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Abstract: We describe the Friedrichs extension of elliptic symmetric pseudodifferential operators on
a closed smooth manifold with the domain consisting of functions vanishing on a given submanifold.
In summary, the Friedrichs extension is an elliptic Sobolev problem defined in terms of boundary
and coboundary operators, and the number of boundary and coboundary conditions in the problem
depends on the order of the operator and the codimension of the submanifold. In this paper, the
discreteness of the spectrum is proved, and singularities of eigenfunctions are described.
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1. Introduction

Boundary value problems with conditions on submanifolds of arbitrary dimension
were introduced by Sobolev [1] for polyharmonic equations. Such problems arise in me-
chanics when studying oscillations of bars and plates with hinged fastening. For arbitrary
pseudodifferential operators, the theory of boundary value problems with conditions
on submanifolds of arbitrary dimensions was developed by Sternin and his co-authors
(see [2–5]). Such problems are stated in terms of boundary operators (restriction to sub-
manifold) and dual coboundary operators. In local coordinates, the coboundary operator
takes functions on a submanifold to distributions on the ambient manifold obtained by
multiplying by the Dirac δ-function in the directions normal to the submanifold. Unlike
classical boundary value problems, the number of boundary conditions in Sobolev prob-
lems depends on the smoothness exponent of the Sobolev space, in which the problem
is considered.

Similar problems arise for the Schrödinger equation with the potential containing
δ-functions supported on some submanifolds (see [6–14]). From the spectral theory point
of view, in such problems, one has to describe self-adjoint extensions of second-order
operators with domains consisting of functions vanishing at a submanifold. The domains
of self-adjoint extensions in these problems are effectively described in terms of coboundary
operators (see [15,16]).

Although self-adjoint extensions for second-order operators are considered in many
papers, operators of arbitrary order have been studied much less. In [17,18], results on the
completeness of eigenfunctions and asymptotics of the counting function of eigenvalues
for some self-adjoint Sobolev problems are stated without proof for elliptic differential
operators of arbitrary order. Our aim in this work is to study one particular self-adjoint
extension, namely, the Friedrichs extension [19], for operators or arbitrary order with con-
ditions on submanifolds of arbitrary dimensions. We note that the Friedrichs extension is a
canonical extension for semibounded operators, and it is one of the most studied extensions
for differential operators in geometry (e.g., see [20,21]) with numerous applications (e.g.,
see [22]).
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On a compact, smooth, closed manifold, we consider an elliptic symmetric nonnegative
operator with the domain consisting of functions vanishing to a certain order on a given
submanifold. For this operator, a self-adjoint Friedrichs extension is defined, and the
main result of the work is an explicit description of the Friedrichs extension. It turns
out that this extension is a Sobolev problem, i.e., it contains boundary and coboundary
operators. We show that the spectrum of the Friedrichs extension, in this case, is discrete
and study the smoothness of the eigenfunctions. Note that our results agree with the
model case considered in [23] of the biharmonic operator on the 3-torus, with the domain
consisting of functions vanishing on a circle. We expect our results to have applications in
hyperbolic problems (e.g., wave equation for the biharmonic operator with conditions on a
submanifold) and spectral invariants and asymptotics for pairs (manifold, submanifold).

The author is grateful to the referees for their useful remarks.

2. Sobolev–Dirichlet Operators

Let us recall basic definitions from relative elliptic theory; see [2–5].
Consider the pair (M, X) of closed smooth manifolds with the codimension of the

submanifold X denoted by ν ≥ 1 and the embedding X ⊂ M denoted by i.
Denote by N → X the normal bundle of X and by N∗ its dual. We suppose in this

paper that the normal bundle is trivial and denote y1, . . . , yν as some normal coordinate
system in a neighborhood of X such that X is defined by the equations {y1 = 0, . . . , yν = 0}.
As local coordinates on M in a neighborhood of m ∈ X, we use (x1, . . . , xn−ν, y1, . . . , yν),
where (x1, . . . , xn−ν) stand for local coordinates on X.

Given integer l ≥ 0, the Sobolev–Dirichlet boundary operator is defined as

i∗l : Hs(M) −→
⊕
|j|⩽l

Hs−ν/2−|j|(X,Cnj) ≡ Hs−ν/2
l (X) (1)

i∗l f =

{
∂|j| f
∂yj

∣∣∣
X

}
|j|⩽l

,

and it takes functions on the ambient manifold to the restriction on X of their jets in the
normal variables. Here, j = (j1, . . . , jν) is a multiindex, |j| = j1 + · · ·+ jν, while nj stands
for the dimension of the space of homogeneous symmetric polynomials of degree |j| in
ν variables. Finally, Hs stands for Sobolev spaces with smoothness exponent s on the
corresponding manifolds. The operator (1) is well-defined and bounded provided that
s − ν/2 − l > 0.

Sobolev–Dirichlet coboundary operator

il
∗ : H−(s−ν/2)

l (X) −→ H−s(M) (2)

is defined by duality. Namely, the operators (1) and (2) are duals of each other

⟨i∗l u, v⟩ = ⟨u, il
∗v⟩, for all u ∈ C∞(M), v ∈ H−(s−ν/2)

l (X)

with respect to the pairing ⟨ , ⟩ of smooth functions and distributions. In the special case,
when M = Rn and X = Rn−ν × {0}, the operator (2) is equal to

il
∗

(
{wj}|j|≤l

)
= ∑

|j|≤l
(−1)|j|wj(x)

∂|j|

∂yj
δ(y).

The following proposition is a generalization of Theorems 3.2.4 and 4.3.1 from [24]
(cf. [25] Theorem 2.3.5) for Sobolev spaces on manifolds.



Mathematics 2024, 12, 418 3 of 9

Proposition 1.

1. The boundary operator (1) is surjective. Moreover, it has a continuous right inverse operator,
which is independent of s.

2. The coboundary operator (2) is injective. Moreover, it has a left inverse operator, which is
independent of s.

3. The range of the coboundary operator (2) for l = [s − ν/2] is equal to the subspace of
distributions in H−s(M) with support in X ⊂ M. Here, [x] ∈ Z is the maximal integer,
which is less than x.

The proof repeats the proof from the cited monograph, and we omit it here.

3. Sobolev–Dirichlet Problem

We fix a volume form on M and consider the corresponding Hilbert space L2(M).
Let A : C∞(M) → C∞(M) be an elliptic symmetric positive definite pseudodifferential

operator of order d > 0 on M. Below, we also consider the standard action of A on
distributions and denote this action by A.

We consider A as an unbounded operator on L2(M) with the dense domain

D(A) = {u ∈ C∞(M) | u|X = 0} ≡ C∞
0 (M, X).

Our aim in this paper is to describe the Friedrichs extension of this operator. To this
end, we first describe the adjoint operator A∗ and its domain D(A∗).

Theorem 1. One has

D(A∗) =

{
Hd(M) +A−1i0∗H−d+ν/2(X), if d > ν/2,

Hd(M), if d ≤ ν/2,
(3)

where for d ≤ ν/2, we have A∗u = Au for all u ∈ Hd(M), while for d > ν/2, we have

A∗(u + v) = Au, for all u ∈ Hd(M), v ∈ A−1i0∗H−d+ν/2(X).

Proof. 1. Consider the case when d ≤ ν/2. Given u ∈ D(A∗), we have

(Av, u) = (v, A∗u) for all v ∈ D(A),

where ( , ) denotes the inner product in L2(M). Since A is symmetric by assumption, we
obtain

⟨v,Au − A∗u⟩ = 0, (4)

where ⟨ , ⟩, as above, denotes the pairing of smooth functions and distributions, while

Au ∈ H−d(M), u, A∗u ∈ L2(M), v ∈ D(A).

Hence, (4) implies that the difference Au− A∗u ∈ H−d(M) is a distribution supported
on X. It follows from Proposition 1 above that such distributions are equal to zero, whenever
d ≤ ν/2. Hence, we obtain the desired equality A∗u = Au and also u = A−1(A∗u) ∈
Hd(M). Thus, we proved that D(A∗) ⊂ Hd(M) and A∗ = A on this domain. Let us prove
the converse inclusion Hd(M) ⊂ D(A∗). Indeed, given u ∈ Hd(M), we have

(Av, u) = ⟨Av, u⟩ = ⟨v,Au⟩ = (v,Au), ∀v ∈ D(A), (5)

where we first expressed the inner product as the pairing with the corresponding distribu-
tions, then used the definition of action of pseudodifferential operators on distributions,
and in the last equality, noted that Au ∈ L2(M) and expressed the pairing in terms of the
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inner product in L2. Now, (5) gives the desired facts: u ∈ Hd(M) and A∗u = Au. This
gives the proof of Theorem 1 in the special case d ≤ ν/2.

2. Now suppose that d > ν/2. Let u ∈ D(A∗). Similar to the previous case, we
conclude that the difference Au − A∗u ∈ H−d(M) is a distribution supported on X. Then
Proposition 1 implies that this difference is in the range of some coboundary operator

Au − A∗u = il
∗(φ), l = [d − ν/2],

where φ = (φ0, ..., φl) ∈ H−d+ν/2
l (X) is a distribution on X. Substituting this in Equation (4),

we obtain
0 = ⟨v,Au − A∗u⟩ = ⟨v, il

∗φ⟩ = ⟨i∗l (v), φ⟩. (6)

Since i∗l is surjective and i∗0v = 0 for all v ∈ D(A), it follows that φj in (6) is zero whenever
j ≥ 1. Hence

A∗u = Au − i0∗φ0, φ0 ∈ H−d+ν/2(X).

This shows that u lies in the desired subspace (see (3))

u = A−1(A∗u) +A−1i0∗φ0 ∈ Hd(M) +A−1i0∗H−d+ν/2(X).

It remains to prove the inclusions Hd(M),A−1i0∗H−d+ν/2(X) ⊂ D(A∗). Clearly, one
has Hd(M) ⊂ D(A∗) and A∗u = Au for all u ∈ Hd(M). Let us now show that

A−1i0∗H−d+ν/2(X) ⊂ D(A∗) (7)

and this subspace is in the kernel of A∗. Indeed, given u ∈ A−1i0∗H−d+ν/2(X), we conclude
that Au = i0∗φ for some φ ∈ H−d+ν/2(X). Note also that u ∈ L2(M). We have to show that
u ∈ D(A∗) and A∗u = 0. By the definition of the adjoint operator, this is equivalent to
proving the equality

(Av, u) = 0 for all v ∈ D(A).

Indeed, we have

(Av, u) = ⟨v,Au⟩ = ⟨v, i0∗φ⟩ = ⟨i∗0v, φ⟩ = ⟨0, φ⟩ = 0.

Here we used duality between boundary and coboundary operators and the fact that A is
symmetric. Hence, we obtain (7).

The proof of Theorem 1 is now complete.

Denote by AF the Friedrichs extension of A. Recall that (e.g., see [26–28])

D(AF) = H1 ∩D(A∗), (8)

where H1 is the completion of D(A) with respect to the norm

∥u∥1 = (Au, u)1/2.

Since A is elliptic and positive definite, the norm ∥ · ∥1 is equivalent to the norm in Hd/2(M).

Theorem 2. We have

D(AF) =

 (Hd(M) +A−1i0∗H−d/2+ν/2(X)) ∩ ker i∗0 , if d > ν,

Hd(M), if d ≤ ν,
(9)

AF = A∗|D(AF)
.

Proof. Let us describe the space H1 in (8).
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Lemma 1. We have

H1 =

 Hd/2(M) ∩ ker i∗0 if d > ν,

Hd/2(M) if d ≤ ν.
(10)

Proof. 1. Consider the case d ≤ ν. To prove (10), it suffices (cf. [24] Theorem 5.1.14) to
show that D(A) = C∞

0 (M, X) is dense in C∞(M) with respect to the norm in Hd/2(M). By
locality, it suffices to prove this statement in the special case M = Tn, X = Tn−ν, where
Tk = (S1)k is the k-dimensional torus.

First, for all ε > 0, we construct smooth functions χ = χε ∈ C∞(Tν) with the properties

χ(0) = 1 and ∥χ∥Hν/2(Tν) < ε. (11)

We define the desired function as a Fourier series

χ(y) = ∑
n∈Zν

uneiny.

We set u0 = 1 − ∑
n ̸=0

un (hence, condition χ(0) = 1 will be satisfied automatically) and

define un, n ̸= 0, as

un =


δ

|n|ν ln(|n|+ 1)
if 1 ≤ |n| ≤ N

0 if |n| > N.

Note that the series ∑n(|n|ν ln(|n|+ 1))−1 is divergent, while the sums over n : |n| = k
enjoy the estimate

∑
|n|=k

(|n|ν ln(|n|+ 1))−1 = Ck
ν+k−1(k

ν ln(k + 1))−1 ≤ C(k ln(k + 1))−1.

Here and below C denotes some constants, while Ck
n denotes binomial coefficients. These

two facts imply that there exists N = N(δ) such that

1 − δ < ∑
1≤|n|≤N

un < 1 + δ.

Using this choice of un, we obtain the estimates

∥χ∥2
Hν/2(Tν)

= |u0|2 + ∑
0<|n|≤N

|un|2|n|ν ≤ Cδ2 + δ2 ∑
0<|n|

|n|ν−2ν 1
ln2(|n|+ 1)

≤

≤ Cδ2 ∑
k≥2

|k|ν−2ν+ν−1 1
ln2 k

≤ Cδ2

and if we take δ small enough, then the last expression will be ≤ ε2. Thus, we constructed
function χ with properties (11).

Let us now take u ∈ C∞(Tn) and set w(x, y) = u(x, y)− u(x, 0)χε(y). Then, we have
w ∈ C∞

0 (M, X), and we can estimate the norm of the difference u − w as follows

∥u − w∥Hν/2(Tn) = ∥u(x, 0)χε(y)∥Hν/2(Tn) ≤ C∥χε(y)∥Hν/2(Tn) ≤ C∥χε(y)∥Hν/2(Tν) ≤ Cε. (12)

Estimate (12) implies that C∞
0 (M, X) ⊂ C∞(M) is dense with respect to the Hs(M)-norm

whenever s ≤ ν/2.
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2. Let now d > ν. To prove (10), it suffices to show that

C∞
0 (M, X) ⊂ Hd/2(M) ∩ ker i∗0

is dense with respect to the Hd/2(M)-norm. Indeed, if u ∈ Hd/2(M) ∩ ker i∗0 , then there
exists a sequence un ∈ C∞(M) with the properties

un −→ u in Hd/2(M)-norm, while i∗0un −→ 0 in Hd/2−ν/2(X)-norm. (13)

Let β : Hd/2−ν/2(X) → Hd/2(M) denote the right inverse operator to operator i∗0 in
Proposition 1 (i.e., i∗0 β = Id).

Consider the sequence
wn = un − βi∗0un.

Then wn ∈ C∞
0 (M, X), since i∗0wn = i∗0un − i∗0 βi∗0un = i∗0un − i∗0un = 0. We have the

following estimates

∥wn − u∥Hd/2(M) ≤ ∥un − u∥Hd/2(M) + ∥βi∗0un∥Hd/2(M) ≤ ∥un − u∥Hd/2(M) + C∥i∗0un∥Hd/2−ν/2(X).

This and Equation (13) give the desired statement wn → u in Hd/2(M) as n → ∞.
The proof of Lemma 1 is now complete.

Theorem 1 and Lemma 1 (see Equations (3), (8), (10)) give the desired Equation (9).
Indeed, we have

(1) if d ≤ ν/2, then we have H1 ∩D(A∗) = Hd/2(M) ∩ Hd(M) = Hd(M);
(2) if ν/2 < d ≤ ν, then we have

H1 ∩D(A∗) = Hd/2(M) ∩ (Hd(M) +A−1i0∗H−d+ν/2(X))
= Hd(M) +

(
Hd/2(M) ∩A−1i0∗H−d+ν/2(X)

)
= Hd(M) +A−1(H−d/2(M) ∩ i0∗H−d+ν/2(X)

)
= Hd(M),

where H−d/2(M) ∩ i0∗H−d+ν/2(X) = 0, since nonzero distributions in i0∗H−d+ν/2(X)
are not in H−ν/2(M) (hence, also not in its subset H−d/2(M));

(3) if d > ν, we have

H1 ∩D(A∗) = Hd/2(M) ∩ ker i∗0 ∩ (Hd(M) +A−1i0∗H−d+ν/2(X))
= ker i∗0 ∩ (Hd(M) +A−1(H−d/2(M) ∩ i0∗H−d+ν/2(X)))
= ker i∗0 ∩

(
Hd(M) +A−1i0∗H−d/2+ν/2(X)

)
.

where we have H−d/2(M) ∩ i0∗H−d+ν/2(X) = i0∗H−d/2+ν/2(X) by Proposition 1.

This gives the desired Equation (9) and completes the proof of Theorem 2.

Remark 1. The statement of Theorem 2 remains true if instead of positive definiteness of A we
require that A is only semibounded from below. In this case, one has to replace A−1 by an arbitrary
pseudodifferential parametrix R, ordR = −d, of A such that RA− 1 is of order ≤ −d/2. We
claim that the domain of the Friedrichs extension does not depend on the choice of such parametrix.
Indeed, we have R = A−1 + C, where C is a pseudodifferential operator of order ≤ −3d/2. This
implies Ci0∗H−d/2+ν/2(X) ⊂ H−d/2−ordC(M) ⊂ Hd(M). Hence, we obtain

Hd(M) +Ri0∗H−d/2+ν/2(X) = Hd(M) +A−1i0∗H−d/2+ν/2(X).

This equality implies the desired independence of D(AF) of the choice of parametrix.
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Remark 2. We note that the above results can be generalized to the case of Sobolev–Dirichlet
problems with jets of order l ≥ 1 on the submanifold. More precisely, consider the operator A as
above with the domain

D(A) = ker i∗l ⊂ C∞(M). (14)

Then, one can describe the adjoint operator and the Friedrichs extension as follows

D(A∗) = Hd(M) +A−1il′
∗
(
H−d+ν/2

l′ (X)
)
, where l′ = min(l, [d − ν/2]),

A∗(u + v) = Au.

D(AF) =
(

Hd(M) +A−1il′′
∗
(
H−d/2+ν/2

l′′ (X)
))

∩ ker i∗l′′ where l′′ = min(l, [d/2 − ν/2])

AF = A∗|D(AF)
.

The proof of these formulas is similar to the proof of Theorems 1 and 2 above and is omitted.

4. Examples

1. Consider operator A = ∂4
x : C∞(S1) → C∞(S1) with the domain D(A) =

{u(x) | u(0) = 0}. Then, we have d = 4 > 1 = ν and we use Theorem 2 to describe
the domain of the Friedrichs extension of A:

D(AF) = H4(S1) + ∂−4
x Cδ(x) ≃ H4[0, 2π] ∩ {u(0) = u(2π), u′(0) = u′(2π), u′′(0) = u′′(2π)},

while AFu = uIV . Here, we used the fact that ∂−4
x δ(x) = |x|3/12 modulo smooth functions.

Similar boundary conditions arise when studying oscillations of bars with hinged
fastening at x = 0.

2. Consider the biharmonic operator A = ∆2 : C∞(T3) → C∞(T3), where ∆ =
∂2

x1
+ ∂2

y1
+ ∂2

y2
with the domain D(A) = C∞

0 (T3,T1) = {u(x1, y1, y2) | u(x1, 0, 0) = 0}.
Then, we have d = 4 > 2 = ν, and we use Theorem 2 to describe the domain of the
Friedrichs extension of A:

D(AF) ≃ {u ∈ H2(T3) | ∆2u ∈ L2(T3) + i0∗H−1(T1), u|T1 = 0}

while AFu = ∆2u mod T1. This extension was considered in [23]. We note that the domain
of the Friedrichs extension will not change if we perturb ∆2 by an operator of order ≤ 2.

3. Note that the Friedrichs extension of the Laplacian A = ∆ : C∞(M) → C∞(M) with
the domain D(A) = {u | u|X = 0} recovers the Laplacian on distributions with the domain
D(AF) = H2(M) whenever ν ≥ 2. In the codimension 1 case, the Friedrichs extension is
isomorphic to the Dirichlet problem for the Laplacian on the smooth manifold M obtained
by cutting M along X. This manifold has boundary ∂M ≃ X ∪ X.

5. Properties of Eigenvalues and Eigenfunctions

Theorem 3. The spectrum of the Friedrichs extension AF in Theorem 2 is discrete and consists of
real eigenvalues with finite multiplicities, which tend to +∞. If u ∈ D(AF) is an eigenfunction of
AF with eigenvalue λ, then u ∈ (A− λ)−1i0∗C∞(X) modulo smooth functions, where (A− λ)−1

stands for a parametrix of elliptic operator A− λ modulo smoothing operators. In particular, u is
smooth on M \ X.

Proof. We consider the case d > ν.
1. Let us prove the discreteness of the spectrum. To this end, we compute the inverse

operator A−1
F : L2(M) → L2(M). A direct computation shows that the equation AFu = f ,

u ∈ D(AF), f ∈ L2(M) is equivalent to the system
u = v +A−1i0∗w, u ∈ Hd(M), w ∈ H−d/2+ν/2(X),
Av = f ,
i∗0(v +A−1i0∗w) = 0.
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Then v = A−1 f , w = −∆−1i∗0v, where

∆ = i∗0A−1i0∗ : H−d/2+ν/2(X) −→ Hd/2−ν/2(X)

is a pseudodifferential operator of order −d + ν on X (see [2]). We claim that this operator
is elliptic and positive definite. Indeed, its principal symbol is equal to

σ(i∗0A−1i0∗)(x, ξ) =
∫
Rν

σ(A)(x, 0, ξ, η)−1dη.

Here the integral is absolutely convergent since the integrand is O(|η|−d). The integral is a
positive function since the integrand enjoys this property for all η. Similarly, one can prove
the positive definiteness of the operator i∗0A−1i0∗.

Hence, we obtain the following expression for the inverse operator

u = (AF)
−1 f = (1 −A−1i0∗∆−1i∗0)A−1 f .

It follows that the self-adjoint operator (AF)
−1 has Sobolev order −d. Hence, it is compact as

an operator in L2. Thus, by the spectral theorem for compact self-adjoint operators (AF)
−1

has a discrete spectrum with eigenvalues of finite multiplicities, and the eigenvalues tend
to zero. This gives the desired properties for the eigenvalues of AF.

2. Note that u ∈ D(AF) is an eigenfunction of AF with eigenvalue λ if and only if
(A− λ)u = i0∗w, i∗0u = 0, w ∈ H−d/2+ν/2(X). These conditions are equivalent to

u = u0 + (A− λ)−1
0 i0∗w, i∗0u0 + i∗0(A− λ)−1

0 i0∗w = 0, u0 ∈ ker(A− λ),

where (A− λ)−1
0 is the inverse operator on the orthogonal complement of the kernel. Since

i∗0(A− λ)−1
0 i0∗ is an elliptic operator on X, all the solutions w are smooth. Thus, we obtain

the desired property:

u = u0 + (A− λ)−1
0 i0∗w ∈ C∞(M) + (A− λ)−1

0 i0∗C∞(X).

The proof of Theorem 3 is now complete.

6. Conclusions

In this paper, we described the Friedrichs extension of elliptic symmetric operators
defined on subspaces of functions vanishing on a submanifold of arbitrary dimension and
showed that this extension is defined by boundary and coboundary operators. We showed
that the spectrum of the Friedrichs extension is discrete and described the singularities of
the eigenfunctions on the submanifold. This work paves the way for more detailed studies
of spectral properties of such problems (e.g., spectral asymptotics and their relation with
the geometry of the submanifold) and corresponding nonstationary problems. Let us also
mention that there is an interesting problem of describing extensions of operators with
general boundary conditions on the submanifold.
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