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Abstract: Dynamical systems are ubiquitous in the physical world and are often well-described by
partial differential equations (PDEs). Despite their formally infinite-dimensional solution space, a
number of systems have long time dynamics that live on a low-dimensional manifold. However, cur-
rent methods to probe the long time dynamics require prerequisite knowledge about the underlying
dynamics of the system. In this study, we present a data-driven hybrid modeling approach to help
tackle this problem by combining numerically derived representations and latent representations
obtained from an autoencoder. We validate our latent representations and show they are dynamically
interpretable, capturing the dynamical characteristics of qualitatively distinct solution types. Fur-
thermore, we probe the topological preservation of the latent representation with respect to the raw
dynamical data using methods from persistent homology. Finally, we show that our framework is
generalizable, having been successfully applied to both integrable and non-integrable systems that
capture a rich and diverse array of solution types. Our method does not require any prior dynamical
knowledge of the system and can be used to discover the intrinsic dynamical behavior in a purely
data-driven way.

Keywords: dynamical systems; autoencoders; latent representation; manifold learning

MSC: 68T99

1. Introduction

Nonlinear partial differential equations (PDEs) are prevalent in physics and engineer-
ing, serving as powerful tools for describing complex phenomena that exhibit nonlinear
behaviors and spatiotemporal chaos. These equations are often very difficult to probe due
to the formally infinite dimensional solution space. Practically, this high dimensionality
often obscures the underlying behavior of a dynamical system, leading to the model being
both difficult to analyze and prohibitively expensive to use for predictions. However,
learning a faithful lower-dimensional representation of the high-dimensional data is not a
trivial task.

Due to the rapid progress in the field of deep learning, the construction of neural
network-based models such as autoencoders has become a popular and powerful tech-
nique for non-linear manifold-based dimensionality reduction of PDEs [1,2]. Consequently,
such progress has spurred significant endeavors to develop techniques that directly learn
low-dimensional dynamical models from time series data [3–7]. Very recently, there has
been some effort to use autoencoder-based architectures to estimate the intrinsic dimen-
sionality of a dynamical system [8–10]. The motivation for this is largely based on the
so-called Manifold Hypothesis, which posits that high-dimensional data often lie on or near
low-dimensional manifolds [11]. The rigorous analysis of a number of physical systems
seems to support this hypothesis [12,13]. Despite the formal infinite dimensionality of
the PDE state space, dissipative systems are hypothesized to exhibit long-term behavior
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that converges to a finite-dimensional invariant manifold [14,15]. Clearly, understanding
this invariant manifold is of critical importance as it plays a crucial role in determining
the system’s overall dynamics over time. However, studying and classifying the long
time dynamics of a dynamical system is a challenging task. In the case of comparatively
simple and deterministic ordinary differential equations (ODEs), the dynamics may exhibit
complicated behavior with strong random features commonly referred to as deterministic
chaos [16–18]. This has prompted the development of many methods to investigate the
cause of such behavior including, but not limited to, hyperbolic theory, bifurcation, and
attractor theory [19–21]. PDEs are even more complex due to the presence of infinite-
dimensional dynamics and require careful and sophisticated analysis methods [15,22,23].
This has led to the production of advanced analysis tools to probe the behavior of dynamical
systems [24–26]. Although these tools offer great utility, they necessitate a prerequisite
understanding of the underlying dynamics in order to effectively achieve the objective of
‘finding what you are looking for’. In this study, we aim to provide a hybrid approach
using the autoencoder architecture and validating the inherent latent representations using
mathematical representations derived from the numerical simulations of the system. We
show that our approach captures the nature of the underlying dynamics for a variety
of solution types. Additionally, we probe the question of what topological features are
preserved in the latent representation with respect to the raw data using methods from
persistent homology. A key part of our framework is that it is purely data-driven, enabling
the technique to be used to discover the intrinsic dynamical behavior of systems without
the need to have prerequisite knowledge about the underlying dynamics.

The structure of the paper is as follows. In Section 2, we introduce the mathematical
models we consider in this study. In Section 3, we probe the long time dynamics of these
models using numerical experiments. In Section 4, we introduce the autoencoder model
architecture and present our results. Finally, in Section 6, we present our discussion.

2. Models
2.1. fKdV Equation

The forced Korteweg–de Vries (fKdV) is used, for example, to model weakly non-linear
flow in a channel with a bump or disturbance in the channel depth [27]. There exists a
number of possible solutions for a given type of disturbance. For simplicity, we will assume
here no disturbance, which is equivalent to setting the forcing term to zero. Under this
assumption, the fKdV can be written as [28]:

6ut + uxxx + (9u − 6(F − 1))ux = 0, (1)

where F is the depth-based Froude number.
Let us assume an initial condition that takes the form u(x, 0) = A cos(kx + ϕ). Here,

A, k, and ϕ are amplitude, wavenumber, and phase shift parameters, respectively.
Consider a transformation where v(X, T) = Au(x, t) and where X = kx and T = kt.

We can now re-write the original fKdV in terms of our function v using the chain rule. This
results in:

6vT + k2vXXX + (9Av − 6(F − 1))vX = 0, (2)

where v(X, 0) = cos(X + ϕ). From Equation (2), we can see that the amplitude parameter
A acts as a direct measure of the strength of the non-linear operator (vvX), whereas the
wavenumber parameter squared (k2) is a measure with the strength of the third-order linear
dispersive term (vXXX). We can define a relative non-linearity term κ where κ = A/k2

from the reformulation given in Equation (2). We expect to be in a dispersive regime for
small values of κ < 1 and to be in a nonlinear regime for κ ≳ 1. The importance of this
reformulation is that it allows us to consider a physically motivated set of initial conditions
rather than some generic functional form. Note that Equation (2) is invariant to phase shifts.
If v(x, t) is a trajectory, so is v(x + ϕ, t).
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2.2. Kuramoto–Sivashinksy Equation

The Kuramoto–Sivashinsky (KS hereafter) equation is a non-integrable, nonlinear
PDE that can be used to model the evolution of surface waves and pattern formation for a
number of physical systems [29]. The equation can be written as:

ut + uux + uxx + νuxxxx = 0, (3)

where ν is a coefficient of viscosity. The KS equation captures the dynamics of spatio-
temporal instabilities, such as those seen in flame fronts and fluid flows, and, due to
non-integrability, gives rise to a rich array of long time dynamics for different values of ν.
For example, in the case where ν = 16

71 , the KS equation exhibits bursting dynamics [30],
whereas for ν = 16

337 , the KS equation exhibits beating traveling wave dynamics [31].

3. Long Time Dynamics
3.1. fKdV: Effects of Amplitude and Wavenumber

To investigate the nature of the long-term dynamics, we considered the fKdV under
periodic boundary conditions with the domain of −2π ≤ x ≤ 2π (L = 4π), and we
considered an initial condition of the form u(x, 0) = A cos(kx + ϕ), where we fixed A = 0.5,
k = 1.0 and ϕ = 1.0. We fixed the value of the Froude number F = 1.5. All integrations
were performed on a grid of 128 points using an explicit RK finite-difference scheme with a
tolerance of 10−6, which was compared to a pseudo-spectral method to ensure accuracy.
To assess the effects of the amplitude and wavenumber, we chose two setups: (i) varying
the amplitude and keeping the wavenumber and phase fixed (varying the phase under
periodic conditions corresponds to a phase shift of the periodic domain and hence does
not affect the dynamics; we also observed this within our simulations); and (ii) varying the
wavenumber and keeping the amplitude and phase fixed. The integrations were performed
for T = 400 units for amplitudes A ∈ (0, 1].

To visualize the trajectories, we consider the evolution of both the speed and distance as
plotted in Figure 1. Interestingly, we observe that, for smallest amplitude case A = 0.25, the
evolution closely resembles a closed orbit, which is expected for a purely periodic motion
(this was verified by running numerical integrations with smaller amplitudes). However,
this characteristic changes significantly with increasing amplitude, where we observe
quasi-periodic motion in speed–distance space. This behavior appears to correlate with the
strength of the amplitude parameter, with larger amplitude initial conditions leading to
non-periodicity. The quasi-periodic motion arises where two or more soliton frequencies
are incommensurate [32]. We note that, for the transformed equation in Equation (2), the
strength of this characteristic appears to correlate with the relative non-linearity term κ.

To further investigate this behavior, we proceeded to fix the amplitude and phase,
then vary the value of the wavenumber k. The results for those numerical simulations are
presented in Figure 2. Here, we observe that, when we increase the wavenumber by a
factor of two, the initial quasi-periodic behavior quickly forms into a more pure periodic
motion resembling circular motion in distance–speed space. This characteristic further
supports the observation that the relative non-linearity essentially measures the strength of
the quasi-periodicity, with weak relative non-linearity leading to pure periodic motion.
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Figure 1. Evolutions of trajectories in distance–speed space for initial conditions evolved under the
fKdV equation for different initial amplitude values. A = 0.25 (upper left panel), A = 0.50 (upper
right panel), A = 0.75 (lower left panel), A = 1.00 (lower right panel).
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Figure 2. Evolutions of trajectories in distance–speed space for initial conditions evolved under the
fKdV equation for different initial wavenumber values. k = 1.0 (left panel), k = 2.0 (right panel).

3.2. KS: Long Time Dynamics

We simulate the KS equation on a discretized grid with 64 grid points on a periodic
domain −π ≤ x ≤ π (L = 2π). As with the fKdV setup, we considered an initial condition
of the form u(x, 0) = A cos(kx + ϕ), where we fixed A = 0.5, k = 1.0, and ϕ = 1.0. As we
are interested in the long time dynamics, we evolved all models for T = 400 units to ensure
all of the transients have died out. We consider two setups to reproduce the bursting
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dynamics and the beating traveling dynamics of the KS equation, setting ν = 16
71 and

ν = 16
337 , respectively. We plot the long time evolution of the wave profiles in Figure 3.
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Figure 3. Long time wave profiles for the KS equation. Bursting dynamics (left panel) where ν = 16
71 ,

and beating traveling wave dynamics (right panel) where ν = 16
337 .

From dynamical systems theory, we know that the bursting dynamics in the KS
equation arise as the state appears to switch between two saddle points that are connected
by four heteroclinic orbits [33]. This can be observed if we project the trajectory onto the
two dominant Fourier modes, which is shown in the left panel of Figure 4. Here, we
observe that this representation indeed captures the two saddle points and four heteroclinic
connections. We observe that the trajectories tend to spend a majority of the time around
the saddle points and appear to travel quickly on the heteroclinic connections pseudo-
randomly, which supports the sudden bursting transitions seen in the wave profiles in
Figure 3.

In the case of the beating traveling wave dynamics exhibited by the KS equation, we
know that this dynamical behavior arises as the traveling period and beating period are
out of phase [31]. This causes the orbit to follow quasi-periodic motion. To see if we are
able to extract a low-dimensional representation that captures this characteristic, we project
the trajectory into the two dominant Fourier modes, as shown in right panel of Figure 4.
We clearly observe a quasi-periodic structure within this Fourier representation, which is
supportive of the fact that the periodic orbit and beating period are incommensurate.
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Fourier Representation
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Figure 4. Fourier representation of the long time dynamics on the two leading spatial modes. Bursting
dynamics (left panel) where ν = 16

71 , and beating traveling wave dynamics (right panel) where
ν = 16

337 . Re1 and Re2 represent the real component of the first and second most dominant Fourier
modes, respectively, while Im1 represents the imaginary component of the first dominant mode.



Mathematics 2024, 12, 476 6 of 14

4. Interpretable Deep Learning-Based Reduced Order Model

Autoencoders have become a popular method for dimensionality reduction within
the scientific community as a technique to obtain reduced order models. Autoencoders
are incredibly versatile architectures. A single-layer autoencoder with a linear activation
function is equivalent to Principal Component Analysis (PCA); however, multi-layered
architectures with non-linear activations can perform complex non-linear dimensionality
reduction. Fundamentally, autoencoders are composed of two deep neural networks, called
the encoder and decoder, which are connected by a latent layer commonly referred to as the
latent space. A schematic of a classical autoencoder is given in Figure 5.

Encoder

Z

Φ! Φ"

Decoder

Figure 5. Schematic of the classical autoencoder architecture highlighting the encoder, decoder, and
latent space (green) components.

This latent space is a bottleneck that sets the number of dimensions available to
represent the input data. The encoder maps the inputs to the smaller latent space dz < di,

ΦE(u; θE) : Rdi → Rdz , (4)

where θE represents the parameters defining the encoder. The decoder maps the latent
space back to: Rdi

ΦD(z; θD) : Rdz → Rdi . (5)

The encoder reduces the dimension, and if the composition of these two mappings
is the identity mapping, the decoder is the inverse of the encoder, and the encoding is
one-to-one. For PCA, θE is an orthonormal dz × (di + 1) matrix, ΦE(u) = θE[u 1]T , and
ΦD(u) = [u 1]θT

E . The extra dimension and the vector [u 1] center the fit by adding a
shift. Training the autoencoder on input/output pairs (u, u) minimizes the loss function in
Equation (6) and forces ΦE and ΦD to be approximate inverses:

L(u; θE; θD) = ∥u − ΦD(ΦE(u; θE); θD)∥2
2, (6)

where ∥ · ∥2 is the l2 norm.
While autoencoders have obtained many impressive results, they are inherently data-

driven, often leading to poor interpretability of the latent space. To probe the latent rep-
resentation, we adopt a classical autoencoder architecture where the input data are the
wave profile from our numerical simulation at each time interval ti. In the case of the fKdV
models, this corresponds to input data u ∈ R128, where we consider a latent dimension
dz = 3 that can be used to visualize the representation. For further details about the
autoencoder model architecture and network parameters, please refer to Appendix A.
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4.1. fKdV Latent Representation

A clear characteristic we inferred from the numerical simulations of the fKdV models
presented in Section 3.1 was that the relative non-linearity term κ significantly influenced the
type of long time dynamics, from purely periodic to strongly quasi-periodic. An important
open question we aim to answer is whether the latent space of the autoencoder is able to
capture and hence represent such qualitatively different dynamics. To this end, we construct
the latent representation obtained from the suite of numerical simulations for the fKdV models
with varying amplitudes. To focus on the representation of the long time dynamics, we train
the autoencoder on the simulation data between T = 300 and T = 400. We plot the original
wave profile data with the corresponding latent representations in Figure 6. To our surprise,
the representations obtained from the autoencoder appear to capture the qualitatively different
dynamics, with the representations showing periodic motion for small amplitude models and
quasi-periodic tori for larger amplitude cases (we confirmed this characteristic was present for
the entire suite of numerical simulations we performed). This result is in direct agreement with
the results obtained from analyzing the numerical simulations directly using the representation
in distance–speed space. It is important to state that our autoencoder model is completely
data-driven and has no prior information about the model being considered, yet it is able to
extract representations that are dynamically meaningful.

Figure 6. Original wave profiles (left column) obtained from the numerical simulations of the fKdV
and their corresponding latent space representations (right column) obtained using the autoencoder.
Upper to lower plot: A = 0.11, A = 0.26, A = 0.47.
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4.2. KS Latent Representation

In Section 3.2, we described two dynamically distinct solution types to the KS equation,
namely, the bursting dynamics and beating traveling dynamics. Using a projection onto
the first few Fourier modes, we were able to obtain a low-dimensional representation
that captured the dynamical characteristics of the full order numerical simulation in a
dynamically interpretable way. A natural question we aim to answer in this section is
whether we are able to extract an interpretable latent representation of these more complex
dynamics using our autoencoder architecture. To tackle this question, we consider a similar
approach to that which we used in the case of the fKdV. As we are focused on the long
time dynamics, we train the autoencoder on the simulation data between T = 300 and
T = 400. The wave profiles from the numerical simulation with the corresponding latent
space representations for the bursting and beating traveling dynamics are presented in
Figure 7. Strikingly, we observe that the latent representation from the autoencoder trained
on the bursting dynamics data almost perfectly resembles that of the Fourier representation
we showed in Figure 4. This latent representation obtained from the autoencoder has
captured the characteristics of the two saddle points in addition to the four heteroclinic
connections, which is in direct agreement with the results obtained from the full numerical
simulation. For the case of the beating traveling wave dynamics, the latent representation
obtained from the autoencoder extracts a quasi-periodic representation in the latent space,
which can be observed in the lower right panel of Figure 7. This quasi-periodic latent
representation is in agreement with the dynamical theory and the numerically derived
results in Section 3.2. It is important to note that, although the autoencoder is purely
data-driven, the representation is clearly dynamically interpretable.
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Figure 7. Original wave profiles from the numerical simulation (left panels) and their corresponding
latent representations obtained from the autoencoder. Bursting dynamics (upper panels) where
ν = 16

71 and beating traveling wave dynamics (lower panels) where ν = 16
337 .
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5. Topology Preservation

In the previous section, we have shown how we can use an autoencoder to obtain
dynamically interpretable latent space embeddings, motivating the use of this architecture
as a tool to probe the intrinsic dynamics in a purely data-driven way. However, while we
have demonstrated the interpretability, we have not investigated the qualitative properties
captured in the latent space with respect to the raw high-dimensional data. To address this
question, we probe the nature of the topological features in both the raw data and latent
representations using persistent homology. In the following subsection, we provide a very
brief overview of the concepts used in this section to probe the topological features. For a
deeper overview, we refer the reader to [34].

5.1. Persistent Homology

Topological data analysis gives away of classifying point clouds by connecting points
across a range of scales and studying how the topology of the result changes. We give a
broad overview of the technique below. A more detailed overview may be found in [35].

A classical way to represent the topology of discrete structures such as point clouds P
is via simplicial complexes, which are a collection of smaller components called simplices.
A 0-simplex is a single point, a 1-simplex an edge, and a 2-simplex a triangle with higher-
order simplices having well-defined structures. Homology provides topologists with a
formalized method for quantifying the presence of n-dimensional holes within a space [36].
The ith homology group Hi(P) of P contains topological features of dimension i which, for
the cases of d = 0 and d = 1, are connected components and cycles/tunnels, respectively.

Persistent homology is a computational technique used in topological data analysis
that takes in an input of increasing sequences of spaces (P : P0 ⊊ P1 ⊊ · · · ⊊ PL )
referred to as a filtration. The idea behind persistent homology is that it extends the
homology of simplicial complexes by considering the changes in homology groups over
multiple scales of the distance metric, specifically connectivity-based features like connected
components [34,37]. The common way this is done is via the construction of the Vietoris–
Rips (VR) complex [38], which contains all the simplices of the point cloud at a given scale
ϵ whose elements satisfy dij < ϵ, where dij is the distance metric between two points in the
point cloud (xi, xj ∈ P). As the construction of the VR complex only requires the distances
between points, it enables us to track changes in the homology groups for different ϵ
values, up to a maximum value ϵm, in which the connectivity remains the same. This
enables us to obtain a measure of what homology groups are formed and destroyed at
different ϵ values. A common way to visualize these features is via a persistence diagram.
The i-dimensional persistence diagram of a VR complex contains coordinates of the form
(b, d), where b refers to the value at which a topological feature of dimension i is ‘birthed’
in the VR complex, and d refers to the value at which it has ‘died’. The intuition is that
relevant topological characteristics, including connected components and voids associated
with the Betti numbers for each simplex in the selected filtration, are monitored. It becomes
possible to observe the duration of persistence of these topological features in the diagram
as the parameter ϵ increases. Naturally, as the radius ϵ becomes sufficiently large, all pairs
of points will fall within this radius, resulting in a single connected component and the
absence of voids. To interpret the persistence diagram, each coordinate (b, d) denotes a
topological feature being born at radius b and “dying” at radius d, where the death can
be thought of as a homological feature getting filled in with a lower-dimensional simplex.
From the diagram, one can measure the persistence of a feature that can be defined as d − b.
This value describes how “long”, with respect to radius, a topological feature exists before
it is filled in.

A common way to measure the similarity between persistence diagrams is using the
Wasserstein distance, which is a form of an optimal transport metric. The basic idea is that
we can consider all possible transportation mechanisms for moving the points within one
persistence diagram to the other one, a process called matching. A cost is associated with
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each transportation mechanism, where the distance is the infimum of these cost values [39].
Mathematically, it can be expressed as [40]:

Wp(d1, d2) =

inf
γ

∑
(x,y)∈γ

|∥x∥ − ∥y∥|p
 1

p

, (7)

where γ ranges over all bijective mappings from persistence diagram d1 to d2.

5.2. Persistence Diagrams

To compute and compare the persistence diagrams of both the raw higher-dimensional
dynamical data and the latent representation obtained from the autoencoder, we restrict
the analysis to homology groups up to the dimension of the latent space (d = 3). We note
that, while we expect higher-dimensional topological features to be present in the raw
higher-dimensional data, these are not captured in the latent representation due to the
reduced dimensionality. Hence, for comparative purposes, we do not consider this analysis.
Figure 8 shows the persistence diagrams for the different dynamical models considered
in this study, in which the left column represents the diagrams obtained from the raw
data and the right column from the latent representation obtained via the autoencoder.
In the case of the traveling wave fKdV data (upper panels), we observe the similarity
in the grouping of distinct homology groups. There appears to be larger number of H1
points from the latent data, but as these lie close to the Birth equals Death line, these are
likely artifacts. More importantly, however, in both the raw and latent diagrams, there
appears to be a single long persistent H1 point showing a topological consistency. (The
long persistent H0 point on all diagrams is just an artifact of the algorithm and has no
topological significance.) For the case of the KS bursting dynamics model, we observe a
qualitatively identical persistence diagram between the raw and latent data. The distinct
homology groupings match exceedingly well and clearly show the two persistent H1 points
in both diagrams. In the bottom panel of Figure 8, we observe the persistence diagrams of
the KS beating dynamics. These diagrams appear slightly more complex compared to the
other models, where the consistency between the raw and latent representations appears to
be less well-defined. Upon closer inspection, we see the vast majority of points for both
cases lie close to the Birth equals Death line and hence arise from noise. In the case of both
the raw and latent representations, we see two long-persisting H1 points, which shows
topological agreement; however, we do notice a short time persistence H2 point in the
latent persistence diagram, which we do not observe in the profile of the raw data. Due to
the short persistence, this feature is likely due to noise.

We then compute the Wasserstein distance between each pair of persistence diagrams
for the different dynamical models. From this, we obtain W f KdV = 113.4, WKSt = 260.6,
and WKSb = 5.3, where the subscripts correspond to the models being considered, namely
the fKdV, KS beating traveling wave, and KS bursting dynamics. These quantitative metrics
support the qualitative features we observe in the persistence diagrams seen in Figure 8.

We acknowledge here that work has been done to include topology-preserving method-
ologies within the autoencoder architecture using the idea of persistence homology, perhaps
most prominently by [41]. However, while this work proposes a topological loss term based
on the topological differences between persistence diagrams of the input and latent data,
the persistent homology of the vanilla autoencoder was not investigated. Additionally, it
was found in this study that the MSE of the vanilla autoencoder generally outperformed
the topological autoencoder. To our knowledge, the topological properties of the vanilla
autoencoder architecture have not been investigated using persistent homology, and we
believe we are the first to give empirical evidence in this area.
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fKdV Raw fKdV Latent

KS Bursting Raw KS Bursting Latent

KS Beating Raw KS Beating Latent

Figure 8. Persistence diagrams for the point cloud data from different dynamical models: (i) fkdv (up-
per panels); (ii) KS bursting dynamics (middle panels); (iii) KS beating traveling waves (lower panels).
Results for the raw high-dimensional dynamical data (left column) and the latent representation
obtained from the autoencoder (right column).

6. Discussion

In this study, we have developed a hybrid framework to probe the long time dynam-
ics of dynamical systems using a combination of mathematical representations directly
obtained from the numerical simulation data and the latent representation captured within
the latent space of an autoencoder. The autoencoder architecture implemented in this study
is purely data-driven and contains no prior information about the dynamics. In order to
determine whether this framework can be generalized to arbitrary dynamical systems, we
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applied our methodology to both integrable and non-integrable systems that capture a rich
and diverse array of solution types. Using the results from dynamical systems theory and
mathematically motivated representations of the numerical simulation data, we validated
that the latent representations from the autoencoder are in fact dynamically interpretable
for qualitatively distinct dynamics. We show that the latent representations capture all of
the qualitative dynamical characteristics present within the full order numerical simulation
data though having a dimension significantly less than the full order data. We used this
framework to help classify the long time dynamics of the fKdV equation using a physically
motivated reformulation which, to our knowledge, is the first time this has been done.
Additionally, we investigated the topological features in the latent representation of the
autoencoder with respect to the raw data both qualitatively and quantitatively using per-
sistent homology which, to our knowledge, is a novel contribution. It is important to note
that this framework is generic in nature and provides clear and interpretable insights into
the long time dynamics of PDE-based models without the need for vigorous mathematics.
Additionally, a key part of our framework is that it does not require prior dynamical knowl-
edge of the system being considered and hence can be used to discover the underlying
dynamical behavior in a purely data-driven way. We hope to extend this framework to
incorporate naturally derived geometrical information from PDE-based models, which we
will present in a subsequent study.
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Appendix A. Autoencoder Model Architecture and Parameters

The parameters used in the autoencoder architecture are listed in Table A1. The au-
toencoders are trained using the Adam optimizer with a learning rate of 10−3. All input
data are MinMax scaled, which is why we use a Sigmoid activation function in the final
layer of the decoder. The MSE of the training loss for all of the models presented in this
study was on the order of magnitude of 10−4.

Table A1. Parameters used in neural networks for the autoencoder where di is the input dimension
and dz is the latent dimension. The “Dimension” column describes the dimension of each layer, and
the “Activation” column describes the activation functions between layers. The “Epochs” column
describes the number of epochs used for training.

Component Dimension Activations Epochs

Encoder di:32:64:32:dz Linear:ReLU:Linear:ReLU:Linear 1000

Decoder dz:32:64:32:di Linear:ReLU:Linear:ReLU:Linear:Sigmoid 1000

Appendix B. Bifurcation Classification of the fKdV

Here, we classify the bifurcation for the fKdV equation given in Equation (1) under
the steady state assumption which, to our knowledge, has not been explicitly stated.

https://zenodo.org/records/10309413
https://zenodo.org/records/10309413
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Let us consider the standard form of the fKdV given in Equation (1). In the case
of traveling waves u(x, t) = u(ϵ) with ϵ = x − ct and under the assumption of natural
boundary conditions, we can turn this into a two-dimensional system that can be written as:

u′ = v

v′ = 6u(c + F − 1)− 9
2

u2 = h(u)
. (A1)

To find the equilibrium points, we can solve v′(u) = 0, which leads to u0 = 0 and
u1 = 4

3 (c+ F− 1). To classify these equilibrium points, we can solve the linearized equation
Jv = λv. This results in det(J − λ), which can be expressed as:

det
[
−λ 1

h′(u) −λ

]
. (A2)

Hence, the resulting characteristic equation is λ2 − h′(u) = 0.
This results in the eigenvalues λ0 = ±

√
6(c + F − 1) and λ1 = ±

√
(−6(c + F − 1)).

The first eigenvalue λ0 is purely imaginary if c + F < 1 and purely real if c + F > 1, which
is converse to the second eigenvalue λ1, which is purely imaginary if c + F > 1 and purely
real if c + F < 1. For the case of the two-equilibrium points u = 0 and u = 4

3 (c + F − 1),
the Jacobian has a double eigenvalue, which implies a Bogdanov–Takens bifurcation [42].
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