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Abstract: The object of the investigation is a model of the incomplete financial market. It includes
a bank deposit with a known interest rate and basic risky securities. The instant interest rate and
volatility are governed by a hidden market regime, represented by some finite-state Markov jump
process. The paper presents a solution to two problems. The first one consists of the characterization
of the derivatives based on the existing market securities, which are valid to complete the considered
market. It is determined that for the market completion, it is sufficient to add the number of
derivatives equal to the number of possible market regimes. A generalization of the classic Black–
Scholes equation, describing the evolution of the fair derivative price, is obtained along with the
structure of a self-financing portfolio, replicating an arbitrary contingent claim in the market. The
second problem consists of the online estimation of the market regime, given the observations of
both the underlying and derivative prices. The available observations are either a combination of the
time-discretized risky security prices or some high-frequency multivariate point processes associated
with these prices. The paper presents the numerical algorithms of the market regime tracking for
both observation types. The comparative numerical experiments illustrate the high quality of the
proposed estimates.

Keywords: Markov jump process; fair derivative price; optimal filtering problem; multivariate point
process; central limit theorem; generalized regenerative process
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1. Introduction

The continuous-time or discrete-time stochastic models of incomplete markets rep-
resent the required instruments of financial mathematics [1–3]. Possessing a reasonable
degree of adequacy, they assist in the proper formulation of the whole variety of system
analysis problems arising in finance:

– The analysis itself, for example, the derivative pricing, the market price of risk (MPR)
calculation, modeling the term structure of interest rates, etc. [4,5];

– The state estimation, parameter identification, and statistical inferences in the market
models given the heterogeneous a priori and statistical information [6–8];

– The optimization and stochastic control with complete or incomplete information, for
example, the minimal hedge problem, the optimal investment problem [1,3,9], etc.

Usually, the market incompleteness is caused by some hidden external stochastic
processes in the dynamics. Various stochastic volatility models [10,11] are typical examples
of this situation. The monitoring of the hidden governing processes, and stochastic volatility,
in particular, is an object of a sufficient number of papers [12–16]. Choosing one model or
another, the authors transform this problem into a state-filtering one, given heterogeneous
observations. The obtained results demonstrate the varying degree of applicability, from
some clarification of the optimal nonlinear filtering problem to the well-elaborated optimal
or suboptimal/robust algorithms.

The investigation object of this paper is a market model governed by a Markov regime-
switching process. Although it is simpler than the corresponding switching versions of
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the Heston, Hull–White, Vasicek, and other models [17–20], it has some advantages. First,
this class retains the property of the market incompleteness. Second, it represents an
efficient instrument to simulate market phenomena, like the unpredictable changes in the
market evolution scenario. Third, reasonable model simplification allows us to obtain more
advanced results.

The paper aims to reduce a priori statistical uncertainty in the market caused by the
hidden regime. There are many ways for this, and the paper presents just two of them.
The first one implies market completion by some additional securities. The authors of [21]
propose to make the market regime tradable. By contrast, we suggest security enlargement
by the derivatives with underlying assets already traded in the market. For this, it is
necessary to derive the equations describing the evolution of the fair derivative price and
formulate sufficient conditions for the derivative collection to complete the market.

Another way does not imply market completion. The goal is to estimate the hidden
market regime given the various complexes of the statistical trading information.

The paper has the following organization. Section 2 contains a detailed description
of the market model under investigation. Section 2.1 presents a stochastic differential
system (SDS) with the martingales on the right-hand side, which describes the evolution
of the basic security prices. The key feature is that both the interest rate and volatility
are functions of a hidden market regime, representing a finite-state Markov jump process
(MJP). Its presence in the model forms a natural reason for the online estimation of this
hidden process using statistical information concerning security prices. Section 2.2 contains
the mathematical statement of the optimal filtering problem, given the observations with
the multiplicative noises. The section also contains the theoretical solution to the problem:
the optimal estimate is the unique solution to a closed finite-dimensional SDS.

Section 3 is devoted to the completion problem of the considered market. We introduce
some “natural” derivatives with the underlying securities already presented in the market.
The fair derivative price is a function of the current underlying security price and the market
regime. Section 3.1 introduces a system of partial differential equations, describing this
function and generalizing the classic Black–Scholes equation. According to the assertion in
Section 3.2, one can complete the market by a finite number of derivatives, and this number
coincides with the number of possible regimes.

Section 4 is directed to the algorithmic support of the above problems. Primarily, it
argues against the availability of the continuous-time noiseless observations of the underly-
ing and derivative prices in practice. Section 4.1 presents a semi-analytical algorithm of
the solution to the system of partial differential equations from Section 3.1. It is applied
in the derivative price simulation and market regime filtering. The further material is
about two suboptimal filtering algorithms of the market regime based on heterogeneous
observations. In Section 4.2, the available observations include the noiseless underlying
prices and the noisy derivative ones. All the data come at discrete nonrandom instants.
In Section 4.3, the observations represent some multivariate point processes (MPP). The
distribution of the MPP inter-arrival times and noise in the derivative observations depends
on the current market regime. The key feature of the observations is their high frequency.
It admits the application of the central limit theorem (CLT) for the generalized regenerative
processes [22] to the specially preprocessed observations with the subsequent use in the
filtering procedure.

Section 5 presents the comparative numerical analysis of the proposed filtering algo-
rithms. The market model is identical for all experiments, but the observation complexes
differ. The experiments demonstrate enhancement of the estimate quality by using ad-
ditional observations of the derivative prices. Sections 5.1 and 5.2 are devoted to the
performance analysis of the filtering algorithms introduced in Sections 4.2 and 4.3, respec-
tively. Section 6 contains the concluding remarks.



Mathematics 2024, 12, 423 3 of 27

2. Market with Markov Regime Switching
2.1. Market Description and Arising Problems

With the probability triplet with filtration (Ω,F,P, {Ft}t∈[0,T]), we consider a financial

market that contains a risk-free bank deposit Bt = exp
(∫ t

0 rudu
)

and N basic risky securi-

ties. The deposit interest rate rt is non-random and known. The price St ≜ col(S1
t , . . . , SN

t )
of the basic risky securities is the unique strong solution to the SDS

dSt = diag(St)a(t, Zt)dt + diag(St)b1/2(t, Zt)dwt, t ∈ (0, T], S0 ∼ PS
0 (·), (1)

where

– S0 is an F0-measurable initial condition with the distribution function PS
0 (·);

– wt = col(w1
t , . . . , wN

t ) ∈ RN is an Ft-adapted standard Wiener process;
– a(·, ·) and b(·, ·) are (N × 1)- and (N × N)-dimensional functions of the instant interest

rate and volatility (here b(·) is a symmetric non-negative matrix-valued function, and
the notation b1/2(·) stands for its symmetric square root);

– Zt is an Ft-adapted process, describing the effect of the uncontrolled exogenous factors
on the market.

In (1), Zt = col(Z1
t , . . . , ZL

t ) ∈ SL is an MJP with the state set formed by all unit
coordinate vectors of the Euclidean space RL: SL ≜ {e1, . . . , eL}. This process has a known
transition rate matrix (TRM) Λ(·) and an initial distribution pZ

0 = col(pZ1
0 , . . . , pZL

0 ). The
MJP Zt is a unique strong solution to the following SDS [23]:

dZt = Λ⊤(t)Ztdt + dMt, t ∈ (0, T], Z0 ∼ pZ
0 , (2)

where Mt = col(M1
t , . . . , ML

t ) ∈ RL is some Ft-adapted martingale.
We are interested in two problems related to the above market. The hidden, unobserv-

able sudden change of the exogenous factors, generating the market regime switching, is
often connected with jumps in the macroeconomic situation [24,25]. Its exhaustive math-
ematical model is not a subject of this paper. Nevertheless, the formal description of its
specific phenomena and restoration of some hidden parameters, given a bulk of the finan-
cial statistics, look prospective and real. In this context, the process Zt represents a scenario
of the market evolution. So, the first problem is the tracking of the regime-switching process
Zt (or, shortly, the market regime) by the observable prices St of the underlying securities
and their potential derivatives.

It is known that the market (1) and (2) is incomplete due to stochastic volatility.
Obviously, it admits various approaches to pricing and hedging (see, for example, [18]).
Another approach implies the market completion by some derivatives. The authors of [21]
suggest to use the jump derivatives associated with the market regime transitions. These
securities look slightly artificial. First, their prices can be negative. Second, the underlying
“securities” for them are the random flows of the regime transitions to one or another value.
This implies that the transitions are directly observable and contradicts reality. So, the
second problem is the construction of some “natural” derivatives, using the existing basic
securities to complete the market.

We make the following assumptions, clarifying the details of the SDS (1) and (2):

i. Zt is a cádlág process [26].
ii. Without loss of generality, Ft = σ{Zu, wu : 0 ⩽ u ⩽ t}. This condition also

guarantees that the filtration {Ft} is continuous from the right.
iii. The TRM Λ(·) consists of cádlág elements on [0, T]. All off-diagonal elements of

Λ(·) are strictly positive, i.e., min
(i,j): i ̸=j; t∈[0,T]

Λij(t) > 0. All elements of the initial

distribution pZ
0 are also strictly positive.
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iv. Zt ∈ SL; hence, the functions a and b have the form

a(t, Zt) =
L

∑
ℓ=1

Zℓ
t aℓ(t), b(t, Zt) =

L

∑
ℓ=1

Zℓ
t bℓ(t), (3)

where {aℓ(t)}ℓ=1,L and {bℓ(t)}ℓ=1,L are the sets of the known nonrandom functions
aℓ(t) ≜ a(t, eℓ) and bℓ(t) ≜ b(t, eℓ) (alphabets). All components of aℓ(t) and bℓ(t) are
cádlág piecewise smooth functions. The random disturbances in (1) are uniformly
non-degenerate, i.e., bℓ(t) ⩾ α2 I > 0 for all ℓ = 1, L and t ∈ [0, T] (here and below, I
denotes the identity matrix of an appropriate dimensionality).

v. S0 and Z0 are mutually independent; P{S0 > 0} = 1.

The conditions above seem non-restrictive and guarantee both solution to the regime-
tracking problem [27] and incompleteness of the market [21]. They legitimize all inferences
made below to present the fair derivative pricing and filtering algorithms, given the various
complexes of the available observations.

2.2. Market Regime Tracking as Optimal Filtering Problem

In this subsection, we introduce a proper statement of the regime-tracking problem,
given the observations of the security prices, as a particular case of the optimal filtering
of a semimartingale [26]. Further, we present some transformation of the observations
and a theoretic solution to the problem: the optimal filtering estimate is the unique strong
solution to a finite-dimensional closed SDS.

At first glance, the state Zt tracking represents the calculation of its conditional distri-
bution, given the natural filtration {St} generated by the security prices: St ≜ σ{Su : 0 ⩽
u ⩽ t}. However, there are two issues preventing the usage of the advanced framework
of stochastic analysis. First, {St} is not continuous from the right [27,28]. Second, the ob-
servations St contain state-dependent noises [29,30], which hinder the use of the Girsanov
measure transform. To overcome these obstacles, we treat Zt tracking as the calculation
of Ẑt ≜ E{Zt|St+}. This theoretical passage is standard [26], and its degree of realism is
discussed below in the subsection.

The details of the solution to the optimal filtering problem can be found in [27]. We
split the initial observations into the following N-dimensional fractions:

– The process Ut with P a.s. continuous trajectories;
– The process Ct with counting components;
– The piecewise constant process Dt with jumps, occurred at nonrandom instants.

We then use the obtained transformations to construct the optimal filtering estimate as
a solution to some SDS.

The process of logarithmic prices Yt = col(Y1
t , . . . , YN

t ), Yn
t ≜

∫ t
0

dSn
u

Sn
u

, n = 1, N admits
the stochastic differential

dYt = A(t)Ztdt +
L

∑
ℓ=1

Zℓ
t (b

ℓ)1/2(t)dwt, Y0 = 0, (4)

where

A(t) ≜


a1

1(t) a2
1(t) . . . aL

1 (t)

a1
2(t) a2

2(t) . . . aL
2 (t)

. . . . . . . . . . . .

a1
N(t) a2

N(t) . . . aL
N(t)

.

The continuous process Ut has the form

Ut ≜
∫ t

0

(
d⟨Y, Y⟩u+

du

)−1/2

dYu (5)
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and represents an St-adapted standard Wiener process.
The counting observations Ct and discrete ones Dt are the results of the quadratic

characteristic ⟨Y, Y⟩t transformation. They are closely related to the St+-adapted process

Ht ≜
L

∑
ℓ=1

I{0}

(
d⟨Y,Y⟩t+

dt − bℓ(t)
)

eℓ = K(t+)Zt, (6)

where (L × L)-dimensional non-random matrix-valued function K(t) = ∥Kij(t)∥i,j=1,L has

the components Kij(t) ≜ I{0}
(
bi(t)− bj(t)

)
. Here, IA(x) denotes the indicator function

of the set A. For any t ∈ [0, T), there exists a transformation T (t) such that the matrix
T (t)K(t+) is trapezoidal with orthogonal rows, and the components are from the set {0, 1}.
Hence, the values of the process

Vt ≜ T (t)Ht = T (t)K(t+)︸ ︷︷ ︸
≜J(t)

Zt (7)

lie in the set SL with probability 1, and the matrix-valued non-random function J(t) has
only cádlág components with values from {0, 1}. Denoting the discontinuity set of the
function J(t) by J , we have the following decomposition:

Vt = J(0)Z0 + ∑
κ∈J : κ⩽t

∆J(κ)Zκ︸ ︷︷ ︸
≜Dt

+
∫ t

0
J(s)dZs︸ ︷︷ ︸
≜Rt

. (8)

The first summand Dt describes the indirect discrete-time observations of Zt, generated
by the non-random jumps of the observation matrix J(t):

Dt = V0 + ∑
κ∈J : κ⩽t

∆Vκ .

The second summand Rt accumulates the random transitions of Zt, observable through
the quadratic characteristic ⟨Y, Y⟩t. Finally, we have to transform Vt into the process Ct
with components, counting the random transitions of Vt in each specific value eℓ ∈ SL:

Ct =
∫ t

0
(I − diag Vs−)dVs − ∑

κ∈J : κ⩽t
(I − diag Vκ−)∆Vκ . (9)

To present the filtering equations in a compact form, we use the following notations:

– V ≜ {0} ∪ {t ∈ [0, T] : Vt− ̸= Vt} is a discontinuity set of the process Vt, t ∈ [0, T];
– A+ is a Moore–Penrose pseudoinverse matrix;
– 1 is a row vector of an appropriate dimensionality, formed by units:
–

Γℓ(t) ≜ diag
(

e⊤ℓ J(t)
)

Λ⊤(t)
[

I − diag
(

e⊤ℓ J(t)
)]

, ℓ = 1, L, (10)

νℓt ≜
∫ t

0

(
dCℓ

s − 1Γℓ(s)Ẑsds
)

, ℓ = 1, L, (11)

A(t) ≜
L

∑
ℓ=1

(bℓ)−1/2(t)A(t)diag(eℓ), (12)

ωt ≜ Ut −
∫ t

0
A(s)Ẑsds. (13)

Proposition 1. Under conditions (i)–(v), the coincidence St+ ≡ σ{S0, Us, Cs, Ds : s ⩽ t} holds
for all t ∈ [0, T).
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The proof of Proposition 1 is analogous to Lemma 1 from [27].

Proposition 2 ([27], Theorem 1). The optimal estimate Ẑt is a strong solution to the SDS

Ẑt =
(
(D0)

⊤ J(0)pZ
0

)+
diag(D0)J(0)pZ

0

+
∫ t

0
Λ⊤(s)Ẑs−ds +

∫ t

0

(
diag Ẑs− − Ẑs−Ẑ⊤

s−

)
f
⊤
(s)dωs

+
L

∑
ℓ=1

∫ t

0

(
Γℓ(s)− 1Γℓ(s)Ẑs− I

)
Ẑs−

(
1Γℓ(s)Ẑs−

)+
dνℓs

+ ∑
κ∈J : κ⩽t

((
∆D⊤

κ ∆J(κ)Ẑκ−
)+

diag(∆Dκ)∆J(κ)− I
)

Ẑκ−. (14)

The solution is unique within the class of non-negative piecewise continuous St+-adapted processes
with a discontinuity set lying in V .

The process Ct is an indirect observation of the MJP Zt transitions. One can expect
the existence of some identifiability conditions for the observation system (2) and (4), which
guarantees the exact restoration of Zt.

Proposition 3 ([27], Corollary 1). If for any i ̸= j (i, j = 1, L) the inequalities bi(t) ̸= bj(t) hold
almost everywhere on [0, T], then Ẑt = Zt P a.s., and Zt is the solution to SDS (14).

Let us discuss the contribution of the present result in the context of financial math-
ematics. The observation transform allows to obtain the optimal estimate by the closed
finite-dimensional filter. The inclusion St+ ⊆ Ft is obvious, but under the identifiability
conditions, it transforms into the coincidence St+ ≡ Ft. These conditions are not restric-
tive: they mean the almost constant distinction of all elements of the volatility alphabet.
Otherwise, one can restore only some subsets of regimes with the coincidental volatility
functions.

If the identifiability conditions hold, the market regime can be estimated precisely,
and the market becomes complete. Nevertheless, this restoration of the market regime is
possible for the natural filtration generated by the original observations and then closed
from the right. The closure operation is routine in abstract mathematics but is crucial in
practice. The results of the mathematical operations, including a limit passage, during the
numerical realization, are replaced by some pre-limit values. In the context of the MJP
state filtering, this means that the estimates of Zt (at the moment t) are the functions of the
observation trajectory S[0,t+δ] with a short time lag δ. Hence, in the numerical realization,
the initial filtering problem is replaced by smoothing with the fixed short delay. When the
market regime estimation is the final goal, such relaxation of the estimation problem seems
admissible. However, in the context of subsequent market completion and hedging, this
action is inappropriate. In the complete market, one can replicate any contingent claim
by some self-financing portfolio via a non-anticipating strategy. By contrast, in the case
of the considered relaxation, a portfolio strategy depends on the future security prices.
The filtration {St} is not continuous from the right, but one can provide this continuity
artificially by extending it with the MJP Zt transitions. The authors of [21] complete the
market with some artificial securities generated just by these transitions.

The market would be complete if we construct some “natural” observer of the regime
transitions. In this case, the filtration generated by the new observations would be continu-
ous from the right. Below, we enlarge a market by the derivatives of the securities already
traded in the market. First, these derivatives represent the natural way to complete the
market. Second, additional observations of the derivative prices give a chance to raise the
quality of the market regime estimates.
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3. Market Completion by Derivatives
3.1. Fair Derivative Price

For the system (2) and (4), we presume the arbitrage absence [31]; hence, on the
measurable space (Ω,F), there exists a prevailing martingale measure Q (Q ∼ P) [13], which
ensures the fulfillment of the conditions below:

1. The process Mt is a martingale with respect to Q.
2. Under Q, the price process St is the unique strong solution to the SDS

dSt = rtStdt + diag St

L

∑
ℓ=1

Zℓ
t (b

ℓ)1/2(t)dwQ
t , t ∈ (0, T], S0 ∼ PS

0 (·), (15)

where wQ
t ∈ RN is an Ft-adapted standard Wiener process.

According to the Girsanov theorem [32], the Wiener process wQ
t is connected with wt:

dwQ
t = θtdt + dwt, (16)

where θt ∈ RN is an unobservable Ft-adapted process of MPR [13,33].
Keeping in mind the positivity of St, formulas (1), (3), and (15), we obtain the relation

between aℓ, bℓ and θt:

L

∑
ℓ=1

Zℓ
t (b

ℓ)1/2(t)θt =
L

∑
ℓ=1

Zℓ
t aℓ(t)− rt1⊤ =

L

∑
ℓ=1

Zℓ
t

(
aℓ(t)− rt1⊤

)
. (17)

Hence, the MPR takes the form

θt =
L

∑
ℓ=1

Zℓ
t (b

ℓ)−1/2(t)
(

aℓ(t)− rt1⊤
)

. (18)

To complete the market, we enlarge it with some derivatives. Without loss of generality,
we consider the case of a single derivative with the expiration date T, defined by the claim
H(ST). The goal of this subsection is to obtain the equation describing the evolution of
the fair price F(t, St, Zt) of the introduced derivative. It is the discounted conditional
expectation of H(ST), with respect to the measure Q:

F(t, St, Zt) = exp
(
−
∫ T

t
rsds

)
EQ{H(ST)|Ft}. (19)

Note, that Gt ≜ EQ{H(ST)|Ft}, being a martingale under Q, admits the representation

Gt = e
∫ T

t rsds ∑L
ℓ=1 Zℓ

t Fℓ(t, St), where Fℓ(t, St) ≜ F(t, St, eℓ).
We suppose that Fℓ is smooth enough, and the process Gt has the following stochastic

differential (here and below in the subsection, the dependency on the arguments is omitted
for simplicity):

dG = e
∫ T

t rds

(
−r

L

∑
ℓ=1

ZℓFℓdt +
L

∑
ℓ=1

dZℓFℓ +
L

∑
ℓ=1

ZℓdFℓ

)
.

We consider the second and third summands in the parentheses of the latter expression:

L

∑
ℓ=1

dZℓFℓ =
L

∑
ℓ=1

e⊤ℓ
(

Λ⊤Zdt + dM
)

Fℓ =
L

∑
i,j,ℓ=1

ei
ℓΛjiZjFℓdt +

L

∑
ℓ=1

FℓdMℓ

=
L

∑
ℓ=1

Zℓ
L

∑
j=1

ΛℓjFjdt +
L

∑
ℓ=1

FℓdMℓ,
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L

∑
ℓ=1

ZℓdFℓ =
L

∑
ℓ=1

Zℓ

(
Fℓ

t dt +
N

∑
n=1

Fℓ
sn dSn + 1

2

N

∑
i,j=1

Fℓ
si ,sj d⟨Si, Sj⟩

)

=
L

∑
ℓ=1

Zℓ

[
Fℓ

t dt +
N

∑
n=1

Fℓ
sn

(
Snaℓndt + Sn

N

∑
k=1

(
bℓ
)1/2

nk
dwk

)
+ 1

2

N

∑
i,j=1

Fℓ
si ,sj bℓijdt

]
,

where Fℓ
t ≜ ∂Fℓ(t,s)

∂t

∣∣∣
(t,St)

, Fℓ
sn ≜ ∂Fℓ(t,s)

∂sn

∣∣∣
(t,St)

, Fℓ
si ,sj ≜

∂2Fℓ(t,s)
∂si∂sj

∣∣∣
(t,St)

. Using formulas (16) and

(18) in the third summand, and the notation ∇sFℓ ≜ row
(

Fℓ
s1 , . . . , Fℓ

sN

)
, we obtain:

L

∑
ℓ=1

Zℓ
N

∑
n,k=1

Fℓ
sn Sn(bℓ)1/2

nk dwk =
L

∑
ℓ=1

Zℓ∇sFℓ diag(S)
(

bℓ
)1/2

dw

=
L

∑
ℓ=1

Zℓ∇sFℓ diag(S)
(

bℓ
)1/2

(dwQ − θdt)

=
L

∑
ℓ=1

Zℓ∇sFℓ diag(S)(r1⊤ − aℓ)dt +
L

∑
ℓ=1

Zℓ∇sFℓ diag(S)
(

bℓ
)1/2

dwQ.

The process G admits the stochastic differential

dG = e
∫ T

t rds

(
L

∑
ℓ=1

FℓdMℓ +
L

∑
ℓ=1

Zℓ∇sFℓ diag(S)
(

bℓ
)1/2

dwQ

)

+ e
∫ T

t rds
L

∑
ℓ=1

Zℓ
[
−rFℓ+

L

∑
j=1

ΛℓjFj+Fℓ
t +∇sFℓ diag(S)(r1⊤ − aℓ)+ 1

2

N

∑
i,j=1

Fℓ
si ,sj SiSjbℓij

]
dt.

The first summand is the differential of a Q-martingale, and the second one is the
differential of a function with a finite variation. The martingale property of {Gt} under Q
and positivity of pZ

t components on [0, T] allow to determine the price process {Fℓ(t, s)} as
a solution to the following Kolmogorov system [34]:

Fℓ
t = rFℓ−

L

∑
j=1

ΛℓjFj−
N

∑
n=1

Fℓ
sn sn(r − aℓn)− 1

2

N

∑
i,j=1

Fℓ
si ,sj sisjbℓij, ℓ = 1, L, t ∈ [0, T],

Fℓ(T, s) = H(s).

(20)

The system (20) relates to an analogue in [35], where only the volatility is switchable,
and coincides with the system in [36].

Note that the derivative price Ft = ∑L
ℓ=1 Zℓ

t Fℓ(t, St) admits the stochastic differential
with respect to Q

dFt = rtFtdt +
L

∑
ℓ=1

Fℓ(t, St)dMℓ
t +

L

∑
ℓ=1

Zℓ
t ∇sFℓ(t, St)diag(St)

(
bℓ
)1/2

(t)dwQ
t , (21)

and the differential with respect to the “real world” measure P

dFt =

[
rtFt +

L

∑
ℓ=1

Zℓ
t ∇sFℓ(t, St)diag(St)(a(t)− rt1⊤)

]
dt

+
L

∑
ℓ=1

Fℓ(t, St)dMℓ
t +

L

∑
ℓ=1

Zℓ
t ∇sFℓ(t, St)diag(St)

(
bℓ
)1/2

(t)dwt. (22)
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3.2. Market Completion

Condition (i), Equations (2) and (15), guarantees that any Ft-adapted Q-martingale
{µt} admits the decomposition [37]

µt = µ0 +
∫ t

0
ξudwQ

u +
∫ t

0
ΞudMu, (23)

where ξt and Ξt are (1 × N) and (1 × L)-dimensional Ft-predictable integrands.
To complete the market, we enlarge it by L derivatives, which correspond to the

contingent claims H(ST) ≜ col(H1(ST), . . . , HL(ST)) (T is an expiration date common for
all derivatives). We group the derivative prices into the vector process Ft ≜ col(F1

t , . . . , FL
t ).

The claims should satisfy the following condition:

vi. The matrix

F(t, s) ≜


F11(t, s) F12(t, s) . . . F1L(t, s)
F21(t, s) F22(t, s) . . . F2L(t, s)

. . . . . . . . . . . .
FL1(t, s) FL2(t, s) . . . FLL(t, s)


is non-degenerate almost everywhere in [0, T]×RL

+.

The kth row of F(t, s), (Fk1(t, s), Fk2(t, s), . . . , FkL(t, s)), is a solution to the system (20)
with the terminal condition Fkℓ(T, s) ≡ Hk(s) (ℓ = 1, L), and this row characterizes the
price of the kth derivative.

It is easy to verify that under condition (vi), the process Zt is St ∨ F t-adapted (here
F t ≜ σ{Fu : 0 ⩽ u ⩽ t}):

Zt = F−1(t, St)Ft, (24)

i.e., under conditions (i)–(vi), the coincidence Ft ≡ St ∨ F t holds for all t ∈ [0, T]. Hence,
the stochastic differential of Q-martingale wQ has the form

dwQ
t =

L

∑
ℓ=1

(
F−1(t, St)Ft

)ℓ
(bℓ)−1/2(t)diag−1(St)︸ ︷︷ ︸
≜γt

(dSt − rtStdt). (25)

Further, the price of the kth derivative Fk
t admits the stochastic differential

dFk
t = rtF

k
t dt +

L

∑
ℓ=1

Fkℓ(t, St)dMℓ
t

+
L

∑
ℓ=1

(
F−1(t, St)Ft

)ℓ
∇sFkℓ(u, Su)︸ ︷︷ ︸

≜Γk
t

(dSt − rtStdt), k = 1, L. (26)

The evolution of the derivative prices is the unique strong solution to the following
SDS (here Γt = col(Γ1

t , . . . , ΓL
t )):

dFt = rtFtdt + FtdMt + Γt(dSt − rtStdt), F0 is an initial condition. (27)

Condition (vi) allows to express the martingale Mt, which generates the MJP Zt:

dMt = F−1
t
[
dFt − rtFtdt − Γt(dSt − rtStdt)

]
. (28)

Let the martingale µt (23) represent an arbitrary contingent claim µt = E{H(ST)|Ft}.
We construct a self-financing portfolio (πt, Πt, ϖt), which replicates the claim. Here, the
vector πt ≜ row(π1

t , . . . , πN
t ) describes the fractions of underlying securities in the portfolio,
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Πt ≜ row(Π1
t , . . . , ΠL

t ) plays the same role for the derivatives, and ϖt is a portfolio fraction,
invested in the deposit. The choice

ϖt = µt − B−1
t (πtSt + ΠtFt) (29)

provides the replication of µt. Actually, if Ct is a current value of the portfolio, then

Ct = ϖtBt + πtSt + ΠtFt =
(

µt − B−1
t (πtSt + ΠtFt)

)
Bt + πtSt + ΠtFt = µtBt.

We consider the gain process associated with the portfolio, and use (25), (28), (29) and
integration by parts:

∆t ≜
∫ t

0
ϖuruBudu +

∫ t

0

(
πudSu + ΠudFu

)
=
∫ t

0

(
µu − B−1

u (πuSu + ΠuFu)
)

ruBudu +
∫ t

0

(
πudSu + ΠudFu

)
=
∫ t

0
µudBu −

∫ t

0

(
πuSu + ΠuFu

)
rudu +

∫ t

0

(
πudSu + ΠudFu

)
= µtBt − µ0 −

∫ t

0
Budµu −

∫ t

0

(
πuSu + ΠuFu

)
rudu +

∫ t

0

(
πudSu + ΠudFu

)
= µtBt − µ0 −

∫ t

0

(
πuSu + ΠuFu

)
rudu +

∫ t

0

(
πudSu + ΠudFu

)
−
∫ t

0
Bu

[
ξuγu(dSu − ruSudu) + ΞuF−1

u
(
dFu − ruFudu − Γu(dSu − ruSudu)

)]
= µtBt − µ0 +

∫ t

0
I1
udu +

∫ t

0
I2
udSu +

∫ t

0
I3
udFu, (30)

where
I1
t ≜ rt

{[
Bt(ξtγt − ΞtF−1

t Γt)− πt

]
St +

[
BtΞtF−1

t − Πt

]
Ft

}
,

I2
t ≜ πt − Bt(ξtγt − ΞtF−1

t Γt),
I3
t ≜ Πt − BtΞtF−1

t .

It is easy to verify that the choice of the fractions

πt = Bt(ξtγt − ΞtF−1
t Γt), Πt = BtΞtF−1

t

provides the self-financing property for the portfolio: ∆t = µtBt − µ0.
Thus, we have proved the following.

Theorem 1. Under conditions (i)–(vi), the market with Markov switching, augmented by the set of
L derivative securities, is complete.

As in the case of the market completion by the additional Markov jump securities [21],
one needs to enlarge the market by L derivatives: this is the number of possible regimes in
the market. Nevertheless, the completion method suggested here has some advantages.
First, the additional securities represent “the routine derivatives” of the underlying securi-
ties already traded in the market. Second, the provided derivatives do not possess such
artificial properties as a possibility to have negative prices.

4. Algorithms of Markov Regime Tracking

The results of the previous section are academic. If a trader has continuous-time
observations of the basic security prices, they can restore the hidden market regime pre-
cisely or significantly reduce its statistical uncertainty, having an arbitrarily short time
delay. Moreover, if the continuous-time noiseless observations of the derivative prices
are available, then the online restoration of the market regime would be possible without
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the application of the sophisticated filtering formulas (10)–(14) but using the elementary
algebraic transformation (24).

The principal assumption contradicting the reality is the continuous-time character of
the price observations. Hence, the first assumption, which makes the considering market
model closer to reality, is that all security prices are observable only at some discrete instants.
The exact prices of the underlying securities are known to all traders at these moments.
By contrast, the derivative prices are unavailable for the noiseless observation. Otherwise,
having direct discrete-time observations of the derivative prices, the traders could restore
the market regime or its subset at the observation time moments, which contradicts the
reality. So, the second assumption is that only noisy observations of the fair derivative
prices are available for the traders. All traders can calculate the set of possible derivative
prices {Fℓ(t, St)}ℓ=1,L but they do not know the prevailing variant, chosen by the current
market regime. The traders place the bid and ask orders with prices not coinciding with
the prevailing ones. The reasons for this tactic are mistakes in planning or some advanced
trading policies directed to an extra profit.

Thus, the observations registered at some nonrandom instants [8] look more realistic
than the continuous-time noiseless data. Another possible procedure to collect the price
statistics is a routine registration of a random flow of the security trades [15]. The section
presents suboptimal filtering algorithms of the market regime, given the observations of
both types. We specify the observation models in detail in the corresponding subsections.
Additionally, the section contains an algorithm of the numerical solution to the system (20)
related to the realization of the provided filtering algorithms.

4.1. Algorithm of Numerical Solution to Generalized Black–Scholes Equation for Markov Regime
Switching Market

The system (20), an extension of the classic Black–Scholes equation, does not provide
an analytical solution, even in the case of time-invariant coefficients r, a, b, and Λ. In this
subsection, we present a semi-analytic algorithm to solve (20), which can be considered
some version of the splitting method [38].

To simplify the presentation, we make the following assumptions.

A1. All coefficients in (20) are time invariant:

r(t) ≡ r, aℓn(t) ≡ aℓn, bℓnm(t) ≡ bℓnm, Λℓk(t) ≡ Λℓk, n, m = 1, N, ℓ, k = 1, L.

The condition is non-restrictive: the coefficients could be piecewise constant on the
time steps. Actually, if we normalize the time to one year, treating it as 250 trading
days per 8 h each, then the time increment 0.0005 would correspond to 1 h, and r, aℓn,
bℓnm, and Λℓk would look like the constants on on the time steps.

A2. Each contingent claim refers only to single underlying security, i.e., Hℓ(s1, . . . , sN) =

Hℓ(sn) for some 1 ⩽ n ⩽ N. This condition excludes the case of the compound
contingent claims.

Let us consider a single derivative and a single underlying security. In this case, the
system (20) takes the form

Fℓ
t = rFℓ−

L

∑
k=1

ΛℓkFk−(r − aℓn)sFℓ
s − 1

2 bℓnns2Fℓ
ss, ℓ = 1, L, t ∈ [0, T],

Fℓ(T, s) = H(s).

(31)

By setting

F ≜ col(F1(t, s), . . . ,FL(t, s)), F(t) ≜ col(F1(t, ·), . . . ,FL(t, ·)),
H ≜ col(H1(·), . . . ,HL(·)),

A ≜ diag(a1
n, . . . , aL

n), B ≜ diag(b1
nn, . . . , bL

nn),
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Ft ≜ ∂
∂tF, L1F ≜

[
r − (rI − A)s ∂

∂s −
s2

2 B
∂2

∂s2

]
F, L2F ≜ −ΛF,

one can rewrite the Cauchy problem (31) in the operator form

Ft = (L1 + L2)F, t ∈ [0, T), F(T) = H. (32)

Its solution has the form F(t) = L(t, T)H, where L(t, T) is a transition operator on the
interval [t, T], corresponding to (L1 + L2). The Hadamard principle [38] is valid for this
equation; hence,

F(t) = L(t, τ)F(τ) for any 0 < t ⩽ τ ⩽ T, (33)

and it is a base for the calculation of F over the time grid {tj}j=1,J : tj = jh, h = T/J:

F(tj−1) = L(tj−1, tj)F(tj), j = 1, J, F(T) = H. (34)

It is impossible to express the operator L(t, T) in the analytic form, and it can be
approximated by many ways [39]. In this paper, we propose to use the splitting method [38].
For this, we consider two auxiliary Cauchy problems

Rt = L1R, t ∈ [0, T), R(T) = HR, (35)

Qt = L2Q, t ∈ [0, T), Q(T) = HQ, (36)

with the solutions expressed via the corresponding transition operators L1 and L2 and
Hadamard’s principle:

R(t) = L1(t, τ)R(τ), Q(t) = L2(t, τ)Q(τ) for any 0 < t ⩽ τ ⩽ T. (37)

We approximate the solution to (34) {F(tj)}j=0,J , replacing L by the sequential compo-
sition of L1 and L2:

F̃(tj−1) = L2(tj−1, tj)L1(tj−1, tj)F̃(tj), j = 1, J, F̃(T) = H. (38)

Note that the transition operators L1 and L2 can be found explicitly.
All equations in the system (35) are disjoined and can be separately transformed to

the standard heat equation as the classic Black-Scholes equation [2]. We consider one of
these Cauchy problems (the indices n and ℓ are omitted for simplicity):

Rt = rR− (r − a)sRs − bs2

2 Rss, 0 ⩽ t < T, R(T) = HR, (39)

and solve it by the consecutive replacements:

1. R is replaced by V: V(t) ≜ er(T−t)R(t). The Cauchy problem (39) for V takes the form

Vt = −(r − a)sVs − bs2

2 Vss, 0 ⩽ t < T, V(T) = HR. (40)

2. We introduce the new variable τ(t) = T − t and function U(τ(t), s) ≜ V(t, s). The
Cauchy problem (40) for U takes the form

Uτ = (r − a)sUs +
bs2

2 Uss, 0 < τ ⩽ T, U(0) = UR. (41)

3. We introduce the new variable x(τ, s) = ln s+ (r − a− b
2 )τ and G(τ, x(τ, s)) ≜ U(τ, s).

The Cauchy problem (41) for G takes the form

Gτ = b
2Gxx, 0 < τ ⩽ T, G(0) = HR. (42)
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The solution to (42) is known:

G(τ, x) =
∫ ∞

−∞
Φ(τ, x − y)HR(y)dy, (43)

where

Φ(τ, x) ≜
1√

2πbτ
exp

(
− x2

2bτ

)
.

Making all reverse substitutions, we can write the explicit component-wise version of
the transition operator L1 = col(L1

1, . . . ,LL
1 ) for the single time step:

Lℓ
1(tj−1, tj)R

ℓ ≜ e−rh
∫ ∞

0

Φ
(

h, ln s
y +

(
r − aℓn −

bℓnn
2

)
h
)

y
Rℓ(y)dy, ℓ = 1, L. (44)

System (36) consists of homogeneous differential equations, and the transition operator
L2 over the single time step is expressed via the matrix exponential

L2(tj−1, tj)Q = ehΛQ for any 0 ⩽ tj−1 < tj ⩽ T. (45)

Finally, the recursive procedure (38) of the layer-by-layer approximate calculation of F
can be written as

F̃(tj−1, s) = eh(Λ−rI)
∫ ∞

0
Ψ(s, y)F̃(tj, y)dy, j = 1, J, F̃(tJ , s) = H(s), (46)

where

Ψ(s, y) ≜ diag

 1

y
√

2πb1
nnh

e
−

(
ln s

y +

(
r−a1

n−
b1
nn
2

)
h

)2

2b1
nnh , . . . ,

1
y
√

2πbL
nnh

e
−

(
ln s

y +

(
r−aL

n−
bL
nn
2

)
h

)2

2bL
nnh

.

The integral in (46) cannot be calculated analytically, and here we calculate it ap-
proximately, using the composite trapezoid scheme with the space step ∆. The inte-
gration area [0,+∞) is replaced by a finite interval [s, s], which satisfies the condition
E
{

STI(0;s)∪(s;+∞)(ST)
}
⩽ ∆2. According to [38], one can conclude that the approximation

F̃ (46) provides the local accuracy for a single layer as O(h2 + ∆2).
So, we can calculate the approximate solution to the system (31) by the recursive

procedure (46), using the matrix algebra operations, which have the effectively optimized
realization in the contemporary software libraries. However, we should mention some
natural issues related to the procedure of derivative price simulation or their usage for
market regime filtering. The formula (46) represents the backward-time recursion. By
contrast, the price simulation and filtering algorithms imply the forward-time recursive
process. Hence, all values of F̃ previously calculated on the time grid should be stored in
the considerable volume of computer memory for consecutive utilization in the simulation
or estimation procedures.

4.2. Algorithm of Regime Tracking by Discrete Time Observations

Let us consider the market (1), (2) and (22) as a continuous-time stochastic dynamic
system with a compound hidden state col(St, Zt, Ft). The market model satisfies Assump-
tions A1 and A2 of Section 4.1. The observations, which are available at the discrete instants
ti = ih, i = 1, I (I = T/h), consist of the following:
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– Noiseless prices of N underlying securities

Si ≜ Sti , Si ∈ RN , (47)

– Indirect noisy observations of M derivative security prices

Fi ≜ F(Fti , ω), Fi ∈ RM. (48)

The discrete-time nature of the available observations (47) prevents the use of tradi-
tional approximating schemes, like the Euler–Maruyama or Milstein methods [40], for the
numerical solution to the SDS (14). The reason is that the system includes the transformed
observations (Ut, Ct, Dt) instead of the original ones St. The main property of this transfor-
mation is the use of two subsequent limit passages to obtain the quadratic characteristics
⟨Y, Y⟩t and its derivative. The replacement of the continuous-time observations St by
their time discretization Si with some fixed non-vanishing time step h makes these limit
operations impossible. Hence, we propose to transform the filtering problem. The aim is to
estimate the market regime Z only at the observation moments ti. We treat the observations
Si and Fi as some noisy functionals of the regime trajectory {Zt}t∈[ti−1,ti ]

. The solution to
the new filtering problem represents a version of the Bayes formula. We treat its numerical
realization both as an applied algorithm of market regime tracking and approximation of
the solution to SDS (14).

To describe the observations properly, we introduce the following filtrations:

– Oi ≜ σ{Sj, Fj : 0 ⩽ j ⩽ i} are σ algebras generated by all available observations
obtained till the moment ti;

– Gi ≜ σ{Fj : 0 ⩽ j ⩽ i} are σ algebras, generated only by observations of the derivative
prices;

– Hi ≜ σ{Sj, Ztj : 0 ⩽ j ⩽ i} are σ algebras generated by the underlying security and
market regime, available on the time grid till the moment ti.

For the observable sequence {Fi}, we admit the Markov property given the pair (S, Z),
i.e., for any B ∈ B(RM) and i = 1, I , the following equalities are P a.s. valid:

E{IB(Fi)|Hi ∨ Fi−1} = E{IB(Fi)|Si, Zti , Fi−1} =
L

∑
ℓ=1

Zℓ
ti

∫
B

ϕℓ
i (q|Si, Fi−1)ρi(dq), (49)

where {ρi}1,I is a family of known nonrandom measures, and {ϕi}1,I are the corresponding
densities. The variant of (49) for the initial observation F0 has the form

E{IB(F0)|S0, Z0} =
L

∑
ℓ=1

Zℓ
0

∫
B

ϕℓ
0(q|S0)ρ0(dq).

The filtering problem for the market regime is to find Ẑi ≜ E{Zti |Oi}, i = 1, I .
We introduce the discrete-time logarithmic prices

Yi ≜ col
(

ln S1
i

S1
i−1

, . . . , ln SN
i

SN
i−1

)
. (50)

According to the Ito rule, each component of Yi has the form

Yn
i =

∫ ti

ti−1

L

∑
ℓ=1

Zℓ
t

((
aℓn −

bℓnn
2

)
du +

N

∑
k=1

(
bℓnk

)1/2
dwk

u

)
. (51)

It is easy to verify the identity of the σ-algebras σ{S0, S1, . . . , Si} ≡ σ{S0, Y1, . . . , Yi},
hence one can use transformed observations instead of the original ones.
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The observations {Yi} have a probability density function (pdf), and the mutual
distribution of the pair (Zti , Yi), given Zti−1 , can be expressed via the pdfs {ξ

jk
i (v)} i=1,I ,

j,k=1,L
:

P
{

Zti = ek, Yi ∈ A|Zti−1 = ej
}
=
∫

A
ξ

jk
i (v)dv.

Proposition 4. The optimal filtering estimate Ẑi is determined by the recursive procedure

Ẑℓ
i =

Z̃ℓ
i

∑L
j=1 Z̃j

i

, Z̃ℓ
i =

L

∑
k=1

ϕℓ
i (Fi|Si, Fi−1)ξ

kℓ
i (Yi)Ẑk

i−1, ℓ = 1, L, i ⩾ 1, (52)

with the initial condition

Ẑℓ
0 =

pZℓ
0 ϕℓ

0(F0|S0)

∑L
j=1 pZj

0 ϕ
j
0(F0|S0)

, ℓ = 1, L. (53)

The proof of Proposition 4 follows from the Bayes formula.
The main issue in the numerical realization of the recursive procedure (52) lies in

the calculation of the pdfs ξkℓ
i (v). From (51), it follows that the pdf of Yi is a mixture of

some Gaussians. The mixing distribution depends on the duration of the MJP Z in each
possible value on the intervals [ti−1, ti] given the fixed starting and ending points. In the
case of a time-invariant market (see Assumption A1 in the previous subsection), ξkℓ

i (v)
can be approximated by the composite midpoint rectangle rule [41]. We use the following
notations:

– G(v, M, K) is the Gaussian pdf with the mean M and non-degenerate covariance
matrix K;

– ui,m ≜ ti−1 + h1+α(m − 1
2 ) are the midpoints of the smaller intervals of the length h1+α,

m = 1, [h−α], 0 < α ⩽ 1 (here and below [a] is an integer part of a);
– Qkℓ(y, u) ≜ e(Λkk−Λℓℓ)uG(y, uAk + (h − u)Aℓ, ubk + (h − u)bℓ) is an auxiliary function

with Aℓ ≜ col
(

aℓ1 −
bℓ11
2 , . . . , aℓN − bℓNN

2

)
, ℓ = 1, L.

With these, we approximate the function ξkℓ
i (·) as

ξkℓ
i (Yi) ≈ ξ

kℓ
i (Yi) = δkℓeΛℓℓhG

(
Yi, hAℓ, hbℓ

)
+ (1 − δkℓ)Λkℓh1+α

[h−α ]

∑
m=1

Qkℓ(Yi, ui,m), (54)

where δkℓ is the Kronecker delta.
If we replace recursive procedure (52) by the following version:

̂̂Zℓ

i =
Zℓ

i

∑L
j=1 Zj

i

, Zℓ
i =

L

∑
k=1

ϕℓ
i (Fi|Si, Fi−1)ξ

kℓ
i (Yi)

̂̂Zk
i−1, ℓ = 1, L, i ⩾ 1, (55)

then the global error of this approximating scheme has the order α [41], i.e.,

E
{
∥ ̂̂Zi − Ẑi∥1

}
⩽ Chα

for some C > 0 and all i = 1, I .

4.3. Algorithm of Regime Tracking by High-Frequency Multivariate Point Observations

In this subsection, we present a suboptimal filtering algorithm of the market regime
given the observations of the MPPs. The problem is to estimate the MJP Zt at the points
ti = ih, where h > 0 is a time increment. It is essential that h ≪ min1⩽ℓ⩽L |Λℓℓ|−1,
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i.e., the probability of Zt to have a jump on some time discretization interval [ti−1, ti] is
small enough. The key feature of the available observations is their high frequency: the
number of the observations that occurred at [ti−1, ti] is large enough to apply the CLT for the
generalized regenerative processes [22] to the original observations or their transformations.

To simplify the presentation of the filtering algorithm, we consider the particular case
of the market (1), (2) and (22) with a single underlying security and a single derivative one.
Assumptions A1 and A2 hold, and the compound market state (St, Zt, Ft) is unavailable
for the direct noiseless continuous-time observation.

The discrete observations have the following structure:

{(τS
j , Sj)} j∈N:

τS
j ⩽T

(56)

is an MPP of the underlying security price observations,

{(τF
k , Fk)} k∈N:

τF
k ⩽T

(57)

is an MPP of the derivative price observations.
We assume that the observations satisfy the properties below:

1. Sj ≜ SτS
j
, i.e., at the increasing sequence of the random moments τS

j traders observe

the exact price of the basic security.
2. Given the market regime Z, the random inter-arrival times δS

j ≜ τS
j − τS

j−1 are mutually

independent. The distribution of δS
j depends on the regime state ZτS

j−1
with the known

conditional moments

mS
ℓ ≜ E

{
δS

j |ZτS
j−1

= eℓ

}
, DS

ℓ ≜ E

{
(δS

j − mS
ℓ )

2|ZτS
j−1

= eℓ

}
, ℓ = 1, L.

3. Fk ≜ FτF
k

vi, where {vk} are multiplicative random errors, which are conditionally
independent, given the market regime Z. This means that the noisy observations of
the derivatives are available to the traders at the increasing sequence of the random
moments τF

k . The distribution of vk depends on the regime state ZτF
k−1

with the known
conditional moments

mv
ℓ ≜ E

{
ln vk|ZτF

k
= eℓ

}
, Dv

ℓ ≜ E
{
(ln vk − mv

ℓ )
2|ZτF

k
= eℓ

}
, ℓ = 1, L.

4. Given the market regime Z, the random inter-arrival times δF
k ≜ τF

k − τF
k−1 are mutu-

ally independent. The distribution of δF
k depends on the regime state ZτF

k−1
and has

the known conditional moments

mF
ℓ ≜ E

{
δF

k |ZτF
k−1

= eℓ
}

, DF
ℓ ≜ E

{
(δF

k − mF
ℓ )

2|ZτF
k−1

= eℓ
}

, ℓ = 1, L.

5. Given the market regime Z, the sequences {δS
j }j, {δF

k }k, and {vk}k are mutually
independent.

6. The mean values {mS
ℓ }ℓ and {mF

ℓ }ℓ are much less than the time step h:

max
1⩽ℓ1,ℓ2⩽L

max(mS
ℓ1

, mF
ℓ2
) ≪ h.

Let us introduce the family of σ-algebras generated by the observations obtained till
the moment ti = ih: Oi ≜ σ{(Sk, τS

k ), (Fj, τF
j ) : 0 ⩽ τS

k ⩽ ti, 0 ⩽ τF
j ⩽ ti}. In the case of

the completely known mutual distribution of the system state and observations, we can
calculate the optimal estimate of the MJP state Ẑi ≜ E{Zti |Oi}, similarly to [42]. However,
the optimal estimate is sensitive to the uncertainty in the MPP distribution and costly from
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the computational point of view. We propose a suboptimal robust filtering algorithm [43],
which uses the observations transformed to some generalized regenerative processes with
the distributions modulated by the MJP Zt. To apply the algorithm, we need to know only
the moment characteristics from items 2–4 given above. The theoretical background of the
algorithm is a version of the CLT for the generalized regenerative processes [22].

On each time step [ti−1, ti], we sample the original observations in the following way:

Wi =



W1
i

W2
i

W3
i

W4
i

 ≜



∑
j: ti−1⩽τS

j−1<τS
j ⩽ti

1

∑
j: ti−1⩽τS

j−1<τS
j ⩽ti

ln
Sj
Sj−1

∑
k: ti−1⩽τF

k−1<τF
k ⩽ti

1

∑
k: ti−1⩽τF

k ⩽ti

ln Fk


. (58)

To obtain the weight functions in the filtering algorithm, we have to reconstruct the
asymptotic distribution of Wi under each of the conditions Zt ≡ eℓ, t ∈ [ti−1, ti], ℓ = 1, L.
Note that under a fixed MJP trajectory, the subvectors W′i ≜ col(W1

i , W2
i ) and W′′i ≜ col(W3

i , W4
i )

are independent. Furthermore, the random numbers of summands in the first and second
subvectors differ. From the Ito rule,

ln
Sj

Sj−1
=

(
aℓ − bℓ

2

)
δS

j +
√

bℓδS
j uj,

where {uj} is some standard Gaussian discrete white noise.
The block components W′i and W′′i are the random sums of the vectors

w′ij ≜

[
1(

aℓ − bℓ
2

)
δS

j +
√

bℓδS
j uj

]
: E

{
w′ij

}
=

[
1(

aℓ − bℓ
2

)
mS

ℓ

]

and

w′′ik ≜

[
1

ln FτF
k
+ ln vk

]
: E

{
w′′ik −

[
0

ln FτF
k

]}
=

[
1

mv
ℓ

]
.

Then, the vectors

w′ij ≜ w′ij −

 δS
j

mS
ℓ(

aℓ − bℓ
2

)
δS

j

 and w′′ik ≜ w′′ik −

 δF
k

mF
ℓ

ln FτF
k
+ mv

ℓ


are centered with the covariance matrices

diag

(
DS
ℓ

(mS
ℓ )

2
, bℓmS

ℓ

)
and diag

(
DF
ℓ

(mF
ℓ )

2
, Dv

ℓ +
(mv

ℓ )
2DF

ℓ

mF
ℓ

)
,

respectively.
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According to the CLT for the generalized regenerative processes [22], there exists the
following weak convergence as h → ∞:

1√
h


Wi−



h
mS
ℓ(

aℓ − bℓ
2

)
h

h
mF
ℓ

∑
k:

ti−1⩽τF
k ⩽ti

ln FτF
k
+

hmv
ℓ

mF
ℓ




Law−→N

0,



DS
ℓ

(mS
ℓ )

3 0 0 0

0 bℓ 0 0

0 0 DF
ℓ

(mF
ℓ )

3 0

0 0 0 Dv
ℓ

mF
ℓ

+
(mv

ℓ )
2DF

ℓ

(mF
ℓ )

2



.

Hence, we can conclude that the distribution of 1√
h
Wi is close to

N





√
h

mS
ℓ(

aℓ − bℓ
2

)√
h

√
h

mF
ℓ

1√
h ∑

k:
ti−1⩽τF

k ⩽ti

ln FτF
k
+

√
hmv

ℓ

mF
ℓ


︸ ︷︷ ︸

≜mi,ℓ

,



DS
ℓ

(mS
ℓ )

3 0 0 0

0 bℓ 0 0

0 0 DF
ℓ

(mF
ℓ )

3 0

0 0 0 Dv
ℓ

mF
ℓ

+
(mv

ℓ )
2DF

ℓ

(mF
ℓ )

2


︸ ︷︷ ︸

≜Kℓ



.

Finally, the suboptimal filtering algorithm takes the following form.

1. The initial condition:
Ẑ0 = pZ

0 . (59)

2. The prediction step:
Zi = exp {hΛ⊤}Ẑi−1. (60)

3. The correction step:

Ẑℓ
i =

Zℓ
i G( 1√

h
Wi, mi,ℓ, Kℓ)

∑L
k=1 Zk

i G( 1√
h
Wi, mi,k, Kk)

. (61)

There is an issue in the realization of the algorithm. In (58), one needs to know
SτF

k
, i.e., the underlying price at the moment of the derivative observation. This price

is unobservable at this moment, and we suggest replacing it with the earlier available
observation of the underlying price, obtained at the moment, closest to τF

k , i.e.,

SτF
k
≈ SζS

k
, where ζS

k ≜ max
j

{τS
j : τS

j ⩽ τF
k }.

5. Numerical Examples
5.1. Regime Tracking by Time-Discretized Continuous Observations

This example illustrates the impact of the mutual processing of the underlying and
derivative prices on the performance of the market regime estimates. We consider the
time interval [0; 1], which corresponds to 1 year with 250 trading sessions at 8 h each,
and simulate the evolution of one underlying security and one derivative, a European
call-option with the strike 1.1. Both the instant interest rate and volatility are governed
by the Markov regime-switching process with four possible states “growth–epoch before
panic–panic–recession”. The deposit rate r = 0.05.
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For the simulation of the solutions to (1) and (2), we choose the following parameters:
S0 ≡ 1, a = (0.08; 0.07; 0.06; 0.05), b = (0.12; 0.112; 0.132; 0.122),

Λ =


−10 10 0 0
50 −150 100 0
0 0 −100 100
30 0 10 −40

, pZ
0 =


0.726
0.048
0.064
0.162

.

We solve the SDS (1), (2) by the version of the Euler–Maruyama method, adapted to
the diffusion with jumps [44] with the main time step 10−6 (this corresponds to 7.2 s). We
integrate the system (31) with the time step H = 0.001 (this corresponds to 2 h) and the
price step ∆ = 0.002 (this corresponds to 0.2% of the initial underlying security price).

All observations are synchronous with the time step h = 0.0001 (this corresponds to
12 min). We compare the performance of the filters, calculated with three complexes of the
available observations:

C1. The precise security price {Si} is obtained with the time step h.
C2. The combination of {Si} and the option price is corrupted by a multiplicative noise

FLN
i = Fti εi, where {εi} is a sequence of independent identically distributed lognormal

random values with the parameters aLN(h) = 0 and σLN(h) = 0.5h.
C3. The combination of {Si} and indirect observations of the option price {FMC

i }. The lat-
ter ones represent a chain with values in the set of the possible option prices {Fℓ(ti, Si)}.
The observations possess the Markov property, given the trajectory Z. The condi-
tional transition matrices are formed by the probabilities P

{
FMC

i = Fk(ti,Si)|FMC
i−1 =

}
Fj(ti−1,Si−1), Zti = em = Γjkm. Here, Γm = ∥Γjkm∥j,k, (j, k, m = 1, L) are matrix expo-
nentials Γm(h) = exp(hΥm), calculated by the following TRMs:

Υ1 =


−6 2 2 2
100 −300 100 100
100 100 −300 100
100 100 100 −300

, Υ2 =


−300 100 100 100

2 −6 2 2
100 100 −300 100
100 100 100 −300

,

Υ3 =


−300 100 100 100
100 −300 100 100

2 2 −6 2
100 100 100 −300

, Υ4 =


−300 100 100 100
100 −300 100 100
100 100 −300 100

2 2 2 −6

.

The distribution of the errors in the derivative observations depends on the time
step h.

Let us argue for the choice of the parameters in the numerical experiment. First, the
deposit interest rate corresponds to the values in the actual banks. Second, the number
and description of the possible market evolution scenarios look reasonable. The author
of [25] also suggests four macroeconomic market regimes. In this paper, we, in some way,
transformed them into microeconomic regimes. For all of them, the MPR is non-negative
and equals 0 in the fourth regime (recession). Third, we choose the volatility values close to
each other to hamper the regime estimation. Fourth, in complex C2, the noise parameters
are the same for all regimes. This choice also complicates the estimation procedure. If the
noise parameters were different, the filtering accuracy would only increase: in this case,
the noise would act as some useful signal, carrying information concerning the market
regime. Thus, we choose the combination of the observation system parameters, which is
“non-friendly” for the regime estimation. The additional statistical information concerning
the derivative prices allows us to improve the estimation quality in this situation.

Figure 1 contains the plots of the following:

– The precise price of the underlying security St (indicated on the left axis);
– The precise option price Ft (indicated on the left axis);
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– The number of the market regime State No. (indicated on the right axis).

Obviously, the prices do not allow to identify the market regime visually.
Although the option price observations in the observation complexes C2 and C3 look

different, they are the particular cases of the model introduced in Section 4.2. To emphasize
the difference between these observations, we present their errors in the additive form:
∆LN

t ≜ FLN
t − Ft, ∆MC

t ≜ FMC
t − Ft.

Figure 2 presents the plots of these errors. The oscillations of the errors ∆LN
t , corre-

sponding to complex C2 with multiplicative noise, look like non-stationary white noise.
By contrast, the errors ∆MC

t , corresponding to complex C3, are obviously dependent and
demonstrate the bursting character.

Figure 1. Exact prices of underlying and derivative securities.

Figure 2. Additive errors of derivative price observations.

Figure 3 presents the estimation results in the component-wise form:

– The exact regime state Zt;
– The regime filtering estimate ẐS

t , calculated by observation complex C1;
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– The regime filtering estimate ẐLN
t , calculated by observation complex C2;

– The regime filtering estimate ẐMC
t , calculated by observation complex C3.

Figure 3. Filtering results, calculated by discrete-time observations.

Analyzing the calculation results, we can make the following conclusions. First, based
only on the underlying price observations, one can identify only regime No. 1 (growth) with
acceptable reliability. The duration of other regimes is too short, and the availability of the
underlying prices only is insufficient for the admissible precision of the estimates. Second,
the usage of the noisy derivative price observations significantly raises the estimation
quality. To confirm this thesis formally, we consider the following estimation performance
index:

CẐ ≜
1
I ∑I

i=1 ∥Ẑi − Zti∥2
2

E
{
∥Zt − E{Zt}∥2

2
} . (62)

Obviously, one can consider the (unconditional) mathematical expectation of the estimated
MJP Zt as its trivial estimate. The proposed performance index is related to the deter-
mination coefficient [45] and represents a ratio of the sample variance of the considered
filtering estimate to the theoretical variance of the trivial estimate. The proximity of the
index to 0 indicates the high accuracy of the estimate. If the index value is slightly less than
1, then the advantage of the proposed estimate is insignificant compared with the trivial
estimate. If the index value is greater than 1, then the proposed estimate is worse than the
trivial one and should be excluded from the consideration. Obviously, this exclusion is
reasonable, if we consider the mean square error criterion as the estimation performance
index. In the considered numerical example CẐS = 0.135, CẐLN = 0.016 and CẐMC = 0.102.
So, involving the observations of the derivative prices significantly improves the estimate
precision.

5.2. Regime Tracking by High-Frequency Multivariate Point Observations

In this numerical experiment, we investigate the same market model as in the previous
subsection but with different observation complexes.

C4. There are only the noiseless observations {(τS
j , Sj)} of the underlying security, received

at the random instants τS
j . Given the fixed regime-switching trajectory, the inter-arrival

times δS
j = τS

j − τS
j−1 are mutually independent exponentially distributed values [46].

The distribution parameter depends on the current market regime and is set by the
vector col(100,000, 95,000, 80,000, 90,000).
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C5. In addition to the underlying prices {(τS
j , Sj)}, there are available noisy option price

observations {(τF
k , Fk)}, received at the random instants τF

k . As well as {δS
j }, the

inter-arrival times δF
k = τF

k − τF
k−1 between the option observations are mutually inde-

pendent exponentially distributed values, given the fixed regime-switching trajectory.
The distribution parameter depends on the current market regime and is set by the
vector col(90,000, 88,000, 85,000, 89,000). The multiplicative noise {vk} in {Fk} has the
lognormal distribution with the mean 0 and the variance 0.5, which are common for
all market regimes.

The time step between the regime estimation procedure h = 0.0001 corresponds to the
12 min of the operating time.

Figure 4 presents the observable MPPs {(τS
j ,Sj)} and {(τF

k ,Fk)} obtained during step h and
used for further preprocessing into the sampled observations Wi. One can see that the interval h
contains the number of observations sufficient for the CLT asymptotics “to start working”.

Figure 4. Multivariate point observations {(τS
j , Sj)} and {(τF

k , Fk)}.

Figure 5 contains the plots of the transformed observations.

Figure 5. Transformed observations.
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It includes the plots of the following:

– The transformed inter-arrival times between the underlying price observations W1
i (on

the left ordinate axis);
– The transformed inter-arrival times between the option price observations W2

i (on the
right ordinate axis);

– The transformed underlying asset prices W3
i (on the left ordinate axis);

– The transformed option price observations W4
i (on the left ordinate axis);

– The market regime “State No.” (on the right ordinate axis).

It is impossible to restore the current market regime Zt using the visual analysis
of the observations. One can also note a non-stationary behavior of the preprocessed
option prices.

Figure 6 illustrates the legitimacy of the CLT use in the proposed algorithm. Let us
consider two first components {(W1

i , W2
i )} of the preprocessed observations {Wi}. Under

the condition of the constant regime Zt ≡ eℓ, t ∈ [ti−1, ti], the components {(W1
i , W2

i )} are
the increments of the generalized regenerative processes, and the CLT admits an approxi-
mation of the pdf by the Gaussian G(x, mℓ, Kℓ). The homogeneous MJP Zt has stationary
distribution p ≜ col(p1, . . . , pL); hence, by the law of total probability, “the theoretical”
unconditional pdf of the pair (W1, W2) takes the form pW(w) = ∑L

ℓ=1 pℓG(w, mℓ, Kℓ).

Figure 6. The “theoretical” pdf pW(w) and real histogram.

Figure 6 contains the plot of the pdf pW(w) in comparison with the 3D histogram of
the actual observations {(W1

i , W2
i )}. The plots demonstrate a remarkable similarity. Note

that the theoretical pdf is not a single Gaussian but is a mixture of them. The point is
that the distribution parameters of the different modes are very close to each other, so
the Gaussian modes visually differ little. Figure 6 demonstrates some asymmetry in the
histogram and the theoretic density. Despite the similarity of the parameters, the proposed
filtering algorithm provides high estimation performance.

Figure 7 presents the estimation results:

– The exact regime state Zt;
– The regime-filtering estimate ẐSM

t , calculated by observation complex C4;
– The regime-filtering estimate ẐSFM

t , calculated by observation complex C5.

The analysis of the numerical results leads to the following conclusions. First, the
filtering algorithm based only on the underlying security observations provides the accept-
able estimation quality for regimes No. 1 (growth) and No. 4 (recession). The reason is
again in the too short duration of regimes No. 2 (“epoch before panic”) and No. 3 (“panic”).



Mathematics 2024, 12, 423 24 of 27

Figure 7. Filtering results, obtained by use of multivariate point observations.

Second, the option price observations in the filtering procedure significantly raises
the estimation quality. The performance index (62) of the estimate calculated by the
observation complex C4 equals CẐSM = 0.106; meanwhile, the corresponding value for
observation complex C5 equals CẐSFM = 0.012. Third, the random inter-arrival times can
serve as informative observations when their distribution parameters are distinctive for the
different market regimes.

6. Conclusions

The investigation object of this work is a model of the incomplete market. Meanwhile,
the deposit rate is known and non-random; both the interest rate and volatility of the risky
securities depend on an outer uncontrolled market regime, an MJP with a finite state set.
The paper contains a statement and solution for two interconnected problems. First, it
gives a positive answer regarding whether the market can be completed with a finite set
of derivatives based on the existing securities. The paper introduces a system of partial
differential equations, describing the fair price of these derivatives and representing an
extension of the classic Black–Scholes equation. It is determined that for the completion
of the market with L possible regimes, it is sufficient to use L additional derivatives. The
paper presents a self-financing portfolio replicating an arbitrary contingent claim built from
the market securities.

Second, the work transforms the tracking of the market regime to a state-filtering
problem in the stochastic dynamic system, given heterogeneous observations. It also places
the arguments for the impossibility in the market to have direct continuous-time noiseless
observations of both the derivative prices and their underlyings. Furthermore, the paper
contains the regime-filtering algorithms corresponding to two different complexes of the
available observations:

– Discrete-time noiseless observations of the basic securities and noisy observations of
the derivatives;

– The observations of underlying and derivative prices in the form of the MPPs.

The comparative numerical study confirms the high quality of the proposed regime esti-
mates and the significant enhancement of the estimation performance after including the
derivative price observations in the filtering procedure.

The application of the proposed estimation algorithms for market regime tracking has
natural limitations. Actually, the estimation quality is sensitive to the a priori uncertainty
of the observation system parameters. Besides the design of the procedures for the mutual
parameter identification and state filtering, the development of the stable versions of the
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proposed filtering algorithms, which are robust to the imprecise knowledge of the system
parameters and the outliers in the observations, looks real. Another limitation preventing
the application of the proposed filtering algorithms is the low intensity of the observable
MPPs. One can neutralize the problem by modifying the filtering algorithm to process
the multi-scale counting observations. The high-frequency part can be processed by the
proposed algorithm based on the CLT. The observation components with the low frequency
can be processed directly, without preliminary sampling, similar to the approach suggested
in [23,42].

The results of the investigations seem accomplished. However, they can be a starting
point for the research directions.

The considered model looks simple but is flexible enough to describe the price evo-
lution in the contemporary financial markets. Hence, the first area of the prospective
investigation could be the parameter identification in the model (1), (2), (20), and (22), given
the actual financial data by the use of the corresponding identification algorithms [23,47].

The second research area includes the sensitivity analysis of the hedging strategies
relating to the choice of the derivative ensemble, which completes the market. Actually, the
essential condition permitting the market completion is the non-degeneracy of the matrix
F(·), corresponding to the chosen derivative set (condition (vi) in Section 3.2). Depending
on this set, F(·) may be an ill-conditioned matrix, and this fact could lead to computational
problems during the reconfiguration of the hedging portfolio. Another issue is that F(t, St)
represents a matrix-valued random process. The matrix F(t, St) can be close to degenerate
on some time intervals and fixed trajectory St.

Keeping in mind the arguments for the discrete-time nature of the available observa-
tions, we can treat the market (1), (2), (20), and (22) as a controllable stochastic dynamic
system with the discrete-time observation complex (47)–(48), or (56)–(57). The considered
market stays incomplete. The third research area includes the solution to the hedging
problems as the optimal or robust control in the stochastic dynamic systems with incom-
plete information. The filtering estimates proposed in the paper prompt us to apply the
separation principle in the solution to these control problems.
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