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Abstract: In this paper, two randomized block Kaczmarz methods to compute inner inverses of
any rectangular matrix A are presented. These are iterative methods without matrix multiplications
and their convergence is proved. The numerical results show that the proposed methods are more
efficient than iterative methods involving matrix multiplications for the high-dimensional matrix.
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1. Introduction

Consider the linear matrix equation

AXA = A, (1)

where A ∈ Cm×n and X ∈ Cn×m. The solution X of (1) is called the inner inverse of A. For
arbitrary X(0) ∈ Cn×m, all the inner inverses of A can be expressed as

X−
0 = X(0) + A† − A† AX(0)AA†,

where A† is the Moore–Penrose generalized inverse of A.
Inner inverses play a role in solving systems of linear equations, finding solutions

to least squares problems, and characterizing the properties of linear transformations [1].
They are also useful in various areas of engineering, such as robotics, big data analysis,
network learning, sensory fusion, and so on [2–6].

To calculate the inner inverse of a matrix, various methods can be used, such as the
Moore–Penrose pseudoinverse, singular value decomposition (SVD), or the method of
partitioned matrices [1]. To our knowledge, few people discuss numerical methods for
solving all the inner inverses of a matrix. In [7], the authors designed an iterative method
based on gradient (GBMC) to solve the matrix Equation (1), which has the following
iterative formula:

X(k+1) = X(k) + µA∗(A − AX(k)A)A∗, k = 0, 1, 2, . . . .

Here, 0 < µ < 2
∥A∥4

2
is called the convergence factor. If the initial matrix X(0) = A∗,

then the sequence X(k) converges to A†. Recently, various nonlinear and linear recurrent
neural network (RNN) models have been developed for computing the pseudoinverse of
any rectangular matrices (for more details, see [8–11]). The gradient-based neural network
(GNN), whose derivation is based on the gradient of an nonnegative energy function, is an
alternative for calculating the Moore–Penrose generalized inverses [12–15]. These methods
for solving the inner inverses and for other generalized inverses of a matrix frequently use
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the matrix–matrix product operation, and consume a lot of computing time. In this paper,
we aimed to explore two block Kaczmarz methods to solve (1) by the product of the matrix
and vector.

In this paper, we denote A∗, A†, A−, ∥A∥2, ∥A∥F and ⟨A, B⟩F = trace(A∗B) as the
conjugate transpose, the Moore–Penrose pseudoinverse, the inner inverse, the 2-norm,
the Frobenius norm of A and the inner product of two matrices A and B, respectively. In
addition, for a given matrix A = (aij) ∈ Cm×n, Ai,:, A:,j, R(A), σmax(A) and σmin(A), are
used to denote its ith row, jth column, the column space of A, the maximum singular value
and the smallest nonzero singular value of A, respectively. Recall that σmax(A) = ∥A∥2 and
σmin(A†) = 1

∥A∥2
. For an integer m > 1, let [m] = {1, 2, . . . , m}. Let Ek denote the expected

value conditional on the first k iterations; that is,

Ek[·] = E[·|j0, j1, . . . , jk−1],

where js(s = 0, 1, ..., k − 1) is the column chosen at the sth iteration.
The rest of this paper is organized as follows. In Section 2, we derive the projected

randomized block Kaczmarz method (MII-PRBK) for finding the inner inverses of a matrix
and give its theoretical analysis. In Section 3, we discuss the randomized average block
Kaczmarz method (MII-RABK) and its convergence results. In Section 4, some numerical
examples are provided to illustrate the effectiveness of the proposed methods. Finally,
some brief concluding remarks are described in Section 5.

2. Projected Randomized Block Kaczmarz Method for Inner Inverses of a Matrix

The classical Kaczmarz method is a row iterative scheme for solving the linear consis-
tent system Ax = b that requires only O(n) cost per iteration and storage and has a linear
rate of convergence [16]. At each step, the method projects the current iteration onto the
solution space of a single constraint. In this section, we are concerned with the randomized
Kaczmarz method to solve the matrix Equation (1). At the kth iteration, we find the next
iterate X(k+1) that is closest to the current iteration X(k) in the Frobenius norm under the ith
condition Ai,:XA = Ai,:. Hence, X(k+1) is the optimal solution of the following constrained
optimization problem:

min
X∈Cn×m

1
2
∥X − X(k)∥2

F s.t. Ai,:XA = Ai,:, i ∈ [m]. (2)

Using the Lagrange multiplier method, turn (2) into the unconstrained optimiza-
tion problem

min
X∈Cn×m ,Y∈Cn×1

L(X, Y) = min
X∈Cn×m ,Y∈Cn×1

{
1
2
∥X − X(k)∥2

F + ⟨Y, (Ai,:XA − Ai,:)
∗⟩
}

. (3)

Differentiating Lagrangian function L(X, Y) with respect to X and setting to zero gives
X(k+1) = X(k) − A∗

i,:Y
∗A∗. Substituting into (3) and differentiating L(X, Y) with respect

to Y, we can obtain Y∗ = − 1
∥Ai,:∥2

2
(Ai,: − Ai,:X(k)A)(A∗A)†. So, the projected randomized

block Kaczmarz for solving AXA = A iterates as

X(k+1) = X(k) +
A∗

i,:

∥Ai,:∥2
2
(Ai,: − Ai,:X(k)A)A†, k = 0, 1, 2, . . . , (4)

where i ∈ [m] is selected with probability pi =
∥Ai,:∥2

2
∥A∥2

F
. We describe this method as

Algorithm 1, which is called the MII-PRBK algorithm.
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Algorithm 1 Projected randomized block Kaczmarz method for matrix inner inverses
(MII-PRBK)

Input: A ∈ Cm×n, X(0) ∈ Cn×m

1: for k = 0, 1, 2, . . . , do
2: Pick i with probability pi(A) =

∥Ai,:∥2
2

∥A∥2
F

3: Compute X(k+1) = X(k) +
A∗

i,:
∥Ai,:∥2

2

(
(Ai,: − (Ai,:X(k))A)A†

)
4: end for

The following lemmas will be used extensively in this paper. Their proofs are straight-
forward.

Lemma 1. Let A ∈ Cm×n be given. For any vector u ∈ R(A∗), it holds that

∥Au∥2
2 ≥ σ2

min(A)∥u∥2
2. (5)

Lemma 2 ([17]). Let A ∈ Cm×n be given. For any matrix B ∈ Cn×m, if B:,j ∈ R(A∗), j =
1, 2, . . . , m, it holds that

∥AB∥2
F ≥ σ2

min(A)∥B∥2
F. (6)

Using Lemma 2 twice, and the fact ∥AB∥2
F = ∥BA∥2

F, we can obtain Lemma 3.

Lemma 3. Let A ∈ Cm×n be given. For any matrix B ∈ Cn×m, if B:,j ∈ R(A∗), j = 1, 2, . . . , m
and (Bi,:)

∗ ∈ R(A), i = 1, 2, . . . , n, it holds that

∥ABA∥2
F ≥ σ4

min(A)∥B∥2
F. (7)

Remark 1. Lemma 3 can be seen as a special case of Lemma 1 in [18]. That is, let B = {B ∈
Cn×m | ∃Y ∈ Cm×n s.t. B = A∗YA∗}. For any matrix B ∈ B, it holds ∥ABA∥2

F ≥ σ4
min(A)∥B∥2

F.
Notice that B is well defined because 0 ∈ B and A† ∈ B.

Theorem 1. The sequence {X(k)} generated by the MII-PRBK method starting from any initial
matrix X(0) ∈ Cn×m converges linearly to X−

0 in the mean square form. Moreover, the solution
error in expectation for the iteration sequence X(k) obeys

E
[∥∥∥X(k) − X−

0

∥∥∥2

F

]
≤ ρk

∥∥∥X(0) − X−
0

∥∥∥2

F
, k = 1, 2, . . . , (8)

where ρ = 1 − σ4
min(A)

∥A∥2
F∥A∥2

2
.

Proof. For k = 0, 1, 2, . . ., by (4) and AA† A = A, we can obtain

AX−
0 A = A(X(0) + A† − A† AX(0)AA†)A = A (9)

and

Ai,:X(k+1)A = Ai,:

(
X(k) +

A∗
i,:

∥Ai,:∥2
2

(
Ai,: − Ai,:X(k)A

)
A†

)
A

= Ai,:X(k)A + (Ai,: − Ai,:X(k)A)A† A

= Ai,:. (10)

Combining (9), (10) and (A†)∗ = A(A∗A)†, it follows from
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⟨X(k+1) − X(k), X(k+1) − X−
0 ⟩F =

1
∥Ai,:∥2

2
⟨A∗

i,:(Ai,: − Ai,:X(k)A)A†, X(k+1) − X−
0 ⟩F

=
1

∥Ai,:∥2
2

trace
(
(A†)∗(Ai,: − Ai,:X(k)A)∗Ai,:(X(k+1) − X−

0 )
)

=
1

∥Ai,:∥2
2

trace
(
(Ai,: − Ai,:X(k)A)∗Ai,:(X(k+1) − X−

0 )(A†)∗
)

= 0 (by Ai,:X(k+1)A = Ai,:X−
0 A = Ai,:)

and∥∥∥X(k+1) − X(k)
∥∥∥2

F
=

1
∥Ai,:∥4

2

∥∥∥A∗
i,:(Ai,: − Ai,:X(k)A)A†

∥∥∥2

F

=
1

∥Ai,:∥4
2

trace
(
(A†)∗(Ai,: − Ai,:X(k)A)∗Ai,: A∗

i,:(Ai,: − Ai,:X(k)A)A†
)

=
1

∥Ai,:∥2
2

∥∥∥(A†)∗(Ai,: − Ai,:X(k)A)∗
∥∥∥2

2

≥
σ2

min(A†)

∥Ai,:∥2
2

∥∥∥Ai,: − Ai,:X(k)A
∥∥∥2

2
( by Lemma 1)

that

∥X(k+1) − X−
0 ∥2

F =
∥∥∥X(k) − X−

0

∥∥∥2

F
−
∥∥∥X(k+1) − X(k)

∥∥∥2

F

≤
∥∥∥X(k) − X−

0

∥∥∥2

F
−

σ2
min(A†)

∥Ai,:∥2
2

∥Ai,: − Ai,:X(k)A∥2
2.

By taking the conditional expectation, we have

Ek

[∥∥∥X(k+1) − X−
0

∥∥∥2

F

]
≤
∥∥∥X(k) − X−

0

∥∥∥2

F
− σ2

min(A†)Ek

[
∥Ai,: − Ai,:X(k)A∥2

2
∥Ai,:∥2

2

]

=
∥∥∥X(k) − X−

0

∥∥∥2

F
− σ2

min(A†)
m

∑
i=1

∥Ai,:∥2
2

∥A∥2
F

∥Ai,: − Ai,:X(k)A∥2
2

∥Ai,:∥2
2

=
∥∥∥X(k) − X−

0

∥∥∥2

F
−

σ2
min(A†)

∥A∥2
F

∥∥∥A − AX(k)A
∥∥∥2

F

=
∥∥∥X(k) − X−

0

∥∥∥2

F
−

σ2
min(A†)

∥A∥2
F

∥∥∥A(X(k) − X−
0 )A

∥∥∥2

F

≤
∥∥∥X(k) − X−

0

∥∥∥2

F
−

σ4
min(A)σ2

min(A†)

∥A∥2
F

∥∥∥X(k) − X−
0

∥∥∥2

F

=

(
1 −

σ4
min(A)

∥A∥2
F∥A∥2

2

)∥∥∥X(k) − X−
0

∥∥∥2

F
.

The second inequality is obtained by Lemma 3 because X(0) − X−
0 = A† − A† AX(0)

AA† ∈ B and X(k) − X−
0 ∈ B on induction.

By the law of total expectation, we have

E
[∥∥∥X(k) − X−

0

∥∥∥2

F

]
≤ ρE

[∥∥∥X(k−1) − X−
0

∥∥∥2

F

]
≤ · · · ≤ ρk

∥∥∥X(0) − X−
0

∥∥∥2

F
, k = 1, 2, . . . .

This completes the proof.
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3. Randomized Average Block Kaczmarz Method for Inner Inverses of a Matrix

In practice, the main drawback of (4) is that each iteration is expensive and difficult
to parallelize, since the Moore–Penrose inverse A† is needed to compute. In addition, A†

is unknown or too large to store in some practical problem. It is necessary to develop the
pseudoinverse-free methods to compute the inner inverses of large-scale matrices. In this
section, we exploit the average block Kaczmarz method [16,19] for solving linear equations
to matrix equations.

At each iteration, the PRBK method (4) does an orthogonal projection of the current esti-
mate matrix Xk onto the corresponding hyperplane Hi = {X ∈ Cn×m|Ai,:XA = Ai,:}. Next,
instead of projecting on the hyperplane Hi, we consider the approximate solution X(k+1) by
projecting the current estimate X(k) onto the hyperplane Hi,j = {X ∈ Cn×m|Ai,:X(k)A:,j =
Ai,j}. That is,

X(k+1) = X(k) +
A∗

i,:(Ai,: − Ai,:X(k)A:,j)A∗
:,j

∥Ai,:∥2
2∥A:,j∥2

2
.

Then, we take a convex combination of all directions A:,j (the weight is
∥A:,j∥2

2
∥A∥2

F
) with

some stepsize λ > 0, and obtain the following average block Kaczmarz method:

X(k+1) = X(k) +
λ

∥A∥2
F

A∗
i,:

∥Ai,:∥2
2
(Ai,: − Ai,:X(k)A)A∗.

Setting α = λ
∥A∥2

F
> 0, we obtain the following randomized block Kaczmarz iteration

X(k+1) = X(k) +
α

∥Ai,:∥2
2

A∗
i,:(Ai,: − Ai,:X(k)A)A∗, k = 0, 1, 2, . . . , (11)

where i ∈ [m] is selected with probability pi =
∥Ai,:∥2

2
∥A∥2

F
. The cost of each iteration of this

method is 8mn + n − 2m if the square of the row norm of A has been calculated in advance.
We describe this method as Algorithm 2, which is called the MII-RABK algorithm.

Algorithm 2 Randomized average block Kaczmarz method for matrix inner inverses
(MII-RABK)

Input: A ∈ Cm×n, X(0) ∈ Cn×m and α ∈ R
1: for k = 0, 1, 2, . . . , do
2: Pick i with probability pi(A) =

∥Ai,:∥2
2

∥A∥2
F

3: Compute X(k+1) = X(k) + α
∥Ai,:∥2

2
A∗

i,:

(
(Ai,: − (Ai,:X(k))A)A∗

)
4: end for

In the following theorem, with the idea of the RK method [20], we show that the
iteration (11) converges linearly to the matrix X−

0 = X(0) + A† − A† AX(0)AA† for any
initial matrix X(0).

Theorem 2. Assume 0 < α < 2
∥A∥2

2
. The sequence {X(k)} generated by the MII-RABK method

starting from any initial matrix X(0) ∈ Cn×m converges linearly to X−
0 in mean square form.

Moreover, the solution error in expectation for the iteration sequence X(k) obeys

E
[∥∥∥X(k) − X−

0

∥∥∥2

F

]
≤ ρ̂k

∥∥∥X(0) − X−
0

∥∥∥2

F
, k = 1, 2, . . . , . (12)

where ρ̂ = 1 − 2α−α2∥A∥2
2

∥A∥2
F

σ4
min(A).
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Proof. For k = 0, 1, 2, . . ., by (11) and AX−
0 A = A , we have

X(k+1) − X−
0 = X(k) +

α

∥Ai,:∥2
2

A∗
i,:(Ai,: − Ai,:X(k)A)A∗ − X−

0

= (X(k) − X−
0 )− α

∥Ai,:∥2
2

A∗
i,: Ai,:(X(k) − X−

0 )AA∗,

then

∥X(k+1) − X−
0 ∥2

F =
∥∥∥X(k) − X−

0

∥∥∥2

F
+

α2

∥Ai,:∥4
2

∥∥∥A∗
i,: Ai,:(X(k) − X−

0 )AA∗
∥∥∥2

F

− 2α

∥Ai,:∥2
2
⟨X(k) − X−

0 , A∗
i,: Ai,:(X(k) − X−

0 )AA∗⟩F.

It follows from

α2

∥Ai,:∥4
2

∥∥∥A∗
i,: Ai,:(X(k) − X−

0 )AA∗
∥∥∥2

F

=
α2

∥Ai,:∥2
2

∥∥∥Ai,:(X(k) − X−
0 )AA∗

∥∥∥2

2
(by trace(uu∗) = ∥u∥2

2 for any vector u)

≤
α2∥A∥2

2
∥Ai,:∥2

2

∥∥∥Ai,:(X(k) − X−
0 )A

∥∥∥2

2
(by ∥u∗A∗∥2 = ∥Au∥2 ≤ ∥A∥2∥u∥2),

and

2α

∥Ai,:∥2
2
⟨X(k) − X−

0 , A∗
i,: Ai,:(X(k) − X−

0 )AA∗⟩F

=
2α

∥Ai,:∥2
2

trace(A∗(X(k) − X−
0 )∗A∗

i,: Ai,:(X(k) − X−
0 )A)( by trace(MN) = trace(NM))

=
2α

∥Ai,:∥2
2

∥∥∥Ai,:(X(k) − X−
0 )A

∥∥∥2

2

that

∥X(k+1) − X−
0 ∥2

F ≤
∥∥∥X(k) − X−

0

∥∥∥2

F
−

2α − α2∥A∥2
2

∥Ai,:∥2
2

∥∥∥Ai,:(X(k) − X−
0 )A

∥∥∥2

2
.

By taking the conditional expectation, we have

Ek

[∥∥∥X(k+1) − X−
0

∥∥∥2

F

]
≤
∥∥∥X(k) − X−

0

∥∥∥2

F
−Ek

[
2α − α2∥A∥2

2
∥Ai,:∥2

2

∥∥∥Ai,:(X(k) − X−
0 )A

∥∥∥2

2

]

=
∥∥∥X(k) − X−

0

∥∥∥2

F
−

m

∑
i=1

∥Ai,:∥2
2

∥A∥2
F

2α − α2∥A∥2
2

∥Ai,:∥2
2

∥∥∥Ai,:(X(k) − X−
0 )A

∥∥∥2

2

=
∥∥∥X(k) − X−

0

∥∥∥2

F
−

2α − α2∥A∥2
2

∥A∥2
F

∥∥∥A(X(k) − X−
0 )A

∥∥∥2

F
.

Noting that X(0)−X−
0 = A† AX(0)AA† − A† ∈ B and α

∥Ai,:∥2
2

A∗
i,: Ai,:(X(k)−X−

0 )AA∗ ∈

B, we have X(k+1) − X−
0 ∈ B by induction. Then, by Lemma 3 and 0 < α < 2

∥A∥2
2
, we

can obtain

Ek

[∥∥∥X(k+1) − X−
0

∥∥∥2

F

]
≤
∥∥∥X(k) − X−

0

∥∥∥2

F
−

2α − α2∥A∥2
2

∥A∥2
F

σ4
min(A)

∥∥∥X(k) − X−
0

∥∥∥2

F

=

(
1 −

2α − α2∥A∥2
2

∥A∥2
F

σ4
min(A)

)∥∥∥X(k) − X−
0

∥∥∥2

F
. (13)
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Finally, by (13) and induction on the iteration index k, we obtain the estimate (12). This
completes the proof.

Remark 2. If X(0) = 0 or A∗, then X−
0 = A†, which is the unique minimum norm least squares

solution of (2). Theorems 1 and 2 imply that the sequence X(k) generated by the MII-PRBK or
MII-RABK method with X(0) = 0 or A∗ converges linearly to A†.

Remark 3. Noting that

1 − 1
∥A∥2

F∥A∥2
2

σ4
min(A) ≤ 1 −

2α − α2∥A∥2
2

∥A∥2
F

σ4
min(A), α ∈ (0,

2
∥A∥2

2
)

this means that the convergence factor of the MII-PRBK method is smaller than that of MII-
RABK method. However, in practice, it is very expensive to calculate the pseudoinverse of large-
scale matrices.

Remark 4. Replacing A∗ in (11) with A†, we obtain the following relaxed projected randomized
block Kaczmarz method (MII-PRBKr)

X(k+1) = X(k) +
α

∥Ai,:∥2
2

A∗
i,:(Ai,: − Ai,:X(k)A)A†, k = 0, 1, 2, . . . , (14)

where 0 < α < 2 is the step size, and i is selected with probability pi =
∥Ai,:∥2

2
∥A∥2

F
. By the similar

approach as used in the proof of Theorem 2, we can prove that the iteration X(k) satisfies the
following estimate

E
[∥∥∥X(k) − X−

0

∥∥∥2

F

]
≤ ρ̃k

∥∥∥X(0) − X−
0

∥∥∥2

F
, (15)

where ρ̃ = 1 − (2α−α2)σ4
min(A)

∥A∥2
2∥A∥2

F
. It is obvious that when α = 1, the MII-PRBKr iteration (14) is

actually the MII-PRBK iteration (4).

4. Numerical Experiments

In this section, we will present some experiment results of the proposed algorithms
for solving the inner inverse, and compare them with GBMC [7] for rectangular matrices.
All experiments are carried out by using MATLAB (version R2020a) in a personal computer
with Intel(R) Core(TM) i7-4712MQ CPU @2.30 GHz, RAM 8 GB and Windows 10.

All computations are started with the random matrices X(0), and terminated once the
relative error (RE) of the solution, defined by

RE =

∥∥∥X(k) − X−
0

∥∥∥
F

∥X−
0 ∥F

at the current iteration X(k), satisfies RE < 10−6 or exceeds the maximum iteration K = 106.
We report the average number of iterations (denoted as “IT”) and the average computing
time in seconds (denoted as“CPU”) for 10 trials repeated runs of the MII-PRBK and MII-
RABK methods. For clarity, we restate three methods as follows.

• GBMC ([7])

X(k+1) = X(k) + µA∗(A − AX(k)A)A∗, 0 < µ <
2

∥A∥4
2

.
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• MII-PRBK (Algorithm 1)

X(k+1) = X(k) +
A∗

i,:

∥Ai,:∥2
2
(Ai,: − Ai,:X(k)A)A†, pi =

∥Ai,:∥2
2

∥A∥2
F

.

• MII-RABK (Algorithm 2)

X(k+1) = X(k) +
αA∗

i,:

∥Ai,:∥2
2
(Ai,: − Ai,:X(k)A)A∗, 0 < α <

2
∥A∥2

2
, pi =

∥Ai,:∥2
2

∥A∥2
F

.

We underscore once again the difference between the two algorithms; that is, Algorithm 1
needs the Moore–Penrose generalized inverse A†, whereas Algorithm 2 replaces A† with A∗

(which is easier to implement) and adds a stepsize parameter α.

Example 1. For given m, n, the entries of A are generated from a standard normal distribu-
tion by a Matlab built-in function, i.e., A = randn(m, n) or A1 = randn(m/2, n/2), A =
[A1, A1; A1, A1].

Firstly, we test the impact of α in the MII-RABK method on the experimental results.
To do this, we vary λ from 0.1 to 1.9 by step 0.1, where α = λ

∥A∥2
2

satisfies 0 < α < 2
∥A∥2

2
in Theorem 2. Figure 1 plots the IT and CPU versus different λ with different matrices in
Table 1. From Figure 1, it can be seen that the number of iteration steps and the running time
first decrease and then increase with the increase in λ, and almost achieve the minimum
value when λ ∈ [1.5, 1.7] for all matrices. Therefore, we set α = 1.6

∥A∥2
2

in this example.
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Figure 1. IT (left) and CPU (right) of different α of the RABK method for A = randn(m, n) from
Example 1.

The results of numerical experiments are listed in Tables 1 and 2. From these tables, it
can be seen that the MII-GMBC method has the least number of iteration steps, whereas the
MII-PRBK method has the least running time. Figure 2 plots the iteration steps and running
time of different methods with the matrices A = randn(m, 25) (top) and A = randn(25, n)
(bottom). It is pointed out that the initial points on the left plots (i.e., A = randn(100, 25)
and A = randn(25, 100)) indicate that the MII-RABK method requires a very large number
of iteration steps, which is related to Kaczmarz’s anomaly [21]. That is, the MII-RABK
method enjoys a faster rate of convergence in the case where m is considerably smaller
or larger than n. However, the closer m and n are, the slower the convergence is. As the
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number of rows or columns increases, the iteration steps and runtime of the MII-PRBK
and MII-RABK methods are increasing relatively slowly, while the runtime of the GMBC
method grows dramatically (see the right plots in Figure 2). Therefore, our proposed
methods are more suitable for large matrices. The curves of relative error log10(RE) versus
the number of iterations “IT” and running time “CPU”, given by the GMBC, MII-PRBK,
MII-RABK methods for A1 = randn(500, 50), A = [A1, A1; A1, A1], are shown in Figure 3.
From Figure 3, it can be seen that the relative error of GBMC method decays the fastest
when the number of iterations increases and the relative error of MII-PRBK decays the
fastest when the running time grows. This is because at each iteration, the GMBC method
requires matrix multiplication which involves 4mn2 + 4m2n − m2 − n2 flopping operations,
whereas the MII-PRBK and MII-RABK methods only cost 8mn + n − 2m flops.

Table 1. The numerical results of IT and CPU for A = randn(m, n) from Example 1.

m n GBMC MII-PRBK MII-RABK

50 1000 IT 29 321.0 812.3
CPU 0.22 0.05 0.13

50 5000 IT 80 198.4 734.6
CPU 8.47 0.41 1.40

100 10,000 IT 55 407.5 1398.2
CPU 27.80 4.35 13.71

1000 50 IT 26 774.7 1092.1
CPU 0.20 0.15 0.16

5000 50 IT 60 1173.6 1341.4
CPU 6.36 2.16 2.50

10,000 100 IT 68 2276.4 2637.6
CPU 34.36 21.13 24.64

Table 2. The numerical results of IT and CPU for A = sprandn(m/2, n/2), A = [A1, A1; A1, A1] from
Example 1.

m n GBMC MII-PRBK MII-RABK

50 1000 IT 29 158.3 410.5
CPU 0.19 0.02 0.05

50 5000 IT 61 92.3 353.4
CPU 0.55 0.17 0.17

100 10,000 IT 64 175.7 898.0
CPU 32.07 1.89 6.64

1000 50 IT 26 554.8 612.4
CPU 0.19 0.08 0.08

5000 50 IT 62 491.5 593.4
CPU 6.62 0.94 1.07

10,000 100 IT 56 1040.6 1266.2
CPU 27.99 9.79 11.23

Example 2. For given m, n, d, rc, the sparse matrix A is generated by a Matlab built-in function
sprandn(m, n, d, rc), with approximately dmn normally distributed nonzero entries. The input
parameters d and rc are the percentage of nonzeros and the reciprocal of condition number, re-
spectively. In this example, A = sprandn(m, n, d, rc) or A1 = sprandn(m/2, n/2, d, rc), A =
[A1, A1; A1, A1].
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Figure 2. IT (left) and CPU (right) of different methods with the matrices A = randn(m, 25) (top)
and A = randn(25, n) (bottom) from Example 1.
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Figure 3. The relative error of the different methods for A1 = randn(500, 50), A = [A1, A1; A1, A1].
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In this example, we set α = 1.9
∥A∥2

2
. The numerical results of IT and CPU are listed in

Tables 3 and 4, and the curves of relative error versus IT and CPU are drawn in Figure 4.
From Tables 3 and 4, we can observe that the MII-PRBK method has the least iteration
steps and running time. The computational efficiency of the MII-PRBK and MII-RABK
methods has been improved by at least 33 and 7 times compared to the GBMC method.
Moreover, the advantages of the proposed methods are more pronounced when the matrix
size increases.

Table 3. The numerical results of IT and CPU for A = sprandn(m, n, 10%, 0.1) from Example 2.

m n GBMC MII-PRBK MII-RABK

50 1000 IT 3285 605.4 17,184.3
CPU 17.00 0.09 3.56

100 1000 IT 3294 1617.6 39,508.0
CPU 22.56 0.39 9.18

50 5000 IT 2984 1337.5 21,342.2
CPU 321.43 3.12 41.16

1000 50 IT 4271 300.7 6822.5
CPU 21.47 0.05 1.12

1000 100 IT 4261 741.3 10,456.3
CPU 26.91 0.79 3.05

5000 50 IT 3079 240.7 8018.8
CPU 358.35 0.50 15.68

Table 4. The numerical results of IT and CPU for A = sprandn(m/2, n/2, 10%, 0.1), A =

[A1, A1; A1, A1] from Example 2.

m n GBMC MII-PRBK MII-RABK

50 1000 IT 3038 240.2 5321.5
CPU 15.56 0.04 0.87

100 1000 IT 4010 582.5 15,165.4
CPU 26.65 0.12 3.54

50 5000 IT 2848 517.9 8767.0
CPU 334.17 1.17 20.19

1000 50 IT 3780 99.8 3846.0
CPU 18.96 0.02 0.59

1000 100 IT 3603 218.4 7623.5
CPU 28.41 0.10 2.55

5000 50 IT 2768 113.0 3930.4
CPU 339.72 0.24 7.51

Example 3. Consider dense Toeplitz matrices. For given m, n, c = randn(m, 1), r = randn(n, 1),
A = toeplitz(c, r) or c = randn(m, 1), r = randn(n, 1), A1 = toeplitz(c, r), A = [A1, A1; A1, A1].

In this example, we set α = 1.5
∥A∥2

2
. The numerical results of IT and CPU are listed in

Table 5, and the curves of the relative error versus IT and CPU are drawn in Figure 5. We
can observe the same phenomenon as that in Example 1.

Example 4. Consider sparse Toeplitz matrices. For given m, n, d, c = sprandn(m, 1, d), r =
sprandn(n, 1, d), A = toeplitz(c, r) or c = sprandn(m/2, 1, d), r = sprandn(n/2, 1, d), A1 =
toeplitz(c, r), A = [A1, A1; A1, A1].
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In this example, we set α = 1.5
∥A∥2

2
. The numerical results of IT and CPU are listed in

Table 6, and the curves of the relative error versus IT and CPU are drawn in Figure 6. Again,
we can draw the same conclusion as that in Example 1.
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Figure 4. The relative error of the different methods for A1 = sprandn(50, 500, 10%, 0.1), A =

[A1, A1; A1, A1] from Example 2.

Table 5. The numerical results of IT and CPU for c = randn(m, 1), r = randn(n, 1), A = toeplitz(c, r)
from Example 3.

m n GBMC MII-PRBK MII-RABK

50 1000 IT 46 179.5 416.0
CPU 0.23 0.02 0.06

50 5000 IT 46 125.6 386.3
CPU 4.87 0.24 0.72

100 10,000 IT 45 276.8 808.3
CPU 22.34 2.74 8.07

1000 50 IT 45 289.0 719.2
CPU 0.19 0.04 0.09

5000 50 IT 48 237.6 540.7
CPU 5.12 0.44 1.11

10,000 100 IT 46 460.5 1286.4
CPU 22.98 4.36 12.06

Table 6. The numerical results of IT and CPU for c = sprandn(m, 1, 0.1), r = sprandn(n, 1, 0.1), A =

toeplitz(c, r) from Example 4.

m n GBMC MII-PRBK MII-RABK

50 1000 IT 47 180.2 438.6
CPU 0.19 0.02 0.06

50 5000 IT 47 134.5 405.3
CPU 4.87 0.23 0.74

100 10,000 IT 45 275.4 805.8
CPU 21.46 2.73 7.84

1000 50 IT 46 350.5 581.8
CPU 0.19 0.05 0.07
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Table 6. Cont.

m n GBMC MII-PRBK MII-RABK

5000 50 IT 49 287.4 580.5
CPU 5.16 0.55 0.98

10,000 100 IT 43 596.5 1301.4
CPU 21.46 6.59 12.11
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Figure 5. The relative error of the different methods for c = randn(50, 1), r = randn(1000, 1), A1 =

toeplitz(c, r), A = [A1, A1; A1, A1].
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Figure 6. The relative error of the different methods for c = sprandn(50, 1), r =

sprandn(1000, 1), A1 = toeplitz(c, r), A = [A1, A1; A1, A1].

5. Conclusions

In this paper, we have proposed the randomized block Kaczmarz algorithms to com-
pute inner inverses of any rectangle matrix, where A is full rank or rank deficient. Con-
vergence results are provided to guarantee the convergence of the proposed methods
theoretically. Numerical examples are given to illustrate the effectiveness. Since the pro-
posed algorithms only require one row of A at each iteration without matrix–matrix product,
they are suitable for the scenarios where the matrix A is too large to fit in memory or the
matrix multiplication is considerably expensive. In addition, if the MII-RABK method is
implemented in parallel, the running time will be greatly reduced. Therefore, in some
practical applications, the MII-RABK method is more feasible when the Moore–Penrose
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generalized inverse is unknown or the calculation is too expensive. Due to limitations in
hardware and personal research areas, we did not perform numerical experiments on very
large-scale practical problems, which will become one of our future works. In addition,
we will extend the Kaczmarz method to deal with the other generalized inverses of any
rectangle matrix. Moreover, providing the feasible principles for selecting parameters and
designing a randomized block Kaczmarz algorithm with an adaptive stepsize will be one
of our future works.
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