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Abstract: This article is devoted to the synthesis and analysis of the quality of the statistical estimate
of parameters of a multidimensional linear system (MLS) with one input and m outputs. A nontrivial
case is investigated when the one-dimensional input signal of MLS is a deterministic process, the
values of which are unknown nuisance parameters. The estimate is based only on observations of MLS
output signals distorted by random Gaussian stationary m-dimensional noise with a known spectrum.
It is assumed that the likelihood function of observations of the output signals of MLS satisfies the
conditions of local asymptotic normality. The

√
n-consistency of the estimate is established. Under

the assumption of asymptotic normality of an objective function, the limiting covariance matrix of
the estimate is calculated for case where the number of observations tends to infinity.
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1. Introduction

The model of observations of the output MLS signals, which is used to estimate MLS
parameters, has the form:

zu,t = yu,t + ξt, yu,t =
∞

∑
τ=0

ht−τ(u)st, t ∈ 1, n,

where zu,t ∈ Rm, t ∈ 1, n, and n > q are observations of the output MLS signals yu,t
distorted by the noise ξt; hτ(u) =

(
hk,τ(u), k ∈ 1, m

)
, τ ∈ 0, ∞ is the impulse response of

MLS; and st ∈ R1, t ∈ Z is the input signal of MLS, whose values are unknown nuisance
parameters.

The value u of the parameter of observations zu,t is unknown and belongs to the
open set Ũ of the q-dimensional vector space u ∈ Ũ ⊂ Rq. The functions hτ(u) and
τ ∈ Z+ are supposed to be known. The noise ξt =

(
ξk,t, k ∈ 1, m

)
is the m-dimensional

random Gaussian stationary time series with zero mean value and known complex matrix
power spectral density (MPSD)

.
Fξ(λ) ∈ Cm×m, λ ∈ [−π, π]. We also suppose that the

noise ξt is the regular random process of the maximal rank satisfying the strong mixing
condition [1,2].

In this article, we synthesized the estimate
^
u
(

¯
zu,n

)
of the value u in a situation where

there is no detailed prior information about the MLS input signal st. Such problems arise
in many technologies, such as radio engineering, acoustics, and seismology, when it is
necessary to determine the characteristics of a physical linear medium based on the results
of its sounding by propagating waves emitted by natural or man-made sources [3–6]. It
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is impossible in such problems to observe the medium deformations in the inner regions
of the Earth’s crust, caused by the action of an unknown probing signal st. Therefore, the
characteristics of the medium can only be determined by analyzing the wave field excited
by the signal st and recorded by an array of spatially distributed sensors located at the
Earth’s surface.

The problems of estimating the characteristics of the Earth’s medium that arise in
seismology are, as a rule, the most complex. If the propagation of waves in the Earth’s
medium can be described by a system of linear partial differential equations, then the
signals recorded by an array consisting of m seismic sensors can be interpreted as output
signals of an MLS with one input and m outputs. In this case, the physical characteristics of
the Earth’s medium can be considered mathematically as some parameters of this MLS.

Because the input signal st of the MLS belongs to a one-dimensional subspace R1

of the m-dimensional space of the MLS output signals, the observations zu,t ∈ Rm, even
distorted by interferences ξt, provide enough information about the value u ∈ Rq, q < m
of the MLS parameters to construct a consistent statistical estimate of this value.

The problem of statistical estimation of parameters of multivariate observations, closest
in formulation to our problem, was considered in [7]. This is the problem of estimating
the parameter B ∈ Rm×m of the model of observations known as “multivariate linear
functional relationship”:

zt = Bst + ξt, t ∈ 1, n; xt = st + ζt, t ∈ 1, n,

where st ∈ Rm is a sequence of unknown nuisance parameters and the errors ξt, ζt are
independent Gaussian vectors with a mean equal to zero and a covariance matrix equal to
I. That is, the parameter B should be estimated from the observations (zt, xt), t ∈ 1, n.

As noted in [7], if a priori restrictions on an infinite sequence of nuisance parameters
are not imposed, then the nonparametric model (zt, xt), t ∈ 1, n does not correspond to
traditional nonparametric models, where observations belong to some metric space and for
which asymptotically efficient (AE) estimates can be constructed. Nevertheless, in [7], the
local asymptotically minimax estimate of the parameter B was constructed, which has been
proposed in [8].

The model of observations zu,t differs significantly from the model (zt, xt), since it does
not assume observations xt = st + ζt, t ∈ 1, n of the nuisance parameters st ∈ R1, t ∈ Z.
Also, for zu,t, we have additive time series ξt, t ∈ 1, n, a sample from the stationary
Gaussian random time series with a known MPSD

.
Fξ(λ) ∈ Cm×m, while for (zt, xt), ξt, ζt

are independent Gaussian vectors. In addition, the estimated parameter u ∈ Rq is “hidden”
in the impulse response ht(u) ∈ Rm of the MLS. For these reasons, it is impossible to
construct a local asymptotically minimax estimate for the parameter u in our problem.
Nevertheless, in this problem, it is possible to construct a

√
n-consistent estimate of the

parameter value u. This will be performed in detail in Section 3.

2. Basics of Efficiency Criteria for Statistical Estimates

In denoting
¯
zu,n =

(
zu,t, t ∈ 1, n

)
as a criterion of quality for estimates

^
un

(
¯
zu,n

)
, we

will use the mean square error (MSE) matrix

Kn[ûn] = Eu

{
(ûn − u)(ûn − u)T

}
It is said that one estimate ûn,1 is better than ûn,2 when the corresponding MSE matrices

satisfy the inequality,
Kn[ûn,1] ≥ Kn[ûn,2]

where inequality A ≥ B means that A − B is a nonnegative semi-definite matrix.
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If u ∈ Ũ ⊂ Rq is a vector of true values of parameters for so-called regular parametric
probability models of the observations, a lower boundary for matrices Kn[ûn] in a class of

unbiased estimators
^
un

(
¯
zu,n

)
exists; it is defined by Fisher’s information matrix Jn(u) [9]:

Kn[ûn] ≥ J−1
n (u),

where Jn(u) =
∫

Rmn
(∇u p(zu,n; u))(∇u p(zu,n; u))T p−1(zu,n; u)d zu,n;

p(zu,n; u) is the probability density of random observations zu,n; and ∇u p(zu,n; u) =(
∂

∂uk
p(zu,n; u), k ∈ 1, q

)T
.

In this case, an estimate is said to be statistically effective if the following equality holds:

Kef
n (u) = Eu

{(
ûef
(

¯
zu,n

)
− u

)(
ûef
(

¯
zu,n

)
− u

)T
}

= J−1
n (u)

However, effective estimates exist, even theoretically, only in some special parametric
probability models of the observations, which rarely correspond to practical needs. Instead,
in some cases, it is possible to construct the asymptotically efficient (AE) estimate ûae(zn),
which has a limit error covariance matrix Kae(u) equal to the limit of the inverse Fisher’s
information matrix J−1

n (u) (n → ∞) [10]:

Kae(u) = lim
n→∞

nE

{(
ûae
(

¯
zu,n

)
− u

)(
ûae
(

¯
zu,n

)
− u

)T
}

= lim
n→∞

nJ−1
n (u)

For instance, in certain applications, st, t ∈ 1, n can be considered a realization of the
stationary Gaussian random process st, t ∈ Z with a zero mean and known power spectral
density (PSD) gs(λ). Hence, the Gaussian probability density p(zu,n; u) of the random

sample
¯
zu,n, whose nm × nm-matrix covariance function depends on the parameter u, does

not belong to the exponential family of distributions [11]. Therefore, in this case, there is no

efficient estimate
^
u

ef(¯
zu,n

)
that has an error covariance matrix Kef

n (u) equal to the inverse

Fisher’s information matrix J−1
n (u) at each number of observations n, but an AE estimate

exists, and its analytical form is given in [12]. However, the most common situation occurs

when st, t ∈ Z are unknown, and the observation model for
¯
zu,n becomes nonparametric

and the AE estimate cannot be constructed in the sense of J−1
n (u).

3. The Estimate of MLS Parameters in the Case of Unknown Input MLS Signal

In many applications, the values of the MLS input signal st, t ∈ Z are unknown and

are not observed. In this case, the estimation of u based on the sample of observations
¯
zu,n

of MLS output signals becomes a statistical problem with nuisance parameters, which are
the unknown values of the signal st, t ∈ Z. This problem was studied in [13] for cases
where the number of nuisance parameters does not increase with the increase in the number
n of observations. In our case, the number of nuisance parameters st, t ∈ 1, n is equal to

the number n of observations
¯
zu,n, and it is impossible to construct a consistent estimate

of the informative parameter u without introducing some constraints on the asymptotical
properties of the nuisance parameters st, t ∈ 1, n n ∈ Z+. Such constraints were proposed
in [11]:

1.a. The signal st has finite average power: lim
n→∞

2n−1
n
∑

t=−n
|st|2 = C < ∞.

1.b. For any n ∈ Z+, the signal st, t ∈ 1, n satisfies the inequality max
t∈1,n

|st| < nβ, where

β ∈ [0, 1/2).
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Note that almost all sample functions of stationary random processes satisfy such
restrictions [14].

It is shown in [11] that, in cases where all the values of the input MLS signal st, t ∈ Z
are known and constraints 1.a and 1.b are satisfied (and also some restrictions on the MLS

impulse response hτ(u) and the noise MPSD
.
Fξ(λ)), the likelihood function ln p

(
¯
zu,n; u

)
of observations

¯
zn admits the LAN [15] expansion in the vicinity of value u ∈ Ũ:

ln pn

(
¯
zu,n; u + n−1/2w

)
= ln pn

(
¯
zu,n; u

)
+ wT∆n

(
¯
zu,n; u

)
− 1

2
wTΓn(u)w + αn

(
¯
zu,n; u, w

)
, (1)

where |w| < C; C is any constant; P − lim
n→∞

αn

(
¯
zu,n; u, w

)
= 0;

¯
zu,n =

(
zu,t, t ∈ 1, n

)
;

∆n

(
¯
zu,n; u

)
=

(
∆k,n

( .
¯
xu,n; u,

.
s1, . . . ,

.
sn

)
, k ∈ 1, q

)
; Γn(u) =

[
Γk,l,n

(
u,

.
s1, . . . ,

.
sn
)
, k, l ∈ 1, q

]
; (2)

∆k,n

( .
¯
xu,n; u,

.
s1, . . . ,

.
sn

)
= n−1/2

n

∑
j=1

( .
xu,j −

.
hj(u)

.
sj

)∗ .
F
−1
ξ,j

.
h
′
k,j(u)

.
sj;

.
¯
xu,n is the DFFT of

¯
zu,n;

Γk,l,n
(
u,

.
s1, . . . ,

.
sn
)
= n−1

n

∑
j=1

h′∗
k,j(u)

.
F
−1
ξ,jh

′
l,j(u)

∣∣ .
sj
∣∣2; lim

n→∞
Γn(u) = Γ(u);

.
hj(u) =

.
h
(
λj; u

)
;

.
h
′
k,j(u) =

∂
.
h
(
λj; v

)
∂vk

|v = u ;
.
sj, j ∈ 1, n are the DFFTs of st, t ∈ 1, n;

and the probability distribution of the random function ∆n

(
¯
zu,n; u

)
converges as n → ∞

to the q-dimensional Gaussian distribution with the moments (0, Γ(u)).
When the values st, t ∈ 1, n are unknown for any n ∈ Z+, it is impossible to consis-

tently estimate all unknown parameters of the observations
¯
zu,n (i.e., the MLS parameter

value u together with the nuisance parameters st, t ∈ 1, n) using only the main terms (2) of
the LAN expansion (1) of the likelihood function of the observations. But in our problem, it
is necessary to estimate only the MLS parameter value u, and it is not necessary to estimate
the nuisance parameters st, t ∈ 1, n. The approach to solving such an unconventional
estimation problem was first proposed in [16]. With some modifications, this approach was
implemented in [12] to solve our problem. The method proposed in these publications was
as follows:

It is easy to show that if the values st, t ∈ 1, n are known, the family of statistics

∆n

( .
¯
xu,n; u

)
=

(
∆k,n

( .
¯
xu,n; u

)
, k ∈ 1, q

)
in Equation (2) is the gradient of the function

ln p̃n

( .
¯
xn; v,

.
s1, . . . ,

.
sn

)
with respect to parameters vk, k ∈ 0, k:

∆n

( .
¯
xu,n; u

)
= n−1/2grad

v∈U

(
ln p̃n

( .
¯
xu,n; v,

.
s1, . . . ,

.
sn

))
|v=u

, (3)

where

ln p̃n

( .
¯
xu,n; v,

.
s1, . . . ,

.
sn

)
= ln

(
n

∏
j=1

(
2πdet

.
Fξ,j

)−1/2
exp

{
−
( .

xu,j −
.
hj(v)

.
sj

)∗ .
F
−1
ξ,j

( .
xu,j −

.
hj(v)

.
sj

)})
.
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Note that the function p̃n

( .
¯
xu,n; v,

.
s1, . . . ,

.
sn

)
in Equation (3) is the asymptotic approx-

imation of the probability density for spectral observations of
.
xu,j, j ∈ 1, n, which are

asymptotically mutually independent [1].

Hence, the AE estimate
^
u

ae

n

( .
¯
xu,n

)
of parameters u in cases of known st, t ∈ 1, n can

be obtained as the root of equation ∆n

( .
¯
xu,n; v

)
= 0 and has the form:

^
u

ae

n

( .
¯
xu,n

)
= argmax

v∈U

(
−

n

∑
j=1

( .
xu,j −

.
hj(v)

.
sj

)∗ .
F
−1
ξ,j

( .
xu,j −

.
hj(v)

.
sj

))
. (4)

When the values of
.
sj, j ∈ 1, n are unknown, one can, according to [14], construct

some estimate of the value u of the informative parameter together with the unknown
nuisance parameters

.
sj, j ∈ 1, n by formally applying the maximum likelihood approach

to the right side of Equation (4). That is, this estimate can be obtained by maximizing the
right side of Equation (4) through all unknown parameters φ =

(
v1, . . . , vq,

.
s1, . . . ,

.
sn
)
∈ V,

where V is a bounded set of Rq+n:

^
φ

( .
¯
xu,n

)
= argmax

φ∈V

(
ln p̃n

( .
¯
xu,n;φ

))
= argmax

φ∈V

(
−

n

∑
j=1

( .
xu,j −

.
hj(v)

.
sj

)∗ .
F
−1
ξ,j

( .
xu,j −

.
hj(v)

.
sj

))
. (5)

Estimates (5) can be calculated by solving the following system of equations:
1. ∂

∂sre
r

ln p̃n(

.
¯
x u,n ;φ)=0; ∂

∂sim
r

ln p̃n(

.
¯
x u,n ;φ)=0.

2. ∂
∂vk

ln p̃n(

.
¯
x u,n ;φ)=0; k∈1,q.

(6)

By representing a positively definite Hermitian matrix
.
F
−1
ξ,j in the form

.
F
−1
ξ,j =

.
F
−1/2
ξ,j

.
F
−1/2
ξ,j ,

we obtain:

ln p̃n

( .
¯
xu,n;φ

)
= −

n

∑
j=1

∣∣∣ .
ρu,j −

.
dj(v)

.
sj

∣∣∣2, (7)

where
.
ρu,j =

.
F
−1/2
ξ,j

.
xu,j;

.
dj(v) =

.
F
−1/2
ξ,j

.
hj(v).

Then, subsystem (6.1) can be written in the form:
2 re

(
.
d
∗
j (v)

.
ρu,j −

∣∣∣ .
dj(v)

∣∣∣2 .
sre

j

)
= 0.

2 im
(

.
d
∗
j (v)

.
ρu,j −

∣∣∣ .
dj(v)

∣∣∣2 .
sim

j

)
= 0.

(8)

The system of Equation (8) has the following solution:

.
s̃j
( .
xu,j; v

)
=

.
d
∗
j (v)

.
ρu,j∣∣∣ .

dj(v)
∣∣∣2 ; j ∈ 1, n. (9)

To construct an estimate of the parameter value u, it is necessary to substitute the
estimate s̃j

( .
xu,j; v

)
according to Equation (9) into subsystem (6.2):
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∂
∂vk

ln p

( .
¯
xu,n;φ

)
= − ∂

∂vk

n
∑

j=1

∣∣∣∣∣ .
ρu,j −

.
dj(v)

.
d
∗
j (v)∣∣∣ .

dj(v)
∣∣∣2

.
ρu,j

∣∣∣∣∣
2

=

= − ∂
∂vk

n
∑

j=1

∣∣∣∣∣
[

I −
.
dj(v)

.
d
∗
j (v)∣∣∣ .

dj(v)
∣∣∣2
]

.
ρu,j

∣∣∣∣∣
2

= 0; k ∈ 1, q.

(10)

Thus, we define some estimate
~
u

δ

n

( .
¯
xn

)
of the value u of the MLS parameter as a

solution to the nonlinear system of equations:

∂

∂vk

(
n

∑
j=1

∣∣∣ .
Πj(v)

.
ρu,j

∣∣∣2) =
∂

∂vk

(
n

∑
j=1

.
ρ
∗
u,j

.
Π

∗
j (v)

.
Πj(v)

.
ρu,j

)
= 0; k ∈ 1, q, v ∈ U, (11)

where
.

Πj(v) = I −
.
dj(v)

.
d
∗
j (v)∣∣∣ .

dj(v)
∣∣∣2 .

It is easy to check that the matrices
.

Πj(v) are the idempotent Hermitian matrices, i.e.,
.

Π
∗
j (v)

.
Πj(v) =

.
Πj(v) for all v ∈ U and j ∈ 1, n. Hence, Equation (11) can be rewritten in

the following form:

n

∑
j=1

.
ρ
∗
u,j

∂

∂vk

.
Πj(v)

.
ρu,j =

n

∑
j=1

.
ρ
∗
u,j

.
Π

′
k,j(v)

.
ρu,j = 0; k ∈ 1, q. (12)

Therefore, the estimate of the value u of the MLS parameter at which the observations
.
ρu,j =

.
F
−1/2
ξ,j

.
xu,j were obtained can be found by maximizing the objective function

Q

( .
¯
xu,n; v

)
=

n

∑
j=1

.
ρ
∗
u,j

.
Πj(v)

.
ρu,j, (13)

that is,
^
u

δ

n

( .
¯
xu,n

)
= argmax

v∈U
Q

( .
¯
xu,n; v

)
. (14)

According to the definitions of quantities
.
ρu,j,

.
Πj(v), we can write objective

Function (13) as:

Q

( .
¯
xu,n; v

)
=

n

∑
j=1

.
x∗u,j

.
Λ
(
λj; v

) .
xu,j =

n

∑
j=1

∣∣∣∣ .
h
∗
j (v)

.
F
−1
ξ,j

.
xu,j

∣∣∣∣2
.
h
∗
j (v)

.
F
−1
ξ,j

.
hj(v)

, (15)

where
.

Λ(λ; v) =
.
F
−1
ξ (λ)

.
h(λ;v)

.
h
∗
(λ;v)

.
F
−1
ξ (λ)

.
h
∗
j (λ;v)

.
F
−1
ξ (λ)

.
h(λ;v)

;
.
xu,j =

.
h
(
λj; u

) .
s
(
λj
)
+

.
ξ
(
λj
)
, in which u is the

value of parameter v ∈ U under which the sample

.
¯
xu,n =

( .
xu,j, j ∈ 1, n

)
(DFFT of the

sample
¯
zu,n =

(
zu,j, j ∈ 1, n

)
) was obtained; and λj = 2π jn−1.

It is important to note that estimate (14) does not depend on the unknown values of the
nuisance parameters, i.e., the input MLS signals st, t ∈ 1, n. For calculating estimate (14),
we must process only the spectral observations

.
xu,j =

.
yu,j +

.
ξj, j ∈ 1, n at the output of

MLS.
In what follows, we will take into account the assumptions under which estimate (14)

was obtained in [12]:
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A. The MLS frequency response
.
h(λ; v) has second partial derivatives in the compo-

nents of the vector v, and these derivatives are continuous in v ∈ U ⊂ Rq, λ ∈ [−π, π]:

h′′
k,l(λ; v) =

∂2

∂vk∂vl
h(λ; v), k, l ∈ 1, q,

∣∣∣h′′
k,l(λ; v)

∣∣∣ < c for v ∈ U, λ ∈ [−π, π].

B. det
.
Fξ(λ) > 0.

Under assumptions A and B, the matrix functions

.
Λ

′
k(λ; u) =

∂
.

Λ(λ; u)
∂uk

,
.

Λ
′′
k,l(u) =

∂2
.

Λ(λ; u)
∂uk∂ul

(16)

exist, are uniformly bounded in norm, and are continuous in v ∈ U, λ ∈ [−π, π] for all
k, l ∈ 1, q.

Let us note an equation that will be needed later. From (11) and (15), it follows that

.
Π

′
k,j(u) =

.
F

1/2(
λj
) .
Λ

′
k,j
(
λj; u

) .
F

1/2(
λj
)

Assumptions A and B may have a physical explanation. The considered MLS model
arises in tasks such as wave field source localization in acoustics, radio, or slowness vector
estimation in seismology, where the vector function

.
h(λ; v) describes wave propagation.

As a rule, such functions are sufficiently smoothed to have second and even third partial
derivatives in the components of the vector v. Assumption B is related to the definition of
regularity [1] of additive noise, which always holds for stationary Gaussian processes.

Estimate (14) belongs to the class of M-estimates. M-estimates may have the property
of robustness, i.e., their accuracy depends less on changes in the probability distribution
of observations, unlike AE-estimates [17]. For this reason, M-estimators are used in many
applications of mathematical statistics in the natural sciences and in econometrics for
statistical estimation problems where complete probabilistic models of observations are not
known [10,18]. In these problems, the estimates are found by maximizing some objective

function Qn

( .
¯
xu,n; v

)
, v ∈ U instead of the likelihood function. Despite the fact that

likelihood-based estimate (14) is obtained from a parametric observation model, taking
into account an infinite number of estimated parameters φ, it is not an AE estimate but
could still be robust.

The asymptotic properties of M-estimates were studied in [10] for the problem of
estimating the distribution parameter of a one-dimensional random variable from a sample
of independent observations of this variable, while determining the probability distribution
of estimate (14) is a rather difficult task. This task will be simplified if we consider the

equivalent problem of determining the probability distribution of the root
^
u

δ

n

( .
¯
xu,n

)
of the

equation grad
v∈U

Qn

( .
¯
xu,n; v

)
= 0.

The analysis of the asymptotic statistical properties of the random estimate
^
u

δ

n

( .
¯
xu,n

)
when n → ∞ is based on the following theorem proved in [19], Theorem 1 and Corollary 1.

Theorem 1. Let an objective function Qn

( .
¯
xu,n; v

)
, v ∈ U ⊂ Rq satisfy the following conditions:

A. The objective function Qn

( .
¯
xu,n; v

)
, v ∈ U admits the following asymptotic expansion

in a small vicinity of the value u ∈ Ũ ⊂ intU :
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Qn

( .
¯
xu,n; u + n−1/2w

)
= Qn

( .
¯
xu,n; u

)
+ n−1/2δn

( .
¯
xu,n; u

)
w − (2n)−1wTΦn(u)w +βn

( .
¯
xu,n; w

)
, |w| < C,

where n−1/2δn

( .
¯
xu,n; u

)
=

n−1/2δk,n

( .
¯
xu,n; u

)
= ∂

∂wk
Qn

( .
¯
xu,n; u + n−1/2w

)
|w=0

, k ∈ 1, q

;

n−1Φn

( .
¯
xu,n; u

)
=

n−1Φk,l,n

( .
¯
xu,n; u

)
=

∂2

∂wk∂wl
Qn

( .
¯
xu,n; u + n−1/2w

)
|w=0

, k, l ∈ 1, q

; (17)

Pn,u − lim
n→∞

n−1Φn

( .
¯
xu,n; u

)
= Φ(u); inf

u∈U
det Φ(u) > C > 0;

∥∥∥Φ−1(u)
∥∥∥ < C

P − lim
n→∞

βn

( .
¯
xu,n; w

)
= 0.

B. The vector statistic n−1/2δn

( .
¯
xu,n; u

)
has a Gaussian limiting distribution for n → ∞ with the

following moments:

lim
n→∞

E

{
n−1/2δn

( .
¯
xu,n; u

)}
= 0; lim

n→∞
E

{
n−1δn

( .
¯
xu,n; u

)
δT

n

( .
¯
xu,n; u

)}
= Ψ(u); ∥Ψ(u)∥ < C

C. Let some statistic
^
u

δ

n

( .
¯
xu,n

)
∈ Rq have the following properties:

a. The statistic
^
u

δ

n

( .
¯
xu,n

)
is a solution of the system of equations δn

( .
¯
xu,n; v

)
= 0 for any n > m and

almost each
.
¯
xu,n with respect to the probability distribution dPu,n

( .
¯
xu,n

)
:

Pu,n

{
δn

( .
¯
xu,n;

^
u

δ

n

( .
¯
xu,n

))
= 0

}
≡ 1

b. The statistic
^
u

δ

n

( .
¯
xu,n

)
is the

√
n-consistent estimate of the value u ∈ Ũ.

Then, the random variable ζn =
√

n

(
^
u

δ

n

( .
¯
xu,n

)
− u

)
has a Gaussian distribution in the asymp-

totic n → ∞ with the following moments:

lim
n→∞

E{ζu,n} = 0; lim
n→∞

E
{
ζu,nζ

T
u,n

}
= D(u) = Φ−1(u)Ψ(u)Φ−1(u); ∥D (u)∥ < C, u ∈ Ũ ⊂ int U.

It has been proven in Section 5 that objective Function (13) satisfies the conditions A and C of

Theorem 1. The proof of the asymptotic normality of n−1/2δn

( .
¯
xu,n; u

)
, which is part of condition

B, is quite challenging (it will be discussed in the end), but we will assume that it holds. Then, the

random variable ζu,n =
√

n

(
~
u

δ

n

( .
¯
xu,n

)
− u

)
has Gaussian distribution in the asymptotic n → ∞

with the following moments:

lim
n→∞

E{ζu,n} = 0; lim
n→∞

E
{
ζu,nζ

T
u,n

}
= D(u) = Φ−1(u)Ψ

(
¯
u
)

Φ−1(u), (18)
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where Φ(u) =
[
Φk,l(u); k, l ∈ 1, q

]
; Ψ(u) =

(
Ψk,l(u); k, l ∈ 1, q

)
; Φk,l(u) =

2π∫
0

tr
[(

Λ
′′
k,l(λ; u)Fξ(λ)

)]
dλ;

Ψk,l(u) = 2
π∫

−π
tr
[(

Λ′
k(λ; u)

.
Fξ(λ)

.
Λ
′
l(λ; u)

.
Fξ(λ)

)
dλ
]

+ 4
π∫

−π

.
h
∗
(λ; u)

.
Λ
′
k(λ; u)

.
Fξ(λ)

.
Λ
′
l(λ; u)

.
h(λ; u)dws(λ);

Λ′
k(λ; u) = ∂

∂vk
Λ(λ; v)|v=u; Λ

′′
k,l(λ; u) = ∂2

∂vk∂vl
Λ(λ; v)|v=u;

.
Λ(λ; v) =

.
F
−1
ξ (λ)−

.
F
−1
ξ (λ)

.
h(λ;v)

.
h
∗
(λ;v)

.
F
−1
ξ (λ)

.
h
∗
j (λ;v)

.
F
−1
ξ (λ)

.
h(λ;v)

v ∈

U; ws(λ) = lim
n→∞

n−1
νλ

∑
j=1

∣∣ .s(2πjn−1)∣∣2; and νλ = [λ] is the largest integer j for which 2πjn−1 ≤ λ.

4. Numerical Comparison of
^
u

δ

n

( .
¯
xu,n

)
and the SRP-PHAT Estimator

As mentioned in the introduction, the particular case of MLS parameter estimation problem is
wavefield source localization by antenna arrays. The SRP-PHAT estimator of source coordinates is the
most popular, well-recommended, and robust method, as described in [3,6]. In order to demonstrate

the effectiveness of
^
u

δ

n

( .
¯
xu,n

)
given by (14) compared to SRP-PHAT, Monte-Carlo simulations for

two different cases of noise ξt properties were performed in [4]. A set of 150 MLS outputs was
considered in this experiment. For the known value of the estimated parameter (x*, y*), a set of
110 mixtures of 150 MLS outputs and time series ξt was simulated.

A simple and known metric was used to numerically compare the effectiveness of the algorithms:

ρRMSE[v̂n] =
1
p

p

∑
j=1

[
q

∑
i=1

(
vj

i − v∗i
)2
]1/2

where v∗i , i = 1, q is the known value of the unknown parameter v =
(
v1, . . . , vq

)
and vj

i , i = 1, q,
j = 1, p is the set of independent estimated values of the parameter v =

(
v1, . . . , vq

)
. In the current

modeling, q = 2 and p = 110. Two different sets of vj
i , i = 1, q, j = 1, p were obtained by two different

estimates:
^
u

δ

n

( .
¯
xu,n

)
and SRP-PHAT.

Below, in Figure 1, the empirical two-dimensional probability density functions for averaged
(among MLS outputs) signal-to-noise ratio SNR = 0.05 are obtained for 110 independent estimates of
source coordinates v = (v1, v2) in the presence of real correlated noise with matrix power spectral
density

.
Fξ(λ). In Figure 2, similar probability density functions are provided for

.
Fξ(λ) = const ∗ I,

where I is the unit matrix. That means that ξt is represented as multidimensional white Gaussian
noise with equal power spectral densities.

As can be seen from Figures 1 and 2, in both cases, the ρRMSE value of
^
u

δ

n

( .
¯
xu,n

)
is approx-

imately two times greater than the ρRMSE value of SRP-PHAT. That is, the changing properties of

additive noise ξt lead estimate
^
u

δ

n

( .
¯
xu,n

)
to be more efficient than SRP-PHAT. But while varying the

additive noise properties, both estimators show nondramatic changes in estimation accuracy, so they
are both robust. More detailed information and a straight numerical comparison are given in [4].
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5. Asymptotic Properties of the Objective Function Qn

( .
¯
xu,n; v

)

The proof that the objective function Qn

( .
¯
xu,n; v

)
satisfies conditions A and C of Theorem 1

consists of a sequence of lemmas.

Lemma 1. The objective function, Qn

( .
¯
xu,n; v

)
,v ∈ U, satisfies conditions A of Theorem 1.

Proof. Let us write the Tailor expansion of the objective function Qn

( .
¯
xu,n; u + n−1/2w

)
in the

vicinity n−1/2w, |w| < C of the parameter value u with the remainder term in the Lagrange form:
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n
∑

j=1

.
ρ
∗
u,j

.
Πj

(
u + n−1/2w

) .
ρu,j =

n
∑

j=1

.
ρ
∗
u,j

.
Πj(u)

.
ρu,j + n−1/2

n
∑

j=1

.
ρ
∗
u,j

( q
∑

k=1

.
Π

′
k,j(u)wk

)
.
ρu,j−

−(2n)−1 n
∑

j=1

.
ρ
∗
u,j

(
q
∑

k,l=1

.
Π

′′
k,l,j(u)wkwl

)
.
ρu,j +βn

( .
¯
ρu,n; u, w

)
,

.
¯
ρu,n =

( .
ρu,j j = 1, n

)
, |w| < C

(19)

where n−1/2
.

Π
′
k,j(u) =

∂
∂wk

.
Πj

(
u + n−1/2w

)
w=0

; n−1
.

Π
′′
k,l,j(u) =

∂2

∂wk∂wl

.
Πj

(
u + n−1/2w

)
|w=0

;

.
ρu,j =

.
dj(u)

.
sj +

.
ηj.

The remainder term βn

( .
¯
ρu,n; w

)
on the right side of Equation (19) has the form:

βn

( .
¯
xu,n; w

)
= n−3/2

q

∑
k,l,r

wkwlwr

 n

∑
j=1

.
ρ
∗
u,j

.
Π

′′′
k,l,r,j

(
u + n−1/2θk,l,r,jw

) .
ρu,j

, (20)

where |w| < C, θk,l,r,j ∈ (0, 1).

We use the Lagrange form of the remainder term βn

( .
¯
xu,n; w

)
above because it is the simplest

form of the Tailor expansion of the objective function Qn

( .
¯
xu,n; v

)
by Equation (13) given on the

closed set v = U, but this form requires the existence of third bounded partial derivatives of the

objective function Qn

( .
¯
xu,n; v

)
. Let us assume that this is true for the sake of simplicity. Due to this

assumption, there exists a matrix function:

.
Π

′′′
k,l,r,j(v) =

.
F

1/2(
λj

)
Λ

′′′
k,l,r,j(v)

.
F

1/2(
λj

)
, (21)

where
.

Λj(v) =
.

Λ
(

λj; v
)

; λj = 2π jn−1;
.

Λ(λ; v) =
.
F
−1
ξ (λ)

.
h(λ;v)

.
h
∗
(λ;v)

.
F
−1
ξ (λ)

.
h
∗
j (λ;v)

.
F
−1
ξ (λ)

.
h(λ;v)

, v ∈ U, which is continu-

ous on v ∈ U and is bounded for all valid values of its arguments.
In accordance with Equation (7), we have:

.
ρu,j =

.
F
−1/2
ξ,j

.
xu,j =

.
dj(u)

.
sj +

.
ηj, where

.
dj(v) =

.
F
−1/2
ξ,j

.
hj(v).

The term
.
dj(u)

.
sj is bounded for all j ∈ 1, n, u ∈ Ũ ⊂ U. The pairs of random vectors

.
ηj,

.
ηk,

j ̸= k ∈ 1, n are mutually asymptotically independent for n → ∞ ; the Gaussian random vectors
.
ηj

have asymptotic covariance matrices equal to I for n → ∞ . That is, we have (see Appendix A):

E
{ .
ηj

}
= 0, j ∈ 1, n; E

{ .
ηj

.
η
∗
k

}
=

.
F
−1/2
j E

{ .
ξj

.
ξ
∗
k

} .
F
−1/2
k =

∥∥∥ .
O

η

j,k

∥∥∥, j ̸= k ∈ 1, n;

E
{ .
ηj

.
η
∗
j

}
=

.
F
−1/2
j E

{ .
ξj

.
ξ
∗
j

} .
F
−1/2
j =

.
F
−1/2
j

[
.
Fj +

.
O

ξ

j

]
.
F
−1/2
j = I +

.
O

η

j , (22)

where
∥∥∥ .

O
η

j

∥∥∥ ≤ Cn−1−β, β ∈ (0, 1) for all j ∈ 1, n.
Taking into account Equation (21) and the boundedness of the terms wkwlwr in Equation (20),

we conclude that the sequence of random variables βn

( .
¯
ρu,n; w

)
tends to zero in probability as

n → ∞ , in accordance with the Law of Large Numbers [18] (Lemma 2.4):

P − lim
n→∞

n−3/2
n

∑
j=1

q

∑
k,l,r

wkwlwr
.
ρ
∗.
xu,j

.
Π

′′′
k,l,r,j

(
u + n−1/2θk,l,r,jw

) .
ρ .

xu,j
= 0. (23)

□
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Let us assume that the vector statistic

n−1/2δn

( .
¯
xu,n; u

)
=

(
n−1/2δk,n

( .
¯
xu,n; u

)
, k ∈ 1, q

)
,

where n−1/2δk,n

( .
¯
xu,n; u

)
=

(
n−1/2

n
∑

j=1

.
ρ
∗
u,j

.
Π

′
k,j(v)|v=u

.
ρu,j, k = 1, q

)
=

= n−1/2
n

∑
j=1

( .
dj(u)

.
sj +

.
ηj

)∗ .
Π

′
k,j(u)

( .
dj(u)

.
sj +

.
ηj

)
, (24)

particularly satisfies conditions B of Theorem 1. That is, n−1/2δn

( .
¯
xu,n; u

)
has a Gaussian limit

distribution. Let us prove that the moments of this distribution are

lim
n→∞

E

{
n−1/2δn

( .
¯
xu,n; u

)}
= 0; lim

n→∞
E

{
n−1δn

( .
¯
xu,n; u

)
δT

n

( .
¯
xu,n; u

)}
= Ψ(u); ∥Ψ(u)∥ < C.

Lemma 2. The statistics given by (24):

n−1/2δk,n

( .
¯
xu,n; u

)
= n−1/2

n
∑

j=1

.
d
∗
j (u)

.
Π

′
k,j(u)

.
dj(u)

∣∣∣sj

∣∣∣2 + n−1/2
n
∑

j=1

.
η
∗
j

.
Π

′
k,j(u)

.
ηj+

+2n−1/2
n
∑

j=1
Re
( .
η
∗
j

.
Π

′
k,j(u)

.
dj(u)

.
sj

)
, k = 1, q

(25)

have zero mean in the asymptotic n → ∞ :

lim
n→∞

E

{
n−1/2δk

( .
¯
xu,n; u

)}
= 0, k ∈ 1, q.

Proof of Lemma 2. The term
.

Π
′
k,j(u) has the following form:

.
Π

′
k,j(u) = − ∂

∂vk

[ .
dv

.
d
∗
v

|dv|2

]
= −|dv|−4

[
∂
[ .
dv

.
d
∗
v

]
∂vk

(d∗
vdv)−

[ .
dv

.
d
∗
v

]
∂(d∗

vdv)
∂vk

]
|v=u

=

= −|du|−4
[[

.
d

’
k,u

.
d
∗
u

]∣∣∣ .
du

∣∣∣2 + [dud’∗
k,u

]∣∣∣ .
du

∣∣∣2 − [ .
du

.
d
∗
u

](
d’∗

k,udu

)
−
[ .
du

.
d
∗
u

](
d∗

ud′
k,u

)]
,

(26)

where u ∈ Ũ, j ∈ 1, n, k ∈ 1, q.

Statement 1. The first term on the right side of Equation (25) is equal to zero:

n−1/2
n

∑
j=1

.
d
∗
j (u)

.
Π

′
k,j(v)

.
dj(u)

∣∣∣sj

∣∣∣2 = 0 for all k ∈ 1, q.

Proof of Statement 1. Let us rewrite the terms
.
d
∗
j (u)

.
Π

′
k,j(u)

.
dj(u) for any j ∈ 1, n, n > q, k ∈ 1, q

using the associative law for products of several vectors:

.
d
∗
j (u)

.
Π

′
k,j(u)

.
dj(u) = −|du|−4

[∣∣∣ .
du

∣∣∣2 .
d
∗
u

[
.
d
′
k,u

.
d
∗
u

]
.
du +

.
d
∗
u

[
du

.
d
′∗
k,u

]
.
du

∣∣∣ .
du

∣∣∣2]+
+|du|−4

[
.
d
∗
u

[ .
du

.
d
∗
u

] .
du

(
d∗

u
.
d
′
k,u

)
+

.
d
∗
u

[ .
du

.
d
∗
u

] .
du

(
d∗

u
.
d
′
k,u

)]
=

= −|du|−4
(
|du|2

(
d∗

u
.
d
′
k,u

)
|du|2+|du|2

(
.
d
′∗
k,udu

)
|du|2

)
+ +|du|−4

(
|du|2|du|2

(
d∗

ud’
k,u

)
+ |du|2|du|2

(
d∗

u
.
d
′
k,u

))
≡ 0

for any j ∈ 1, n, n > q, k ∈ 1, q.

□
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The mathematical expectation of the last term on the right side of Equation (25) is also equal to

zero due to Equation (22): 2n−1/2
n
∑

j=1
Re
(

E
{ .
η
∗
j

} .
Π

′
k,j(u)

.
dj(u)

.
sj

)
= 0.

Statement 2. The limit of the mathematical expectation of the second term on the right side of Equation (25) is
equal to zero:

n−1/2 lim
n→∞

n

∑
j=1

E
{ .
η
∗
j

.
Π

′
k,j(u)

.
ηj

}
=n−1/2 lim

n→∞

n

∑
j=1

tr
[ .
Π

′
k,j(u)E

{ .
ηj

.
η
∗
j

}]
= 0.

Proof of Statement 2. As follows from Equation (22):

tr
[ .
Π

′
k,j(u)E

{ .
ηj

.
η
∗
j

}]
= tr

.
Π

′
k,j(u) + tr

[ .
Π

′
k,j(u)

.
O

η

j

]
, (27)

where
∥∥∥ .

O
η

j

∥∥∥ ≤ Cn−1−β, β ∈ (0, 1) for all j ∈ 1, n.

Let us first prove that tr
.

Π
′
k,j(u) = 0 for any u ∈ Ũ, k ∈ 1, q; j ∈ 1, n, n > q. The following

equalities are held:

tr
.

Πj(u)= tr
[

I −
.
dj(u)

∣∣∣ .
dj(u)

∣∣∣−2 .
d
∗
j (u)

]
= m −

∣∣∣ .
dj(u)

∣∣∣−2
tr
[
dj(u)d

∗
j (u)

]
=

= m −
∣∣∣ .
dj(u)

∣∣∣−2 m
∑

l=1

.
dl,j(u)

.
d
∗
l,j(u)= m −

∣∣∣ .
dj(u)

∣∣∣−2∣∣∣ .
dj(u)

∣∣∣2= m − 1.

Therefore, tr
.

Π
′
k,j(u) =

∂
∂vk

tr
.

Πj(v)|v=u ≡ 0 for any u ∈ Ũ, k ∈ 1, q; j ∈ 1, n, n > q. Consequently:

n−1/2
n

∑
j=1

tr
[ .
Π

′
k,j(u)E

{ .
ηj

.
η
∗
j

}]
= n−1/2

n

∑
j=1

∂

∂vk
tr
[ .
Πj(v)|v=u

.
O

η

j

]
, (28)

where
∥∥∥ .

O
η

j

∥∥∥ ≤ Cn−1−β, β ∈ (0, 1).

The matrix functions
.

Πj(v) have continuous partial derivatives with respect to vk for any v ∈ U,

j ∈ 1, n. Consequently,
∥∥∥∥ .

Π
’
k,j(v)

∥∥∥∥ ≤ C1 for any v ∈ U,j ∈ 1, n. As follows from Equation (28):

lim
n→∞

n−1/2

∣∣∣∣∣∣sup
v∈U

n

∑
j=1

tr
[ .
Π

′
k,j(v)

.
O

η

j

(
n−1−β

)]∣∣∣∣∣∣ ≤ Cn−1/2−β = 0. (29)

Finally, we deduce from (26)–(29) that

lim
n→∞

n−1/2
n

∑
j=1

E
{ .
ηj

∗ .
Π

′
k,j(v)

.
ηj

}
= 0. (30)

□ □

It follows from Lemmas 1 and 2 that the components of the family of statistics n−1/2δ

( .
¯
xu,n; v

)
,

v ∈ U in the limit n → ∞ have a zero mathematical expectation:

lim
n→∞

E

{
n−1/2δk

( .
¯
xu,n; u

)}
= lim

n→∞
E

n−1/2
n

∑
j=1

.
η
∗
u,j

.
Π

′
k,j(u)

.
ηu,j + 2n−1/2

n

∑
j=1

Re
( .
η
∗
u,j

.
Π

′
k,j(u)

.
dj(u)

.
sj

) = 0.

Lemma 3. The covariance matrix Ψ(u) of the statistic n−1/2δ

( .
¯
xu,n; u

)
has the limit

lim
n→∞

E

{
n−1δ

( .
¯
xu,n; u

)
δT

( .
¯
xu,n; u

)}
= Ψ(u) =

[
Ψk,l(u), k, l ∈ 1, q

]
, ∥Ψ(u)∥ < C < ∞,
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where Ψk,l(u) = 2
π∫

−π
tr
[( .

Λ
′
k(λ; u)

.
Fξ(λ)

.
Λ
′
l(λ; u)

.
Fξ(λ)

)
dλ
]

+

4
π∫

−π

.
h
∗
(λ; u)

.
Λ
′
k(λ; u)

.
Fξ(λ)

.
Λ
′
l(λ; u)

.
h(λ; u)dws(λ); k, l ∈ 0, q, ws(λ) = lim

n→∞
n−1

νλ

∑
j=1

∣∣ .
s
(
2π jn−1)∣∣2;

νλ = [λ] is the largest integer n for which 2π jn−1 ≤ λ;
.

Λ(λ; v) =
.
F
−1
ξ (λ)

.
h(λ;v)

.
h
∗
(λ;v)

.
F
−1
ξ (λ)

.
h
∗
j (λ;v)

.
F
−1
ξ (λ)

.
h(λ;v)

;
.

Λ
′
k(λ; u) =

∂
∂vk

Λ(λ; v)|v=u.

Proof of Lemma 3. According to Lemma 2, lim
n→∞

E

{
n−1/δk

( .
¯
xu,n; u

)}
= 0, k ∈ 1, q. Consequently,

Ψk,l(u) = lim
n→∞

E

{
n−1δn,k

( .
¯
xu,n; u

)
δn,l

( .
¯
xu,n; u

)}
.

According to Equation (25) and Statement S.1, we have:

n−1/2δ

( .
¯
xu,n; u

)
= n−1/2

n

∑
j=1

( .
ηj

∗ .
Π

′
k,j(u)

.
ηj + 2Re

.
η
∗
j

.
Π

′
k,j(u)

.
dj(u)

.
sj

)
. (31)

Therefore, Ψk,l(u) can be written as:

Ψk,l(u) = lim
n→∞

n−1
n

∑
i=1

n

∑
j=1

E
{

Qk,iQl,j + Qk,i Ll,j + Lk,iQl,j + Lk,i Ll,j

}
, (32)

where Qk,j =
.
ηj

∗ .
Π

′
k,j(u)

.
ηj; Lk,j = 2Re

( .
η
∗
i

.
Π

′
k,j(u)

.
dj(u)

.
sj

)
.

The double sum on the right side of Equation (32) can be calculated as:

Ψk,l(u)= lim
n→∞

n−1
n
∑

j=1
E
{

Qk,jQl,j + Qk,jLl,j + Lk,jQl,j + Lk,jLl,j

}
+

+ lim
n→∞

n−1
n
∑

i=1

n
∑

|j−i|=1
E
{

Qk,iQl,j + Qk,i Ll,j + Lk,iQl,j + Lk,i Ll,j

}
= Ak,l + Bk,l .

(33)

According to (23), the complex vectors
.
ηj, j ∈ 1, n become mutually independent for large

values of n:
E
{ .
ηi

.
η
∗
j

}
=

.
O

η

i,j

(
n−1−β

)
, where

∥∥∥ .
O

η

i,j

(
n−1−β

)∥∥∥ ≤ Cn−1−β, β ∈ (0, 1). It is easy to show that
the term Bk,l in Equation (33) has the form:

Bk,l = lim
n→∞

n−1
n
∑

i=1
E
(
Qk,i

) n
∑

|j−i|=1
E
(

Ql,j

)
+

+ lim
n→∞

n−1
n
∑

i=1

n
∑

|j−i|=1

(
E
{

Qk,i
}

E
{

Ll,j

}
+ E

{
Lk,i
}

E
{

Ql,j

}
+ E

{
Lk,i
}

E
{

Ll,j

})
.

(34)

The first limit on the right side of (34) is equal to zero due to Statement S1:

lim
n→∞

n−1
n

∑
i=1

E
(
Qk,i

)
∑

j ̸=i∈1,n

E
(

Ql,j

)
≤ lim

n→∞
n−1/2

n

∑
i=1

E
{

Qk,i
}

lim
n→∞

n−1/2
n

∑
j=1

E
{

Ql,j

}
= 0.

The second limit on the right side of (34) is also equal to zero since E
{ .
ηj

}
= 0. Hence,

E
{

Lk,j

}
= 2ReE

{ .
η
∗
j

} .
Π

′
k,j(u)

.
dj(u)

.
sj = 0, k ∈ 1, q, j ∈ N.

As a result, we obtain:

Ψk,l(u) = lim
n→∞

n−1
n

∑
j=1

(
E
{

Qk,jLl,j

}
+ E

{
Ql,jLk,j

})
+ lim

n→∞
n−1

n

∑
j=1

(
E
{

Qk,jQl,j

}
+ E

{
Lk,jLl,j

})
. (35)

The quantities E
{

Qk,jLl,j

}
= E

{ .
ηj

∗ .
Π

′
k,j(u)

.
ηj × 2Re

( .
η
∗
j

.
Π

′
l,j(u)

.
dj(u)

.
sj

)}
, k, l ∈ 1, q are the

sums of terms having the forms E
{

ηs,jηr,jηw,j

}
as,r,jbw,j. That is, they are the sums of the products
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of three random variables having Gaussian distributions with zero mean values. The factors in

these products belong to the sets
{

ηre
k,j, k ∈ 1, q

}
,
{

ηim
k,j , k ∈ 1, q

}
. Due to the properties of Gaussian

distributions, the mathematical expectations of these products are equal to zero.
Consequently,

lim
n→∞

n−1
n

∑
j=1

E
{

Qk,jLl,j

}
= 0, j ∈ 1, n, k, l ∈ 1, q.

Thus, we finally obtain

Ψk,l(u) = lim
n→∞

n−1
n
∑

j=1

(
E
{

Qk,jQl,j

}
+ E

{
Lk,jLl,j

})
=

= lim
n→∞

n−1
n
∑

j=1
E
{( .

ηj
∗ .
Π

′
k,j(u)

.
ηj

)( .
ηj

∗ .
Π

′
l,j(u)

.
ηj

)}
+

+4 lim
n→∞

n−1
n
∑

j=1
E
{

Re
( .
η
∗
j

.
Π

′
k,j(u)

.
dj(u)

.
sj

)
Re
( .
η
∗
j

.
Π

′
l,j(u)

.
dj(u)

.
sj

)}
.

(36)

To find the expression for the mathematical expectation E
{( .

ηj
∗ .
Π

′
k,j(u)

.
ηj

)( .
ηj

∗ .
Π

′
l,j(u)

.
ηj

)}
,

we can use the following theorem proven in [20] (Theorem 5.2c, p. 109):

Theorem 2. If the random vector
.
y has the complex Gaussian distribution NC

(
0,

.
K
)

, then the covariance of

the product of quadratic forms
( .

yT .
A

.
y
)( .

yT .
B

.
y
)

, where
.

A u
.
B are Hermitian matrices, is determined by the

following equation: E
{
(yT

.
Ay)(yT

.
By)

}
= 2tr[

.
A

.
K

.
B

.
K].

Using this theorem when
.
y =

.
η, NC

(
0,

.
K
)
= N(0, I),

.
A =

.
Π

′
k,j,

.
B =

.
Π

′
l,j, we obtain:

E
{( .

ηj
∗ .
Π

′
k,j(u)

.
ηj

)( .
ηj

∗ .
Π

′
l,j(u)

.
ηj

)}
= 2tr

[ .
Π

′
k,j(u)

.
Π

′
l,j(u)

]
. (37)

Since
.

Π
′
k,j(u) =

.
F

1/2(
λj

) .
Λ

’
k,j

(
λj; u

) .
F

1/2(
λj

)
, the first term on the right side of (37) takes the

following form:

lim
n→∞

n−1
n
∑

j=1
E
{( .

ηj
∗ .
Π

′
k,j(u)

.
ηj

)( .
ηj

∗ .
Π

′
l,j(u)

.
ηj

)}
=

= lim
n→∞

2n−1
n
∑

j=1
tr
[

.
F

1/2(
λj

) .
Λ
′
k,j

(
λj; u

) .
F

1/2(
λj

) .
F

1/2(
λj

) .
Λ
′
l,j

(
λj; u

) .
F

1/2(
λj

)]
=

= 2
2π∫
0

tr
[

.
Λ
′
k(λ; u)

.
F(λ)

.
Λ’

l(λ; u)
.
F(λ)

]
dλ.

(38)

Let us find an expression for the last term on the right side of Equation (36):

4 lim
n→∞

n−1
n

∑
j=1

E
{

Re
( .
η
∗
j

.
Π

′
k,j(u)

.
dj(u)

.
sj

)
Re
( .
η
∗
j

.
Π

′
l,j(u)

.
dj(u)

.
sj

)}
. (39)

Since
.

Π
′
k,j(u), k ∈ 1, q are Hermitian matrices, then the terms of sum (39) can be rewritten

as E
{

Re
( .

a∗
.

C
.
b
)

Re
( .

a∗B
.
b
)}

, where
.
a =

.
ηj;

.
b =

.
dj(u)

.
sj;

.
C =

.
Π

′
k,j(u);

.
B =

.
Π

′
l,j(u). The following

equalities are valid for the Hermitian matrices
.

C,
.
B and for the vectors

.
a,

.
b:

2Re
( .

a∗
.

C
.
b
)

2Re
( .

a∗B
.
b
)
=
( .

a∗
.

C
.
b +

( .
a∗

.
C

.
b
)∗)( .

a∗
.
B

.
b +

( .
a∗

.
B

.
b
)∗)

=
( .

a∗
.

C
.
b +

.
b
∗ .
C
∗ .
a
)( .

a∗B
.
b +

.
b
∗
B∗ .

a
)
=

=
( .

a∗p +
.
p∗ .

a
)( .

a∗
.
q +

.
q∗ .

a
)
=
(

2
.
a∗p

)(
2

.
q∗ .

a
)
= 4

.
a

.
C

.
b

.
b
∗ .
B

.
a,
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where
.
p =

.
C

.
b,

.
q =

.
B

.
b and

.
a∗p =

.
p∗ .

a due to the property of the scalar product, and
.

C =
.

C
∗
,

.
B =

.
B
∗

due to the property of Hermitian matrices. Since
.
ηj =

.
F
−1/2
ξ,j

.
ξj;

.
dj(u) =

.
F
−1/2
ξ,j

.
hj

(
λj; u

)
, we

can write:
E
{

2Re
( .

s+j
.
h
∗
j (u)

.
Λ
′
k,j(u)

.
ξj

)
2Re

( .
s+j

.
h
∗
j (u)

.
Λ
′
l,j(u)

.
ξj

)}
=

= 4
(

.
h
∗
j (u)

.
Λ
′
l,j(u)E

{ .
ξj

.
ξ
∗
j

} .
Λ
′
k,j(u)

.
hj(u)

∣∣∣ .
sj

∣∣∣2) =

= 4
(

.
h
∗
j (u)

.
Λ
′
l,j(u)

[ .
F j +

.
Oj

(
n−1−β

)] .
Λ
′
k,j(u)

.
hj(u)

∣∣∣ .
sj

∣∣∣2),

(40)

where
∥∥∥ .

Oj

(
n−1−β

)∥∥∥ ≤ Cn−1−β, β ∈ (0, 1), and C is some constant.
Finally, we obtain:

Ψk,l(u) = lim
n→∞

2n−1
n
∑

j=1
tr
[( .

Λ
′
k,j(u)

.
Fξ,j

.
Λ
′
l,j(u)

.
Fξ,j

)]
+

+ lim
n→∞

4n−1
n
∑

j=1

.
h
∗
j (u)

[ .
Λ
′
k,j(u)

.
Fξ,j

.
Λ
′
l,j(u)

] .
hj(u)

∣∣∣sj

∣∣∣2 + lim
n→∞

n−1
n
∑

j=1
Oj

(
n−1−β

)
,

(41)

where β ∈ (0, 1) and lim
n→∞

n−1
n
∑

j=1
Oj

(
n−1−β

)
= 0.

Equation (36) can then be written in integral form:

Ψk,l(u) = 2
2π∫
0

tr
[( .

Λ
′
k(λ; u)

.
Fξ(λ)Λ

′
l(λ; u)

.
Fξ(λ)

)
dλ
]
++4

2π∫
0

.
h
∗
(λ; u)

.
Λ
′
k(λ; u)

.
Fξ(λ)

.
Λ
′
l(λ; u)

.
h(λ; u)dws(λ), (42)

where Λr
′ (λ; u) = − ∂

∂vr

[ .
F
−1
ξ(λ)

.
h(λ;v)

.
h
∗
(λ;v)

.
F
−1
ξ (λ)

.
h
∗
(λ;v)

.
F
−1
ξ(λ)

.
h(λ;v)

]
|v=u

; ws(λ) = lim
n→∞

n−1
νλ

∑
j=1

|s(2π j/n)|2; νλ = [λ] is

the largest integer less than λ. □

Now it is not difficult to write an analytical expression for the elements of matrix
Φ(u) = lim

n→∞
Φn(u). According to expression (17), we have

Φk,l,n(u) = n−1E

 ∂
∂vl

δk

( .
¯
xu,n; u + wn−1/2

)
|w=0

 = n−1
n
∑

j=1
E
{ .
ηj

∗Λ′′
k,l,j(u)

.
ηj

}
=

= n−1
n
∑

j=1

(
tr
[
Λ′′

k,l,j(u)E
{ .

nj
.
n∗

j

}]
+ 2Re

(
E
{ .

n∗
j

}
Λ′′

k,l,j(u)
.
dj(u)

.
sj

))
= n−1

n
∑

j=1
tr
[
Λ′′

k,l,j(u)E
{ .

nj
.
n∗

j

}]
.

lim
n→∞

Φn,k,l(u) = lim
n→∞

n−1
n

∑
j=1

E
{ .

x∗j Λ′′
k,l,j(u)

.
xj

}
=

2π∫
0

tr
[(

Λ′′
k,l(λ; u)F(λ)

)]
dλ = Φk,l(u) (43)

Let us prove that condition C of Theorem 1 is satisfied.

Lemma 4. ([18]). Let the objective function n−1Qn

( .
¯
xu,n; v

)
, v ∈ U, generating the estimate by the equation

^
u

Q

n

( .
¯
xu,n

)
= argmax

v∈U
n−1Qn

( .
¯
xu,n; v

)
,

have the following properties:

1. For any v ∈ U, the random function n−1Qn

( .
¯
xu,n, v

)
converges in probability to the deterministic

function Q(v)uniformly on v ∈ U:

P − lim
n→∞

n−1Qn

( .
¯
xu,n; v

)
= Q(v).

2. The function Q(v) is continuous on v ∈ U.
3. The function Q(v) has a unique maximum u at the set U.
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Then, the estimate
^
un

( .
¯
xu,n

)
= argmax

v∈U
n−1Q

( .
¯
xu,n; v

)
is the consistent one:

P − lim
n→∞

^
u

Q

n

( .
¯
xu,n

)
= u.

Lemma 4 can be formulated in the following equivalent form:

Lemma 5. Let the vector random function

n−1/2δn

( .
¯
xu,n, v

)
=

(
n−1/2δk,n

( .
¯
xu,n; v

)
=

∂

∂vk
n−1Qn

( .
¯
xu,n; v

)
, k ∈ 1, q

)
, v ∈ U,

generating the estimate
^
u

δ

n

( .
¯
xu,n

)
as the root of the equation

n−1/2δn

( .
¯
xu,n; v

)
≡ 0 for each n > q,

have the following properties:

1. For any v ∈ U, the random vector function n−1/2δn

( .
¯
xu,n; v

)
converges in probability to the

deterministic vector function δ(v)uniformly on v ∈ U:

Pu,n − lim
n→∞

n−1/2δn

( .
¯
xu,n; v

)
= δ(v).

2. The vector function δ(v) is continuous on v ∈ U.
3. The vector function δ(v) has a unique root uat the setU.

Then, the estimate
~
u

δ

n

( .
¯
xu,n

)
, which is the root of the equation n−1/2δn

( .
¯
xu,n; v

)
= 0, is the

consistent one: P − lim
n→∞

^
u

δ

n

( .
¯
xu,n

)
= u.

Let us prove that the random function δn

( .
¯
xu,n; v

)
from the left side of Equation (12), normal-

ized to n−1/2 as

n−1/2δn

( .
¯
xu,n; v

)
=

n−1
n

∑
j=1

.
ρ
∗
xu,j

.
Π

′
k,j(v)

.
ρxu,j

, k ∈ 1, q

, v ∈ U,

satisfies the conditions of Lemma 4. To do this, we analyze the limits in probability of the random

functions n−1/2δk

( .
¯
xu,n; v

)
, k ∈ 1, q, v ∈ U when n → ∞ . These functions have the form:

n−1/2δk

( .
¯
xu,n; v

)
= n−1

n
∑

j=1

.
d
∗
j (u)

.
Π

′
k,j(v)

.
dj(u)

∣∣∣sj

∣∣∣2 + n−1
n
∑

j=1

.
η
∗
u,j

.
Π

′
k,j(v)

.
ηu,j+

+n−1
n
∑

j=1
2Re

( .
η
∗
u,j

.
Π

′
k,j(v)dj(u)sj

)
, k ∈ 1, q.

(44)

The following statement is proven similarly to Theorem 1 in [18]:
Since the random values

.
ηj, j ∈ 1, n have their properties defined by Equation (22), and

functions
.

Π
′
k,j(v), v ∈ U are continuous on the compact set U, the random functions (44) converge in
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probability to the limits of their mathematical expectations when n → ∞ uniformly in U due to the
Law of Large Numbers:

P − lim
n→∞

{
n−1/2δk

( .
¯
xu,n; v

)}
= lim

n→∞
n−1/2

n

∑
j=1

E

{
δk

( .
¯
xu,n; v

)}
= δk(v), k ∈ 1, q. (45)

Let us find expressions for the values δk(v). Since

2Re
(

E
{ .
η
∗
u,j

} .
Π

′
k,j(v)dj(u)sj

)
= 0 for all k ∈ 1, q, j ∈ 1, n, n > q,

then

δk(v) = lim
n→∞

n−1
n

∑
j=1

E
{ .
η
∗
u,j

.
Π

′
k,j(v)

.
ηu,j

}
+ lim

n→∞
n−1

n

∑
j=1

.
d
∗
j (u)

.
Π

′
k,j(v)

.
dj(u)

∣∣∣ .
sj

∣∣∣2. (46)

According to (27), the first term in (46) is equal to zero for all v ∈ U, k ∈ 1, q. The second term
in (46) converges as n → ∞ to the following integrals uniformly in v ∈ U:

δk(v) = (2π)−1
2π∫
0

.
d
∗
(λ; u)

.
Π

′
k(λ; v)

.
d(λ; u)|w(λ)|2dλ, k ∈ 1, q, (47)

where ws(λ) = lim
n→∞

n−1
νλ

∑
j=1

|s(2π j/n)|2, νλ = [λ] is the largest integer n for which 2π jn−1 ≤ λ.

Due to the properties of
.

Π
′
k(λ; v), the integrals (47) are continuous in v ∈ U, and the functions

δk(v), k ∈ 1, q have the unique roots uk on the compact set U.

Then, according to the statement of Lemma 5, the estimate
~
u

δ
( .

¯
xn

)
, which is the root of the

equation δn

( .
¯
xn; u

)
= 0, i.e.,

Pu,n

{
δn

( .
¯
xn;

~
u

δ
( .

¯
xn

))
≡ 0

}
= 1 for n > q, (48)

is the consistent estimate of the value u of the MLS parameter.

Lemma 6. The consistent estimate
~
u

δ
n

( .
¯
xn

)
, satisfying Equation (48), is the

√
n-consistent estimate, i.e., it

has the following property: for any ε > 0, there exists a Cε > 0 for which P

{
√

n

∣∣∣∣∣~uδ
( .

¯
xu,n

)
− u

∣∣∣∣∣ > Cε

}
≤ ε

for every n > q.

Proof. Let us formulate the definitions of consistency and
√

n-consistency in the equivalent forms:

(a) For any εn → 0 , n → ∞ , there exists a C1,n(εn) → ∞ for which

P

{∣∣∣∣∣~uδ

n

( .
¯
xn

)
− u

∣∣∣∣∣ < C−1
1,n

}
= 1 − εn.

(b) For any εn → 0 , n → ∞ , there exists a C(εn) → ∞ for which P

{
√

n

∣∣∣∣∣~uδ

n

( .
¯
xn

)
− u

∣∣∣∣∣ < C(εn)

}
= 1 − εn.

Let us consider the random event

An =

{∣∣∣∣∣~uδ

n

( .
¯
xu,n

)
− u

∣∣∣∣∣ < C−1
n

}
.

Then, condition (a) means that:

P{An} = 1 − εn , where εn → 0 (n → ∞) .
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Let us consider the value
~
θn

( .
¯
xn; u

)
=

√
n

∣∣∣∣∣
(

~
u

δ

n

( .
¯
xn

)
− u

)∣∣∣∣∣ and the event

Bn =

{
~
θn

( .
¯
xn; u

)
< C2,n(εn)

}
.

Then, condition (b) means that: P{Bn} = 1 − εn (n → ∞).

The estimate
~
u

δ

n

( .
¯
xn

)
, as the root of the equation δn

( .
¯
xn; u

)
= 0 with a probability equal to 1,

is determined by the following relation:

P

{
δn

( .
¯
xn;

~
u

δ

n

( .
¯
xn

))
≡ 0

}
= 1 for every n > q.

Using the above designations, the statement of Lemma 5 can be written in the following form:

P

{
δn

( .
¯
xn;

~
u

δ

n

( .
¯
xn

))
≡ 0|An

}
P{An} =

= P

{
δn

( .
¯
xn;

~
u

δ

n

( .
¯
xn

))
≡ 0|Bn

}
P{Bn} = 1 − εn , εn → 0 (n → ∞) .

(49)

Hence, the consistent estimator
~
u

δ

n

( .
¯
xu,n

)
is also the

√
n-consistent one. □

It follows from Lemmas 1–6 that all conditions of Theorem 1 are satisfied, and hence the

random variable ζn

( .
¯
xu,n

)
=

√
n

(
~
u

δ
( .

¯
xu,n

)
− u

)
has, in asymptotic n → ∞ , a zero mean and

bounded covariance:

lim
n→∞

E¯
z n

{
ζn

(
¯
zn

)}
= 0; lim

n→∞
E¯

z n

{
ζn

(
¯
zn

)
ζn

(
¯
zn

)T
}

= Φ−1(u)Ψ(u)Φ−1(u), (50)

where the elements of the matrices Φ(u) and Ψ(u) are represented in the form of integral
expressions (42) and (43).

In order to understand the meaning of Formula (50), let us return to Section 2 and consider a
case where q = 2, u ∈ Ũ ⊂ R2 and m = 150. Then, Formula (50) represents the covariance matrix
of a Gaussian two-dimensional distribution that, for certain hτ(u) and

.
Fξ(λ) ∈ C150×150 (used in

Monte-Carlo modeling), will be very close to the empirical distribution shown in Figure 1b.

Discussion on the asymptotic normality of n−1/2δk

( .
¯
xu,n; u

)
.

As it was noted before, the fact of the asymptotic normality of statistics (24) is not obvious and
poses a separate problem that is more difficult than the Law of Large Numbers. It is required to
establish central limit theorem (CLT) conditions for the weak dependent random variables that are
represented as quadratic forms of functions of the discrete Fourier transform of stationary time series.

The CLT formulated for cases of dependent random variables are presented, for instance,
in [21,22]. However, the conditions under which these theorems are stated are very restrictive, which
makes them difficult to apply to statistics (24). In addition to the existence of finite first- and high-
order moments ([21], theorem 27.4), there is a strong mixing condition for the measure of dependency
between random variables, which cannot be applied to the terms of sum (24). The author believes
that there is no ready solution to this problem in the form of a suitable theorem. At the moment, the
author leaves this problem open for investigation in the future.

6. Conclusions
In this paper, we considered an important case of the vector parameter estimation problem for

an MLS model with one input and several outputs, where the number of unknown parameters tends
to infinity along with the number of observations. This case has never been studied before, and the
explicit analytic form for the covariance matrix (50) of estimate (14) defined by (42) and (43) is the
main theoretical result of this paper.
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In practice, output processes yu,t are always heavily distorted by additive noise ξt. That is why
specialists in signal processing always look for the best estimate that can improve the accuracy of
the estimation of unknown parameters. For that purpose, every new suggested estimate should be
compared with the existing actual one, as described in Section 4. Using Formula (50) allows one to
calculate the variance of estimator (14) for a given impulse response vector hτ(u) and

.
Fξ(λ) ∈ Cm×m

directly instead of performing the Monte-Carlo procedure, which assumes a mixture simulation
of additive noise ξt and outputs yu,t multiple times for the calculation of the empirical covariance
matrix of estimator (14).

There are two unsolved theoretical problems regarding statistics n−1/2δk

( .
¯
xu,n; u

)
that can be

considered for future work. The first is establishing the validity of the CLT under the proven condi-
tions of Theorem 1. The second is related to the question of boundary existence in a nonparametric
model in terms of the lowest covariance matrix (50) in a class of regular estimators. This boundary
can be achievable through estimate (14) as a likelihood-based estimate, but then it should be proven.
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Appendix A Probabilistic Properties of DFFT of a Vector Gaussian Stationary Time Series
Satisfying Strong Mixing Conditions

Let
.
ξj, j ∈ 1, n be the discrete finite Fourier transform (DFFT) of values ξt, t ∈ 1, n of m-

dimensional stationary Gaussian time series ξt ∈ Rm, t ∈ Z with zero mean and matrix power
spectral density (MPSD)

.
F(λ) = Fre(λ) + iFim(λ), λ ∈ [0, 2π] :

.
ξj = µj + iνj

DFFT⇔ ξt, t, j ∈ 1, n, µj = n−1/2
n

∑
t=1

ξt cos
(

λjt
)

, νj = n−1/2
n

∑
t=1

ξt sin
(

λjt
)

, λj = 2π j n−1.

Theorem A1. ([23], chapter 4.2). The real and imaginary parts of µj, vj,
.
ξj = µj + iνj, and j ∈ 1, n have

the following probabilistic characteristics:

(a) For every j ∈ 1, n, the following equations are correct:

E
{
µj

}
= E

{
vj

}
= 0; E

{
µjµ

T
j

}
= 0.5

.
F

Re
j +

.
Oµj

(
n−1−β

)
E
{

vjv
T
j

}
= 0.5FRe

j + Ovj

(
n−1−β

)
E
{
µjν

T
j

}
= 0.5FIm

j + Oµj ,νj

(
n−1−β

)
; E
{

vjµ
T
j

}
= −0.5FIm

j + Ovj ,µj

(
n−1−β

)
sup
j∈1,n

∥∥∥Oµj

(
n−1−β

)∥∥∥ = sup
j∈1,n

∥∥∥Ovj

(
n−1−β

)∥∥∥ ≤ Cn−1−β

sup
j∈1,n

∥∥∥Oµj,vj

(
n−1−β

)∥∥∥ = sup
j∈1,n

∥∥∥Ovj ,µj

(
n−1−β

)∥∥∥ ≤ Cn−1−β

(b) For all j ̸= k ∈ 1, n, the following inequalities are correct:

sup
j ̸=k∈1,n

∥∥∥E
{
µjµ

T
k

}∥∥∥ = sup
j ̸=k∈1,n

∥∥∥E
{

vjv
T
k

}∥∥∥ ≤ Cn−1−β

sup
j ̸=k∈1,n

∥∥∥E
{
µjv

T
k

}∥∥∥ = sup
j ̸=k∈1,n

∥∥∥E
{

vjµ
T
k

}∥∥∥ ≤ Cn−1−β

where C and β ∈ (0, 1) are constants.
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