 1.1 444.62 432.98 −2.62% −2.62% −1.48% 3600 3600 16.5 15.24
6 89-19-25 2.6 0.9 803.93 755.1 −6.07% −6.07% −3.56% 3600 3600 22.19 24.78
7 144-25-32 3.3 1.3 1622.37 1546.4 −4.68% −4.68% −3.73% 3600 3600 18.8 21.6
8 137-30-39 2.9 1.1 1878.61 1755.16 −6.57% −6.46% −5.09% 3600 3600 65.97 88.41
9 166-34-44 3 1.3 2590.65 2309.2 −10.86% −11.47% −10.62% 3600 3600 69.84 75.04

10 201-40-52 3.2 1.1 3086.46 2933.5 −4.96% −5.91% −3.87% 3600 3600 91.23 112.7

Average 91-19-25 2.51 1.17 1114.68 1045.25 −3.58% −3.72% −2.75% 2531.2 2492.7 31.74 37.00

Table 4 shows that when the size of the instances is small, Gurobi can find the optimal
solution, but as the size of the instances gradually increases, Gurobi is unable to obtain
the optimal solution in 3600s. The performance of the MABBD is better than Gurobi
with an average improvement in the objective value of 3.58%. The MA exhibits superior
performance, as it not only enhances the objective value by 3.72% but also has a much
shorter computation time in comparison to Gurobi. Due to its intelligent nature, the
evaluation of the solution’s quality cannot be made directly for MA algorithm. While the
MABBD can give the upper and lower bound solution of the RLOP (see Appendix B), the
average Gap value of the upper and lower bounds obtained by this algorithm is 7.37%,
indicating that it has a good convergence impact. Meanwhile, comparing the MDBBD as a
benchmark, the MA in this paper shows superior optimization searching ability.

For large-sized instances, due to Gurobi’s inability to obtain feasible solutions in a
limited period, this paper introduces an additional meta-heuristic algorithm for comparison:
the improved Partheno–Genetical algorithm (IPGA). This algorithm is chosen based on its
good performance for storage assignment in the recent literature [31–34]. The algorithm
details are as follows: drawing on the algorithmic framework of the above literatures,
the population size is set to 150, the maximum number of iterations is 1000, and other
parameters are set the same as in MA. Let the crossover/mutation operators of MA be
the mutation operators of IPGA, and the Tabu search operators of MA be the crossover
operators of IPGA.

The results of MA and IPGA on large-sized instances are shown in Table 5. In general,
MA has greater advantages than IPGA. The MA results of 20 instances are better than IPGA,
saving 60,232.3 units of robot travel distance on average. In order to reflect the performance
of MA more intuitively, the results of upper and lower bounds are taken as benchmarks to
compare the solving effects of MA and IPGA (see Appendix C for the detailed calculation
process and results). Upon analyzing Table 5, it is evident that MA outperforms IPGA in
terms of enhancing the objective value, demonstrating an average optimization of 26.40%.
Moreover, the optimal objective value found by our MA is closer to the lower bound, which
is optimized by 32.54% compared with IPGA. In addition, the running time of the two
algorithms is relatively close. Given that RLOP is a strategic decision with a medium to
long-term impact, it is not necessary to place excessive emphasis on the algorithm’s running
time. Our primary focus is on discovering a more optimal resolution.
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Table 5. Comparison of the results of large-sized instances.

No. Instances
|O|-|R|-|L| h g

MA IPGA Benchmark

Obj Time (s) Obj Time (s) ∆UB
MA−IPGA ∆LB

MA−IPGA

11 1176-53-60 19.2 1.1 13,931.9 154.0 14,621.4 110.6 130.61% −49.25%
12 1687-75-91 22.9 1.3 21,702.0 187.3 22,679.5 172.4 93.94% −50.65%
13 2346-107-138 21.6 0.9 44,934.2 254.1 46,734.5 211.2 56.97% −33.73%
14 3335-151-181 20.8 1.1 77,881.8 342.0 80,454.2 366.7 33.30% −25.75%
15 4689-205-248 17.2 1.2 156,528.5 513.9 163,687.4 499.6 71.59% −33.93%
16 5613-249-261 20.1 1.4 237,149.0 678.3 240,582.4 617.8 18.49% −28.49%
17 6467-283-348 25.3 1.0 275,052.2 802.4 282,481.9 833.2 22.71% −39.17%
18 6802-321-408 22.6 1.1 401,388.3 896.0 414,643.4 918.0 27.91% −34.69%
19 7992-390-445 20.2 1.3 587,750.8 877.5 607,476.8 922.7 25.19% −33.38%
20 9537-416-503 24.3 1.2 738,218.8 1132.9 756,478.1 1076.3 23.90% −29.41%
21 10,585-527-585 19.2 1.0 1,207,114.2 1286.4 1,231,652.0 1325.8 23.04% −32.47%
22 14,090-616-708 26.6 1.3 1,867,676.3 1481.1 1,901,662.4 1437.2 25.52% −35.60%
23 15,036-698-768 18.6 0.9 2,402,125.8 1500.7 2,475,922.8 1385.8 31.46% −32.35%
24 17,687-774-820 20.6 1.3 3,335,183.1 1643.8 3,426,183.2 1593.1 42.09% −32.63%
25 18,715-855-1060 24.6 1.3 4,020,468.7 1651.4 4,116,579.2 1677.5 24.63% −33.14%
26 19,461-927-1177 21.3 1.2 4,840,085.3 1589.2 4,921,415.7 1790.2 16.29% −25.10%
27 23,296-1045-1118 20.6 0.8 6,755,828.4 1854.7 6,867,060.6 1869.4 14.16% −23.85%
28 25,284-1167-1179 22.3 1.1 8,956,673.4 1965.3 9,028,345.8 1900.3 10.42% −22.69%
29 27,430-1288-1378 24.4 1.0 11,937,880.1 2032.6 12,185,561.3 2114.7 39.80% −35.28%
30 29,571-1359-1386 23.5 1.3 13,834,867.1 2418.5 14,132,863.3 2356.2 48.77% −42.81%

Average 12,540-575-643 21.8 1.1 3,085,622.0 1163.1 3,145,854.3 1158.9 26.40% −32.54%

In short, the strong solving ability of MA is mainly due to its dual optimization ability
of both global search and local search. The crossover/mutation operator disturbs the
matching results of racks and locations on a larger range, which is conducive to jumping
out of the current neighborhood. The elitism retention strategy also preserves high-quality
solutions. The local tabu search strategy further searches for new neighborhood solutions,
hence enhancing its ability to identify potential optimal solutions. This cross-application of
horizontal search and vertical search is in line with the characteristics of the RLOP, so the
optimization ability of the algorithm is improved.

6. Conclusions

Research on the RLOP has significant practical importance in enhancing the efficiency
of e-commerce order picking and accelerating the response speed of e-commerce logistics,
given the rapid development of the MRPS in e-commerce logistics in recent years. Nev-
ertheless, the key to solving this problem lies in extracting the ordering rules of SKUs in
orders and effectively modelling and solving the problem through the process of “customer
orders → rack use frequency → rack location optimization”. This is particularly important
due to the presence of multiple SKUs in e-commerce orders and the practical nature of
splitting and storing per SKU on multiple racks in MRPS.

Focusing on the link of “customer orders → rack use frequency”, this paper proposes a
model that calculates the heat and relevance degree of racks based on customer orders. The
objective of the model is to minimize the number of times the racks move. The model also
determines the selected picking racks and generates two attribute values: per rack heat and
relevance degree between racks. The link “rack frequency → rack position optimization”
considers the heavy load and no-load travel distance of the robots as the determining
variables for picking efficiency. A bi-objective integer programming model is established to
optimize the rack position by minimizing these two distances. To address the challenge of
decision coupling and the vast solution space in stage 2, we develop two lower bounds for
the original problem by lowering the distance between storage locations. A matheuristic
algorithm based on Benders decomposition (MABBD) is designed, which utilizes Benders-
related rules to reconstruct Model 2, proposing an enhanced cut and an improved optimal
cut, and designing the warm start strategy and the master variable fixed strategy. Given the
substantial scale of real-life problems, the Memetic algorithm (MA) is specifically devised
to address them. Instances of varying sizes are also employed to validate the science
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and efficacy of the model and algorithm. The experimental results demonstrate that the
suggested algorithm achieves superior quality solutions.

This work introduces a novel idea and methodology for enhancing the efficiency of
rack placements in the MRPS. Implementing this approach would significantly enhance
the scientific and intelligent aspects of the decision-making process for optimizing rack
locations in this system. It would also improve the current inefficient methods utilized for
rack location optimization in e-commerce storage management. Our approach efficiently
handles extensive customer orders in intricate warehouse operations and improves the
applicability and efficiency of optimization theory in warehouse management. According
to this study, a crucial and difficult aspect of the MRPS is determining the best location for
racks to fulfil customer orders in real-time while also optimizing the robot’s scheduling.
This will be the focus of future research in this paper.
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Appendix A

This section demonstrates the rationality of the master variables fixation strategy
through theoretical analysis and experimental verification.

Considering the characteristics of the RLOP, it appears that the number of locations in
the warehouse generally exceeds the number of racks by 0%–30% [8,9]. This indicates that
0–30% of the locations are unnecessary or redundant. Furthermore, racks with a higher
heat degree are positioned near the picking station, while racks with a lower heat degree
are positioned slightly further away. This arrangement clearly benefits in reducing the
robot’s travel distance and corresponds to the optimal rack location optimization strategy.
Given these factors, it is likely that there are some unnecessary decision variables, which
consequently decrease the efficiency of the model’s solution. Thus, we anticipate identifying
these redundant decision variables using the master variables fixation strategy in order
to enhance the algorithm’s solution efficiency. It is worth noting that this strategy should
not be overused to prevent loss of potential optimal solutions. Therefore, we limited the
application of this strategy to fixing only 5% of the decision variables each time it was
invoked. Additionally, one of the termination conditions of the MABBD was that the
strategy could only be used a maximum of six times. We limit the fixed proportion of
decision variables to reduce the probability of losing the optimal solution.

Subsequently, we investigate the reasonableness of this strategy based on empirical
data. Given that each instance is computed thrice, the mean of the outcomes is considered
as the ultimate result. The frequency of the master variable fixation strategy in each per-
instance computation is tallied, and the findings are presented in Table A1. Table A1
indicates that within the effective calculation time, the algorithm invokes the master
variable fixation strategy fewer than six times. Combined with Table A2 in Appendix B, it
is observed that as the size of the instance increases, the Gap value of the upper and lower
bounds obtained by MABBD is not 0. This suggests that we can only determine an interval
where the optimal solution exists, and there is still potential for further optimization of
either the upper or lower bounds. Nevertheless, our upper bound surpasses the objective
solution obtained by Gurobi within the effective calculation time. The utilization of the
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master variable fixation strategy is conducive to finding a better upper bound. While
it cannot be definitively said that the master variable fixation strategy will not exclude
prospective optimal solutions, this strategy is often advantageous for searching for better
optimal solutions.

Table A1. The frequency of adopting the master variables fixation strategy.

No.
Instances
|O|-|R|-|L|

Frequency

First Calculation Second
Calculation

Third
Calculation

1 15-4-5 0 0 0
2 20-6-8 0 0 0
3 28-8-10 0 1 1
4 35-10-13 1 0 1
5 76-14-18 3 3 2
6 89-19-25 2 2 3
7 144-25-32 3 3 4
8 137-30-39 4 5 4
9 166-34-44 4 5 3
10 201-40-52 5 4 4

Appendix B

Table A2. Results of small and medium-sized instances.

No.
Instances
|O|-|R|-|L|

Gurobi MABBD MA IPGA

Obj Gap UB LB Gap Obj Obj

1 15-4-5 85.94 0% 85.94 85.94 0.00% 85.94 85.94
2 20-6-8 159.95 0% 159.95 159.95 0.00% 159.95 159.95
3 28-8-10 219.84 0% 219.84 219.84 0.00% 219.84 219.84
4 35-10-13 254.45 10.80% 254.45 254.45 0.00% 254.45 256.5
5 76-14-18 444.62 32.37% 432.98 410.55 5.18% 432.98 438.02
6 89-19-25 803.93 51.79% 755.1 686.42 9.10% 755.1 775.3
7 144-25-32 1622.37 61.34% 1546.4 1341.73 13.24% 1546.4 1561.9
8 137-30-39 1878.61 70.87% 1755.16 1561.29 11.05% 1757.33 1783.01
9 166-34-44 2590.65 73.67% 2309.2 1982.43 14.15% 2293.5 2315.44

10 201-40-52 3086.46 81.21% 2933.5 2318.87 20.95% 2904 2967.13
Average 91-19-25 1114.68 38.21% 1045.25 902.15 7.37% 1040.95 1056.30

Appendix C

In this section, we analyze and process the results of large-sized instances to reflect the
advantages of MA more clearly. Owing to the inherent properties of RLOP, the numerical
values of the results are relatively large, making it challenging to visually perceive the
optimization effect of MA and IPGA. Therefore, this paper attempts to use the upper
bound and the lower bound as the comparison benchmark to perform some mathematical
processing on the results to reflect the performance of the algorithm more intuitively.

Specifically, we first calculate the difference between the solution obtained by the
algorithm to be compared and the benchmark solution. For example, in the 11th instance,
MA-LB = 710.5 is the difference between the result of MA, 13,931.9 (from Table 5), and the
lower bound, 13,221.4. Then, we measure the performance of these algorithms by the gap
between the MA difference and the IPGA difference, where the formula for obtaining the
gap is ∆B

MA−IPGA = (MA−B)−(IPGA−B)
IPGA−B , B ∈ {UB, LB}. Similarly, taking the 20th instance

as an example, ∆LB
MA−IPGA = −49.25% can be calculated from 710.5−1400.0

1400.0 = −49.25%.
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Table A3. Results of large-sized instances.

No. Instances
|O|-|R|-|L|

Obj UB as the Benchmark LB as the Benchmark

UB LB MA-UB IPGA-UB ∆UB
MA−IPGA MA-LB LPGA-LB ∆LB

MA−IPGA

11 1176-53-60 15,149.3 13,221.4 −1217.4 −527.9 130.61% 710.5 1400.0 −49.25%
12 1687-75-91 23,720.1 20,749.8 −2018.1 −1040.6 93.94% 952.3 1929.8 −50.65%
13 2346-107-138 49,894.5 41,397.4 −4960.3 −3160.0 56.97% 3536.8 5337.1 −33.73%
14 3335-151-181 88,178.9 70,465.1 −10,297.1 −7724.7 33.30% 7416.7 9989.1 −25.75%
15 4689-205-248 173,687.0 142,586.7 −17,158.5 −9999.6 71.59% 13,941.8 21,100.7 −33.93%
16 5613-249-261 259,147.7 228,530.2 −21,998.7 −18,565.3 18.49% 8618.8 12,052.2 −28.49%
17 6467-283-348 315,204.1 263,514.4 −40,151.9 −32,722.2 22.71% 11,537.8 18,967.5 −39.17%
18 6802-321-408 462,138.5 376,430.4 −60,750.3 −47,495.2 27.91% 24,957.9 38,213.0 −34.69%
19 7992-390-445 685,790.7 548,376.6 −98,039.9 −78,313.9 25.19% 39,374.2 59,100.2 −33.38%
20 9537-416-503 832,881.5 694,387.0 −94,662.8 −76,403.4 23.90% 43,831.8 62,091.1 −29.41%
21 10,585-527-585 1,338,174.2 1,156,072.3 −131,060.0 −106,522.2 23.04% 51,041.9 75,579.7 −32.47%
22 14,090-616-708 2,034,856.7 1,806,201.4 −167,180.4 −133,194.3 25.52% 61,474.9 95,461.0 −35.60%
23 15,036-698-768 2,710,522.2 2,247,832.7 −308,396.4 −234,599.4 31.46% 154,293.1 228,090.1 −32.35%
24 17,687-774-820 3,642,381.7 3,147,313.2 −307,198.6 −216,198.5 42.09% 187,869.9 278,870.0 −32.63%
25 18,715-855-1060 4,506,824.1 3,826,579.7 −486,355.4 −390,244.9 24.63% 193,889.0 289,999.5 −33.14%
26 19,461-927-1177 5,420,598.3 4,597,431.1 −580,513.0 −499,182.6 16.29% 242,654.2 323,984.6 −25.10%
27 23,296-1045-1118 7,652,712.8 6,400,667.1 −896,884.4 −785,652.2 14.16% 355,161.3 466,393.5 −23.85%
28 25,284-1167-1179 9,715,936.3 8,712,437.8 −759,262.9 −687,590.5 10.42% 244,235.6 315,908.0 −22.69%
29 27,430-1288-1378 12,807,938.6 11,483,553.2 −870,058.5 −622,377.3 39.80% 454,326.9 702,008.1 −35.28%
30 29,571-1359-1386 14,743,886.8 13,436,757.3 −909,019.7 −611,023.5 48.77% 398,109.8 696,106.0 −42.81%

Average 12,540-575-643 3,373,981.2 2,960,725.2 −288,359.2 −228,126.9 26.40% 124,896.8 185,129.1 −32.54%
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