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Răzvan-Cornel Sfetcu 1,* and Vasile Preda 2,3,1

1 Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei 14,
010014 Bucharest, Romania; vasilepreda0@gmail.com

2 “Gheorghe Mihoc-Caius Iacob” Institute of Mathematical Statistics and Applied Mathematics,
Calea 13 Septembrie 13, 050711 Bucharest, Romania

3 “Costin C. Kiriţescu” National Institute of Economic Research, Calea 13 Septembrie 13,
050711 Bucharest, Romania

* Correspondence: razvan.sfetcu@fmi.unibuc.ro

Abstract: With the help of Tsallis residual entropy, we introduce Tsallis quantile entropy order
between two random variables. We give necessary and sufficient conditions, study closure and
reversed closure properties under parallel and series operations and show that this order is preserved
in the proportional hazard rate model, proportional reversed hazard rate model, proportional odds
model and record values model.

Keywords: Tsallis entropy; Tsallis quantile entropy; Tsallis residual entropy; Tsallis quantile entropy
order

MSC: 60E15; 60K10; 62B10; 62N05; 90B25; 94A17

1. Introduction

The concept of entropy, defined mathematically by Shannon in [1], measures the
uncertainty of a physical system and has applications in many scientific and technological
areas such as physics, probability theory, statistics, communication theory and economics.
This notion appeared from thermodynamics and statistical mechanics. In this theory, for a
data communication system, we have three elements: a receiver, a communication channel
and a source of data. Based on the signal that is received through the channel, Shannon
tried to identify what sort of data were generated. Many methods on how to encode,
compress and transmit the message were considered. In Shannon’s source coding theorem,
also known as Shannon’s first theorem, an error-free encoding is established. This result
is generalized especially for noisy channel in Shannon’s noisy coding theorem. In the
last couple of years, Shannon entropy was intensively studied and many generalizations
have appeared (Tsallis entropy, Rényi entropy, Varma entropy, Kaniadakis entropy, relative
entropy, weighted entropy, cumulative entropy, etc.).

In [2], Tsallis used another formula instead of the classical algorithm which appears in
Shannon entropy, defining, in this way, what we call today, Tsallis entropy. There are many
applications of this new entropy, especially in physics, and, more precisely: superstatistics
(see [3]), spectral statistics (see [4]), earthquakes (see [5–7]), stock exchanges (see [8,9]),
plasma (see [10]), income distribution (see [11]), non-coding human DNA (see [12]), internet
(see [13]), and statistical mechanics (see [2,14]). For more information about Tsallis entropy,
we recommend reading [15].

Among the applications of other entropies (Rényi entropy, Varma entropy, Kaniadakis
entropy, relative entropy, weighted entropy, etc.), we can list the following: Markov chains
(see [16–18]), model selection (see [19,20]), combinatorics (see [21,22]), finance (see [23–25]),
Lie symmetries (see [26,27]), and machine learning (see [28,29]).

There are several papers in which the authors compare random variables from the
point of view of residual entropies: for Shannon residual entropy, see [30–32]; for Rényi
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residual entropy, see [33,34]; for Varma residual entropy, see [35]; and for Awad-Varma
residual entropy, see [36]. Other orders between random variables can be found in [37–44].

Rao et al. [45] introduced an alternative measure to Shannon entropy, known as the
cumulative residual entropy (CRE), by considering the survival function instead of the prob-
ability density function. Because the survival function is more regular than the probability
density function, CRE is considered to be more stable and has more mathematical proper-
ties. Moreover, the distribution function exists even if the probability density function does
not exist (see, e.g., generalized lambda, power-Pareto and Govindarajulu distributions).
Sati and Gupta [46] introduced a cumulative residual Tsallis entropy and extended it to
its dynamic form based on the residual lifetime. Rajesh and Sunoj [47] introduced an
alternative form of the cumulative residual Tsallis entropy and proved some results with
applications in reliability. Toomaj and Atabay [48] elaborated some further consequences
of the alternative cumulative residual Tsallis entropy, introduced by Rajesh and Sunoj [47],
including stochastic ordering, expressions and bounds and proposed a normalized version
of the cumulative residual Tsallis entropy, which can be used as a dispersion measure in
place of coefficient of variation. Kumar [49] obtained characterization results based on
the dynamic cumulative residual Tsallis entropy. In many realistic situations, uncertainty
is not necessarily related to the future and can refer to the past as well. For instance,
if at time t, a system which is observed only at certain preassigned inspection times is
found to be down, then the uncertainty of the system life relies on the past, i.e., on which
instant in (0, t) it has failed. A wide variety of research is available on entropy measures
and its applications in past lifetime. For more detail, one can refer to Di Crescenzo and
Longobardi [50], Di Crescenzo and Longobardi [51], Sachlas and Papaioannou [52] and Di
Crescenzo and Toomaj [53]. Also, a study on the cumulative Tsallis entropy for past lifetime
is available in Nair et al.’s work [54], Calì et al.’s work [55], Khammar and Jahanshahi’s
work [56], Sunoj et al.’s study [57] and Alomani and Kayid’s study [58]. Baratpour and
Khammar [59] studied Tsallis entropy of order statistics. The quantile-based approach
has some advantages: it provides an alternative methodology in deriving the cumulative
Tsallis entropy in past lifetime and facilitates the extension of domain of application of the
cumulative Tsallis entropy in past lifetime to many flexible quantile functions which serve
as useful lifetime models and which possess no probability distribution function.

The paper is organized as follows. After this Introduction section, in Section 2, Back-
ground and Notations, we present the main notions and notations used throughout the article.
In Section 3, Fundamental Results, we present the main theorem (Theorem 1), which is used
in all of our results. In this section, we also prove that the dispersive order and the convex
transform order apply to the Tsallis quantile entropy order. In Section 4, Closure and Reversed
Closure Properties, we show the closure and reversed closure properties of Tsallis quantile
entropy order under parallel and series operations. In the last four sections, we show the
preservation of Tsallis quantile entropy in some stochastic models: the proportional hazard
rate model (Section 5—Preservation of Tsallis Quantile Entropy Order in the Proportional Hazard
Rate Model), the proportional reversed hazard rate model (Section 6—Preservation of Tsallis
Quantile Entropy Order in the Proportional Reversed Hazard Rate Model), the proportional
odds model (Section 7—Preservation of Tsallis Quantile Entropy Order in the Proportional Odds
Model) and the proportional record values model (Section 8—Preservation of Tsallis Quantile
Entropy Order in the Record Values Model).

2. Background and Notations

Throughout this paper, we assume that all expectations are finite and all ratios and
powers are well defined. For information on notions of probability theory, we recom-
mend [60].

We consider X a non-negative random variable with an absolutely continuous cumula-

tive distribution function FX, a survival function FX
de f
= 1 − FX and a probability density

function fX (X represents a living thing or the lifetime of a device).
Shannon entropy of X is given by
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HX = −EZ(log fX(Z)),

where “log” is the natural logarithm function and Z is a non-negative random variable
identically distributed like X.

Let α ∈ R \ {1}. Tsallis logarithm is given via

logT(x) =


xα−1 − 1

α − 1
if x > 0

0 if x = 0.

From this point onward, we assume that α > 0.
Tsallis entropy of X is defined by

HT
X = −EZ

(
logT( fX(Z))

)
.

In this paper, we work with Tsallis residual entropy, defined via

HT
X(t) = −EZ

(
1

FX(t)
logT

(
fX(Z)
FX(t)

)∣∣∣∣[Z > t]
)

for any t ≥ 0.

We recall that the quantile function of X is given by

QX(u)
de f
= F−1

X (u) = inf{x ∈ [0, ∞) | FX(x) ≥ u} for any u ∈ [0, 1].

We have FX(QX(u)) = u for any u ∈ [0, 1]. Differentiating both sides of this equality
with respect to u, we obtain F′

X(QX(u))Q′
X(u) = 1 for any u ∈ [0, 1]. With the notation

qX(u) = Q′
X(u) for any u ∈ [0, 1], it follows that qX(u) fX(QX(u)) = 1 for any u ∈ [0, 1].

Let ΨT
X(u) = HT

X(QX(u)) for any u ∈ [0, 1].
For any u ∈ [0, 1], we obtain

ΨT
X(u) = −EZ

(
1

1 − u
logT

(
fX(Z)
1 − u

)∣∣∣∣[Z > QX(u)]
)
=

−EU

(
1

1 − u
logT

(
fX(QX(U))

1 − u

)∣∣∣∣[u < U < 1]
)

,

where U is a random variable uniformly distributed on [0, 1].
In this paper, we are concerned about comparing two absolutely continuous non-

negative random variables from the point of view of Tsallis residual entropy. More precisely,
if X and Y are absolutely continuous non-negative random variables, we compare ΨT

X(u)
and ΨT

Y(u) for any u ∈ [0, 1].
In the proofs, we will make use of the lemma below.

Lemma 1 (see [33]). Let g : [0, ∞) → [0, ∞) an increasing function and h : [0, 1]× [0, ∞) → R
such that

EU

(
h(u, U)

∣∣∣∣[u < U < 1]
)
≥ 0 for any u ∈ [0, 1].

Then

EU

(
h(u, U)g(U)

∣∣∣∣[u < U < 1]
)
≥ 0 for any u ∈ [0, 1].

3. Fundamental Results

Definition 1. We say that X is smaller than Y in Tsallis quantile entropy order (and denote by
X ≤T Y) if ΨT

X(u) ≤ ΨT
Y(u) for any u ∈ [0, 1].
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In the last several years, stochastic orders and inequalities have been used intensively
in many areas of probability and statistics, like reliability theory, queuing theory, survival
analysis, biology, economics, insurance, actuarial science, operations research and manage-
ment science. The simplest way of comparing two distribution functions is by a comparison
of the associated means. Because this comparison is based on only two numbers (the
means), it is sometimes not very informative. Moreover, the means to not exist is possible.
In many applications, we have more detailed information concerning the comparison
of two distribution functions than just the two means. If we compare two distribution
functions with the same mean (or that are centered about the same value), we can compare
the dispersion of these distributions. The simplest way of doing this is by the comparison
of the associated standard deviations. But, again, the comparison depends on only two
numbers (the standard deviations), which are at times not very informative. As mentioned
above, it is possible for the standard deviations to not exist. The concept of stochastic
orders plays a major role in the theory and practice of statistics. It generally refers to a set
of relations that may hold between a pair of distributions of random variables. In reliability,
the stochastic orders which compare life distributions based on different characteristics
are used to study aging properties, to develop bounds on reliability functions, to compare
the performance of policies and systems and to derive new inference procedures. Many of
such orders are defined in terms of concepts based on distribution functions.

The theorem below is the main result of this paper.

Theorem 1. The following assertions are equivalent:

1. X ≤T Y.

2. EZ

( fY

(
F−1

Y (FX(Z))
))α−1

logT

 fX(Z)

fY

(
F−1

Y (FX(Z))
)
∣∣∣∣[Z > t]

 ≥ 0 for any t ≥ 0.

Proof. From Definition 1, X ≤T Y if and only if

−EU

(
1

1 − u
logT

(
fX(QX(U))

1 − u

)∣∣∣∣[u < U < 1]
)
≤

−EU

(
1

1 − u
logT

(
fY(QY(U))

1 − u

)∣∣∣∣[u < U < 1]
)

for any u ∈ [0, 1].

If we take QX(U) = Z in the preceding inequality, the following equivalences are
valid for any u ∈ [0, 1]:

X ≤T Y ⇐⇒ EZ

(
logT

(
fX(Z)

FX(F−1
X (u))

)∣∣∣∣[Z > F−1
X (u)]

)
≥

EZ

(
logT

(
fY(QY(FX(Z)))

FX(F−1
X (u))

)∣∣∣∣[Z > F−1
X (u)]

)
⇐⇒

EZ

(
logT

(
fX(Z)

FX(F−1
X (u))

)
− logT

(
fY(QY(FX(Z)))

FX(F−1
X (u))

)∣∣∣∣[Z > F−1
X (u)]

)
≥ 0 ⇐⇒

EZ

((
fY(F−1

Y (FX(Z)))
)α−1

logT

(
fX(Z)

fY(F−1
Y (FX(Z)))

)∣∣∣∣[Z > F−1
X (u)]

)
≥ 0.

In order to obtain the conclusion, it is sufficient to denote F−1
X (u) = t.

Definition 2 (see [61]). We say that:

1. X is smaller than Y in the dispersive order (and write X ≤disp Y) if

fX(x) ≥ fY(F−1
Y (FX(x))) for any x ≥ 0.

2. X is smaller than Y in the convex transform order (and write X ≤c Y) if the function
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[0, ∞) ∋ x 7−→ fX(x)
fY(F−1

Y (FX(x)))
is non-negatively increasing.

The dispersive order is a basic concept for comparing spread among probability distri-
butions, with applications to order statistics, spacings and convolutions of independent
random variables. The convex transform order is used to make precise comparisons be-
tween the skewness of probability distributions on the real line. From the point of view of
the aging interpretation, this order can be seen as identifying aging rates in a way that also
works when lifetimes do not start simultaneously (for more details concerning these two
orders, the reader can consult [61]).

Theorem 2. If X ≤disp Y, then X ≤T Y.

Proof. Assume that X ≤disp Y. Then fX(x) ≥ fY(F−1
Y (FX(x))) for any x ≥ 0, hence

logT

(
fX(x)

fY(F−1
Y (FX(x)))

)
≥ 0 for any x ≥ 0 and the conclusion follows Theorem 1.

Theorem 3. If X ≤c Y and fY(0) ≤ fX(0), then X ≤T Y.

Proof. Assume that X ≤c Y. Then the function [0, ∞) ∋ x 7−→ fX(x)
fY(F−1

Y (FX(x)))
is non-

negatively increasing; hence

fX(x)
fY(F−1

Y (FX(x)))
≥ fX(0)

fY(0)
≥ 1 for any x ≥ 0.

With Theorem 1, we obtain the conclusion.

4. Closure and Reversed Closure Properties

We consider X1, . . . , Xn and Y1, . . . , Yn to be independent and identically distributed
(i.i.d.) copies of X and Y, respectively, and

X1:n = min{X1, . . . , Xn}, Xn:n = max{X1, . . . , Xn},

Y1:n = min{Y1, . . . , Yn}, Yn:n = max{Y1, . . . , Yn}.

Theorem 4. If X ≤T Y, then Xn:n ≤T Yn:n.

Proof. Because X ≤T Y, we can determine with Theorem 1 that

EZ

( fY

(
F−1

Y (FX(Z))
))α−1

logT

 fX(Z)

fY

(
F−1

Y (FX(Z))
)
∣∣∣∣[Z > t]

 ≥ 0 for any t ≥ 0. (1)

It can be seen that, for any x ≥ 0,

FXn:n(x) = (FX(x))n,

FYn:n(x) = (FY(x))n,

fXn:n(x) = n(FX(x))n−1 fX(x),

fYn:n(x) = n(FY(x))n−1 fY(x),

F−1
Yn:n

(FXn:n(x)) = F−1
Y (FX(x)),

fYn:n(F−1
Yn:n

(FXn:n(x))) = n(FX(x))n−1 fY(F−1
Y (FX(x)))

and
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fXn:n(x)
fYn:n(F−1

Yn:n
(FXn:n(x)))

=
fX(x)

fY(F−1
Y (FX(x)))

.

Then

EZ

( fYn:n

(
F−1

Yn:n
(FXn:n(Z))

))α−1
logT

 fXn:n(Z)

fYn:n

(
F−1

Yn:n
(FXn:n(Z))

)
∣∣∣∣[Z > t]

 =

EZ

(n(FX(Z))n−1)α
(

fY

(
F−1

Y (FX(Z))
))α−1

logT

 fX(Z)

fY

(
F−1

Y (FX(Z))
)
∣∣∣∣[Z > t]

 for any

t ≥ 0.

Because the function

[0, ∞) ∋ x 7−→
(
n(FX(x))n−1)α is non-negatively increasing,

it follows, via inequality (1) and Lemma 1, that

EZ

( fYn:n

(
F−1

Yn:n
(FXn:n(Z))

))α−1
logT

 fXn:n(Z)

fYn:n

(
F−1

Yn:n
(FXn:n(Z))

)
∣∣∣∣[Z > t]

 ≥ 0 for any

t ≥ 0.

The relationship Xn:n ≤T Yn:n follows Theorem 1.

Theorem 5. If X1:n ≤T Y1:n, then X ≤T Y.

Proof. Because X1:n ≤T Y1:n, we have, by Theorem 1, that

EZ

( fY1:n

(
F−1

Y1:n

(
FX1:n(Z)

)))α−1
logT

 fX1:n(Z)

fY1:n

(
F−1

Y1:n

(
FX1:n(Z)

))
∣∣∣∣[Z > t]

 ≥ 0 for any t ≥ 0. (2)

We can see that, for any x ≥ 0,

FX1:n(x) =
(

FX(x)
)n,

FY1:n(x) =
(

FY(x)
)n,

fX1:n(x) = n
(

FX(x)
)n−1 fX(x),

fY1:n(x) = n
(

FY(x)
)n−1 fY(x),

F−1
Y1:n

(
FX1:n(x)

)
= F−1

Y (FX(x)),

fY1:n(F−1
Y1:n

(FX1:n(x))) = n
(

FX(x)
)n−1 fY(F−1

Y (FX(x)))

and
fX1:n(x)

fY1:n(F−1
Y1:n

(FX1:n(x)))
=

fX(x)
fY(F−1

Y (FX(x)))
.

Then

EZ

( fY

(
F−1

Y (FX(Z))
))α−1

logT

 fX(Z)

fY

(
F−1

Y (FX(Z))
)
∣∣∣∣[Z > t]

 =

EZ

(nFX(Z))n−1)−α
(

fY1:n

(
F−1

Y1:n

(
FX1:n(Z)

)))α−1
logT

 fX1:n(Z)

fY1:n

(
F−1

Y1:n

(
FX1:n(Z)

))
∣∣∣∣[Z > t]


for any t ≥ 0.
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Because the function

[0, ∞) ∋ x 7−→
(
nFX(x))n−1)−α is non-negatively increasing,

it follows, via inequality (2) and Lemma 1, that

EZ

( fY

(
F−1

Y (FX(Z))
))α−1

logT

 fX(Z)

fY

(
F−1

Y (FX(Z))
)
∣∣∣∣[Z > t]

 ≥ 0 for any t ≥ 0.

By applying Theorem 1, we obtain that X ≤T Y.

The natural step is to generalize the preceding two theorems from a finite number n to
a random variable N.

We consider X1, X2, . . . and Y1, Y2, . . . as sequences of independent and identically
distributed copies of X and Y, respectively. Let N be a positive integer random variable
with the probability mass function pN(n) = P(N = n), n = 1, 2, . . . and such that N is
independent of X′

i s and Y′
i s. Take

X1:N = min{X1, . . . , XN}, XN:N = max{X1, . . . , XN}

and

Y1:N = min{Y1, . . . , YN}, YN:N = max{Y1, . . . , YN}.

Theorem 6. If X ≤T Y, then XN:N ≤T YN:N .

Proof. Because X ≤T Y, we can determine by Theorem 1 that

EZ

( fY

(
F−1

Y (FX(Z))
))α−1

logT

 fX(Z)

fY

(
F−1

Y (FX(Z))
)
∣∣∣∣[Z > t]

 ≥ 0 for any t ≥ 0. (3)

One can see that, for any x ≥ 0,

FXN:N (x) =
∞

∑
n=1

(FX(x))n pN(n),

FYN:N (x) =
∞

∑
n=1

(FY(x))n pN(n),

fXN:N (x) =

[
∞

∑
n=1

n(FX(x))n−1 pN(n)

]
· fX(x)

and

fYN:N (x) =

[
∞

∑
n=1

n(FY(x))n−1 pN(n)

]
· fY(x).

It was proven in [61] that

F−1
YN:N

(
FXN:N (x)

)
= F−1

Y (FX(x)) for any x ≥ 0.

Hence, for any x ≥ 0,

fYN:N (F−1
YN:N

(FXN:N (x))) =

[
∞

∑
n=1

n(FX(x))n−1 pN(n)

]
· fY(F−1

Y (FX(x)))

and
fXN:N (x)

fYN:N (F−1
YN:N

(FXN:N (x)))
=

fX(x)
fY(F−1

Y (FX(x)))
.
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Then

EZ

( fYN:N

(
F−1

YN:N
(FXN:N (Z))

))α−1
logT

 fXN:N (Z)

fYN:N

(
F−1

YN:N
(FXN:N (Z))

)
∣∣∣∣[Z > t]

 =

EZ

( ∞

∑
n=1

n(FX(Z))n−1 pN(n)

)α(
fY

(
F−1

Y (FX(Z))
))α−1

logT

 fX(Z)

fY

(
F−1

Y (FX(Z))
)
∣∣∣∣[Z > t]

 for

any t ≥ 0.

Because the function

[0, ∞) ∋ x 7−→
(

∞

∑
n=1

n(FX(x))n−1 pN(n)

)α

is non-negatively increasing,

it follows, via inequality (3) and Lemma 1, that

EZ

( fYN:N

(
F−1

YN:N

(
FXN:N (Z)

)))α−1
logT

 fXN:N (Z)

fYN:N

(
F−1

YN:N

(
FXN:N (Z)

))
∣∣∣∣[Z > t]

 ≥ 0 for

any t ≥ 0.

The conclusion thus follows Theorem 1.

Theorem 7. If X1:N ≤T Y1:N , then X ≤T Y.

Proof. Because X1:N ≤T Y1:N , we can determine by Theorem 1 that

EZ

( fY1:N

(
F−1

Y1:N

(
FX1:N (Z)

)))α−1
logT

 fX1:N (Z)

fY1:N

(
F−1

Y1:N

(
FX1:N (Z)

))
∣∣∣∣[Z > t]

 ≥ 0 for any t ≥ 0. (4)

We can see that, for any x ≥ 0,

FXN:N (x) =
∞

∑
n=1

(
FX(x)

)n pN(n),

FYN:N (x) =
∞

∑
n=1

(
FY(x)

)n pN(n),

fX1:N (x) =

[
∞

∑
n=1

n
(

FX(x)
)n−1 pN(n)

]
· fX(x)

and

fY1:N (x) =

[
∞

∑
n=1

n
(

FY(x)
)n−1 pN(n)

]
· fY(x).

It was proven in [61] that

F−1
Y1:N

(
FX1:N (x)

)
= F−1

Y (FX(x)) for any x ≥ 0.

Hence, for any x ≥ 0,

fY1:N (F−1
Y1:N

(FX1:N (x))) =

[
∞

∑
n=1

n
(

FX(x)
)n−1 pN(n)

]
· fY(F−1

Y (FX(x)))

and
fX1:N (x)

fY1:N (F−1
Y1:N

(FX1:N (x)))
=

fX(x)
fY(F−1

Y (FX(x)))
.

Then
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EZ

( fY

(
F−1

Y (FX(Z))
))α−1

logT

 fX(Z)

fY

(
F−1

Y (FX(Z))
)
∣∣∣∣[Z > t]

 =

EZ


(

fY1:N

(
F−1

Y1:N

(
FX1:N (Z)

)))α−1

(
∞

∑
n=1

n(FX(Z))n−1 pN(n)

)α logT

 fX1:N (Z)

fY1:N

(
F−1

Y1:N

(
FX1:N (Z)

))
∣∣∣∣[Z > t]

 for any

t ≥ 0.

Because the function

[0, ∞) ∋ x 7−→
(

∞

∑
n=1

n(FX(x))n−1 pN(n)

)−α

is non-negatively increasing,

it follows, via inequality (4) and Lemma 1, that

EZ

( fY

(
F−1

Y (FX(Z))
))α−1

logT

 fX(Z)

fY

(
F−1

Y (FX(Z))
)
∣∣∣∣[Z > t]

 ≥ 0 for any t ≥ 0.

By Theorem 1, we conclude that X ≤T Y.

5. Preservation of Tsallis Quantile Entropy Order in the Proportional Hazard Rate Model

We consider the following proportional hazard rate model (see [61]), namely for any
θ > 0, for which we take X(θ) and Y(θ) as two absolutely continuous non-negative random
variables with the survival functions (FX)

θ and (FY)
θ , respectively.

Theorem 8.

1. If θ ≥ 1 and X ≤T Y, then X(θ) ≤T Y(θ).
2. If 0 < θ ≤ 1 and X(θ) ≤T Y(θ), then X ≤T Y.

Proof. For any x ≥ 0, we can obtain:

FX(θ)(x) =
(

FX(x)
)θ ,

FY(θ)(x) =
(

FY(x)
)θ ,

fX(θ)(x) = θ
(

FX(x)
)θ−1 fX(x),

fY(θ)(x) = θ
(

FY(x)
)θ−1 fY(x),

F−1
Y(θ)

(
FX(θ)(x)

)
= F−1

Y (FX(x)),

fY(θ)

(
F−1

Y(θ)

(
FX(θ)(x)

))
= θ

(
FX(x)

)θ−1 fY

(
F−1

Y (FX(x))
)

and
fX(θ)(x)

fY(θ)

(
F−1

Y(θ)

(
FX(θ)(x)

)) =
fX(x)

fY

(
F−1

Y (FX(x))
) .

Then:



Mathematics 2024, 12, 417 10 of 17

EZ

( fY(θ)

(
F−1

Y(θ)

(
FX(θ)(Z)

)))α−1
logT

 fX(θ)(Z)

fY(θ)

(
F−1

Y(θ)

(
FX(θ)(Z)

))
∣∣∣∣[Z > t]

 =

EZ

(θ
(

FX(Z)
)θ−1

)α(
fY

(
F−1

Y (FX(Z))
))α−1

logT

 fX(Z)

fY

(
F−1

Y (FX(Z))
)
∣∣∣∣[Z > t]

 ≥ 0 for

any t ≥ 0.

1. If 0 < θ ≤ 1 and X ≤T Y, then the function

[0, ∞) ∋ x 7−→
(

θ
(

FX(x)
)θ−1

)α
is non-negatively increasing

and

EZ

( fY

(
F−1

Y (FX(Z))
))α−1

logT

 fX(Z)

fY

(
F−1

Y (FX(Z))
)
∣∣∣∣[Z > t]

 ≥ 0 for any t ≥ 0.

Using Lemma 1, we can determine that X(θ) ≤T Y(θ).
2. If θ ≥ 1 and X(θ) ≤T Y(θ), then the function

[0, ∞) ∋ x 7−→
(

θ
(

FX(x)
)θ−1

)−α
is non-negatively increasing

and

EZ

( fY(θ)

(
F−1

Y(θ)

(
FX(θ)(Z)

)))α−1
logT

 fX(θ)(Z)

fY(θ)

(
F−1

Y(θ)

(
FX(θ)(Z)

))
∣∣∣∣[Z > t]

 ≥ 0

for any t ≥ 0.

Using Lemma 1, we can determine that X ≤T Y.

6. Preservation of Tsallis Quantile Entropy Order in the Proportional Reversed Hazard
Rate Model

We consider the following proportional reversed hazard rate model (see [61]), namely
for any θ > 0, for which we take X(θ) and Y(θ) as two absolutely continuous non-negative
random variables with the distribution functions (FX)

θ and (FY)
θ , respectively.

Theorem 9.

1. If θ ≥ 1 and X ≤T Y, then X(θ) ≤T Y(θ).
2. If 0 < θ ≤ 1 and X(θ) ≤T Y(θ), then X ≤T Y.

Proof. We can determine for any x ≥ 0:

FX(θ)(x) = (FX(x))θ ,

FY(θ)(x) = (FY(x))θ ,

fX(θ)(x) = θ(FX(x))θ−1 fX(x),

fY(θ)(x) = θ(FY(x))θ−1 fY(x),

F−1
Y(θ)

(
FX(θ)(x)

)
= F−1

Y (FX(x)),

fY(θ)

(
F−1

Y(θ)

(
FX(θ)(x)

))
= θ(FX(x))θ−1 fY

(
F−1

Y (FX(x))
)

and
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fX(θ)(x)

fY(θ)

(
F−1

Y(θ)

(
FX(θ)(x)

)) =
fX(x)

fY

(
F−1

Y (FX(x))
) .

Then:

EZ

( fY(θ)

(
F−1

Y(θ)

(
FX(θ)(Z)

)))α−1
logT

 fX(θ)(Z)

fY(θ)

(
F−1

Y(θ)

(
FX(θ)(Z)

))
∣∣∣∣[Z > t]

 =

EZ

(θ(FX(Z))θ−1
)α(

fY

(
F−1

Y (FX(Z))
))α−1

logT

 fX(Z)

fY

(
F−1

Y (FX(Z))
)
∣∣∣∣[Z > t]

 ≥ 0 for

any t ≥ 0.

1. If θ ≥ 1 and X ≤T Y, then the function

[0, ∞) ∋ x 7−→
(

θ(FX(x))θ−1
)α

is non-negatively increasing

and

EZ

( fY

(
F−1

Y (FX(Z))
))α−1

logT

 fX(Z)

fY

(
F−1

Y (FX(Z))
)
∣∣∣∣[Z > t]

 ≥ 0 for any t ≥ 0.

Using Lemma 1, we can determine that X(θ) ≤T Y(θ).
2. If 0 < θ ≤ 1 and X(θ) ≤T Y(θ), then the function

[0, ∞) ∋ x 7−→
(

θ(FX(x))θ−1
)−α

is non-negatively increasing

and

EZ

( fY(θ)

(
F−1

Y(θ)

(
FX(θ)(Z)

)))α−1
logT

 fX(θ)(Z)

fY(θ)

(
F−1

Y(θ)

(
FX(θ)(Z)

))
∣∣∣∣[Z > t]

 ≥ 0

for any t ≥ 0.

Using Lemma 1, we can determine that X ≤T Y.

7. Preservation of Tsallis Quantile Entropy Order in the Proportional Odds Model

We work with the following proportional odds model (see [62]), namely for any
θ > 0, for which we take the proportional odds random variables Xp and Yp, defined

by the survival functions FXp(x) =
θFX(x)

1 − (1 − θ)FX(x)
and FYp(x) =

θFY(x)
1 − (1 − θ)FY(x)

,

respectively, for any x ≥ 0.

Theorem 10.

1. If θ ≥ 1 and X ≤T Y, then Xp ≤T Yp.
2. If 0 < θ ≤ 1 and Xp ≤T Yp, then X ≤T Y.

Proof. For any x ≥ 0 we have

FXp(x) =
θFX(x)

1 − (1 − θ)FX(x)
,

FYp(x) =
θFY(x)

1 − (1 − θ)FY(x)
,

fXp(x) =
θ(

1 − (1 − θ)FX(x)
)2 · fX(x),
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fYp(x) =
θ(

1 − (1 − θ)FY(x)
)2 · fY(x),

F−1
Yp

(
FXp(x)

)
= F−1

Y (FX(x)),

fYp

(
F−1

Yp

(
FXp(x)

))
=

θ(
1 − (1 − θ)FX(x)

)2 · fY

(
F−1

Y (FX(x))
)

and
fXp(x)

fYp

(
F−1

Yp

(
FXp(x)

)) =
fX(x)

fY

(
F−1

Y (FX(x))
) .

Then

EZ

( fYp

(
F−1

Yp

(
FXp(Z)

)))α−1
logT

 fXp(Z)

fYp

(
F−1

Yp

(
FXp(Z)

))
∣∣∣∣[Z > t]

 =

EZ

( θ(
1 − (1 − θ)FX(Z)

)2

)α(
fY

(
F−1

Y (FX(Z))
))α−1

logT

 fX(Z)

fY

(
F−1

Y (FX(Z))
)
∣∣∣∣[Z > t]


for any t ≥ 0.

1. Assume that X ≤T Y and θ ≥ 1. Then

EZ

( fY

(
F−1

Y (FX(Z))
))α−1

logT

 fX(Z)

fY

(
F−1

Y (FX(Z))
)
∣∣∣∣[Z > t]

 ≥ 0 for any t ≥ 0

and the function

[0, ∞) ∋ x 7−→
(

θ(
1 − (1 − θ)FX(x)

)2

)α

is non-negatively increasing.

Hence, by Lemma 1, we obtain Xp ≤T Yp.
2. Assume that Xp ≤T Yp and 0 < θ ≤ 1. Then

EZ

( fYp

(
F−1

Yp

(
FXp(Z)

)))α−1
logT

 fXp(Z)

fYp

(
F−1

Yp

(
FXp(Z)

))
∣∣∣∣[Z > t]

 ≥ 0 for any

t ≥ 0

and the function

[0, ∞) ∋ x 7−→
(

θ(
1 − (1 − θ)FX(x)

)2

)−α

is non-negatively increasing.

Hence, by Lemma 1, we obtain X ≤T Y.

8. Preservation of Tsallis Quantile Entropy Order in the Record Values Model

Let {Xi | i ≥ 1} and {Yi | i ≥ 1} be sequences of i.i.d. random variables from the
random variables X and Y, respectively, with survival functions FX and FY, respectively,
and density functions fX and fY, respectively. We consider the nth record times TX

n and TY
n ,

respectively, defined via TX
1 = 1 and TX

n+1 = min{j > TX
n | Xj > XTX

n
} for any n ≥ 1 and

TY
1 = 1 and TY

n+1 = min{j > TY
n | Yj > YTY

n
}, respectively.

We denote XTX
n

de f
= RX

n and YTY
n

de f
= RY

n , respectively, and call them the nth record
values (see [63]).

For any x ≥ 0, we can obtain
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FRX
n
(x) = FX(x)

n−1

∑
j=0

(ΛX(x))j

j!
= Γn(ΛX(x)),

FRY
n
(x) = FY(x)

n−1

∑
j=0

(ΛY(x))j

j!
= Γn(ΛY(x)),

fRX
n
(x) =

1
Γ(n)

Λn−1
X (x) fX(x)

and

fRY
n
(x) =

1
Γ(n)

Λn−1
Y (x) fY(x),

where Γn is the survival function of a Gamma random variable with the shape parameter n
and the scale parameter 1, ΛX(x) = − log FX(x) is the cumulative failure rate function of
X and ΛY(x) = − log FY(x) is the cumulative failure rate function of Y.

Theorem 11. Let m, n ∈ N
de f
= {1, 2, . . . }.

1. If X ≤T Y, then RX
n ≤T RY

n .
2. If n > m ≥ 1 and RX

m ≤T RY
m, then RX

n ≤T RY
n .

Proof.

1. If X ≤T Y, then

EZ

( fY

(
F−1

Y (FX(Z))
))α−1

logT

 fX(Z)

fY

(
F−1

Y (FX(Z))
)
∣∣∣∣[Z > t]

 ≥ 0 for any t ≥ 0.

We have, for any x ≥ 0,

F−1
RY

n

(
FRX

n
(x)
)
= F−1

Y (FX(x)),

fRY
n

(
F−1

RY
n

(
FRX

n
(x)
))

=
1

Γ(n)
Λn−1

X (x) fY

(
F−1

Y (FX(x))
)

and
fRX

n
(x)

fRY
n

(
F−1

RY
n

(
FRX

n
(x)
)) =

fX(x)

fY

(
F−1

Y (FX(x))
) .

Then

EZ

( fRY
n

(
F−1

RY
n

(
FRX

n
(Z)
)))α−1

logT

 fRX
n
(Z)

fRY
n
(F−1

RY
n
(FRX

n
(Z)))

∣∣∣∣[Z > t]

 =

EZ

((
1

Γ(n)
Λn−1

X (Z)
)α(

fY

(
F−1

Y (FX(Z))
))α−1

logT

(
fX(Z)

fY(F−1
Y (FX(Z)))

)∣∣∣∣[Z > t]

)
for any t ≥ 0.

Because the function

[0, ∞) ∋ x 7−→
(

1
Γ(n)

Λn−1
X (x)

)α

is non-negatively increasing,

we obtain via Lemma 1 that

EZ

( fRY
n

(
F−1

RY
n

(
FRX

n
(Z)
)))α−1

logT

 fRX
n
(Z)

fRY
n
(F−1

RY
n
(FRX

n
(Z)))

∣∣∣∣[Z > t]

 ≥ 0 for any

t ≥ 0,



Mathematics 2024, 12, 417 14 of 17

i.e., RX
n ≤T RY

n .
2. If RX

m ≤T RY
m, then

EZ

( fRY
m
(F−1

RY
m
(FRX

m
(Z)))

)α−1
logT

 fRX
m
(Z)

fRY
m
(F−1

RY
m
(FRX

m
(Z)))

∣∣∣∣[Z > t]

 ≥ 0 for any

t ≥ 0.

For any x ≥ 0, we can determine

F−1
RY

m

(
FRX

m
(x)
)
= F−1

RY
n

(
FRX

n
(x)
)
= F−1

Y (FX(x)),

fRX
m
(x)

fRY
m

(
F−1

RY
m

(
FRX

m
(x)
)) =

fRX
n
(x)

fRY
n

(
F−1

RY
n

(
FRX

n
(x)
)) =

fX(x)

fY

(
F−1

Y (FX(x))
)

and

fRY
n
(F−1

RY
n
(FRX

n
(x))) =

Γ(m)

Γ(n)
(ΛX(x))n−m fRY

m
(F−1

RY
m
(FRX

m
(x))).

Then

EZ

( fRY
n
(F−1

RY
n
(FRX

n
(Z)))

)α−1
logT

 fRX
n
(Z)

fRY
n
(F−1

RY
n
(FRX

n
(Z)))

∣∣∣∣[Z > t]

 =

EZ

(Γ(m)

Γ(n)
(ΛX(Z))n−m

)α(
fRY

m
(F−1

RY
m
(FRX

m
(Z)))

)α−1
logT

 fRX
m
(Z)

fRY
m
(F−1

RY
m
(FRX

m
(Z)))

∣∣∣∣[Z > t]


for any t ≥ 0.

Because the function

[0, ∞) ∋ x 7−→
(

Γ(m)

Γ(n)
(ΛX(x))n−m

)α

is non-negatively increasing

and

EZ

( fRY
m
(F−1

RY
m
(FRX

m
(Z)))

)α−1
logT

 fRX
m
(Z)

fRY
m
(F−1

RY
m
(FRX

m
(Z)))

∣∣∣∣[Z > t]

 ≥ 0 for any

t ≥ 0,

using Lemma 1, we obtain that

EZ

( fRY
n
(F−1

RY
n
(FRX

n
(Z)))

)α−1
logT

 fRX
n
(Z)

fRY
n
(F−1

RY
n
(FRX

n
(Z)))

∣∣∣∣[Z > t]

 ≥ 0 for any

t ≥ 0,

i.e., RX
n ≤T RY

n .

9. Conclusions

We introduced Tsallis quantile entropy order between two random variables, found
necessary and sufficient conditions for it and proved closure and reversed closured proper-
ties of this order under parallel and series operations. We also showed that Tsallis quantile
entropy order is preserved in some stochastic models, like proportional hazard rate model,
proportional reversed hazard rate model, proportional odds model and record values
model. In this way, there are generalized results from other papers working with Tsallis
residual entropy instead of Shannon residual entropy (which is used in [30–32]), Rényi
residual entropy (which is used in [33,34]), Varma residual entropy (which is used in [35])
and Awad-Varma residual entropy (which is used in [36]). The difference is that we
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work with Tsallis residual entropy instead of other residual entropies considered in the
aforementioned papers.
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21. Raşa, I. Convexity properties of some entropies. Results Math. 2018, 73, 105. [CrossRef]
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