
Citation: Bo, L.; Zhang, Z.; Liu, Y.;

Yang, S.; Wang, Y.; Wang, Y.; Zhang, X.

Research on Path Planning Method of

Solid Backfilling and Pushing

Mechanism Based on Adaptive

Genetic Particle Swarm Optimization.

Mathematics 2024, 12, 479. https://

doi.org/10.3390/math12030479

Academic Editor: Ioannis G. Tsoulos

Received: 5 January 2024

Revised: 30 January 2024

Accepted: 1 February 2024

Published: 2 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Research on Path Planning Method of Solid Backfilling and
Pushing Mechanism Based on Adaptive Genetic Particle
Swarm Optimization
Lei Bo 1 , Zihang Zhang 2 , Yang Liu 2,∗ , Shangqing Yang 1, Yanwen Wang 2, Yiying Wang 3 and Xuanrui Zhang 4

1 School of Artificial Intelligence, China University of Mining and Technology (Beijing), Beijing 100083, China;
bolei@student.cumtb.edu.cn (L.B.); ysq1999@student.cumtb.edu.cn (S.Y.)

2 School of Mechanical Electronic & Information Engineering, China University of Mining and Technology
(Beijing), Beijing 100083, China; zhangzh@student.cumtb.edu.cn (Z.Z.); wyw@cumtb.edu.cn (Y.W.);

3 School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan 056038, China;
wangyiying@hebeu.edu.cn

4 School of Electrical and Electronic Engineering, Guangdong Technology College, Zhaoqing 526100, China
* Correspondence: liuyang@cumtb.edu.cn

Abstract: This paper investigates the path planning problem of the coal mine solid-filling and pushing
mechanism and proposes a hybrid improved adaptive genetic particle swarm algorithm (AGAPSO).
To enhance the efficiency and accuracy of path planning, the algorithm combines a particle swarm
optimization algorithm (PSO) and a genetic algorithm (GA), introducing the sharing mechanism
and local search capability of the particle swarm optimization algorithm. The path planning of the
pushing mechanism for the solid-filling scenario is optimized by dynamically adjusting the algorithm
parameters to accommodate different search environments. Subsequently, the proposed algorithm’s
effectiveness in the filling equipment path planning problem is experimentally verified using a
simulation model of the established filling equipment path planning scenario. The experimental
findings indicate that the improved hybrid algorithm converges three times faster than the original
algorithm. Furthermore, it demonstrates approximately 92% and 94% better stability and average
performance, respectively, than the original algorithm. Additionally, AGAPSO achieves a 27.59% and
19.16% improvement in path length and material usage optimization compared to the GA and GAPSO
algorithms, showcasing superior efficiency and adaptability. Therefore, the AGAPSO method offers
significant advantages in the path planning of the coal mine solid-filling and pushing mechanism,
which is crucial for enhancing the filling effect and efficiency.

Keywords: coal mine solid backfilling; adaptive; genetic algorithm; path planning

MSC: 68W50

1. Introduction

The considerable depth at which China’s coal resources lie necessitates their extraction
through shaft mining, as extensively discussed in recent research [1,2]. However, the
traditional mining techniques employed in this process have led to ground subsidence,
ecological damage, and insufficient coal capacity release, as supported by previous stud-
ies [3–5]. To address these issues, the concepts of green mines and smart mines have gained
prominence, leading to increased recognition and adoption of solid backfilling technol-
ogy. This innovative approach is crucial for maintaining the stability of mining area rock
structures, as emphasized in studies [6]. By employing solid backfilling technology, mining
safety can be ensured, and issues encountered in the extraction of pressure coal and other
resources under buildings, railroads, and bodies of water—the “three under” problem—can
be alleviated, as previously discussed [7]. Furthermore, this technology plays a vital role in
mitigating the issue of coal gangue accumulation, as highlighted in research [8], and has

Mathematics 2024, 12, 479. https://doi.org/10.3390/math12030479 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12030479
https://doi.org/10.3390/math12030479
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9975-1477
https://orcid.org/0000-0001-5457-4753
https://orcid.org/0000-0002-6042-0627
https://doi.org/10.3390/math12030479
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12030479?type=check_update&version=1

Mathematics 2024, 12, 479 2 of 27

been extensively implemented to address these complex challenges [9]. The underground
coal mine backfilling space is a complex mixed area, comprising filling equipment, filling
material transportation equipment, bulk material, and a completed filling body. Control-
ling the filling effect is aimed at achieving a certain degree of compactness of the filling
material in the hollow area after stabilization, managing the amount of roof subsidence,
regulating ground deformation within the required range, and monitoring tamping force
in real-time to ensure compliance with design requirements [10]. Accordingly, the solid
backfilling push-pressure mechanism is pivotal in the coal mine solid backfilling work, as
it governs the molding force of the filling material. The task of filling involves controlling
the push-pressure mechanism to transport the filling material to the designated area and
execute the push-pressure tamping process. Furthermore, path planning of the coal mine
solid backfilling pushing mechanism refers to forecasting the optimal action path of the
filling support’s pushing mechanism to deliver the filling material to the designated area
within the hollow space.

Currently, the path planning of the solid backfilling pushing mechanism heavily
depends on manual experience and trial-and-error methods [10]. After the scraper con-
veyor unloads the material, the hydraulic pushing mechanism controls the pushing action,
including the pushing stroke, pushing angle, and the amount of pushing, based on the
judgment of experienced frontline workers at the filling surface, in order to achieve the
filling operation. This reliance on empirical judgment and lack of effective algorithmic
support results in a high degree of manual intervention and low scientific validity in the
filling process [11]. In this research area, Reference [12] conducted an in-depth study of
the working principle and structural arrangement of the porous bottom discharge filling
scraper conveyor. Meanwhile, Reference [13] focused on studying the addition of a filling
mechanism and rear scraper conveyor at the rear end of the hydraulic bracket to enhance
the filling efficiency. Moreover, Reference [14] developed an IoT sensing model of the
filling working face to improve the scientificity of the filling decision-making process by
enhancing the effectiveness of monitoring data. Current domestic and foreign research
on solid backfilling mainly centers on optimizing the filling hydraulic support structure
and its related efficiency [15], the selection and ratio of filling materials [16], and the op-
timization of the filling process. However, there is insufficient research on the specific
path planning for solid backfilling. Therefore, it is crucial to study the path planning of
the coal mine solid backfilling pushing mechanism to ensure the scientific effectiveness
and efficiency of the filling process. With the advancement of computer science and ar-
tificial intelligence technology, traditional path planning algorithms, such as the A-star
Algorithm [17], Dijkstra’s algorithm [18], and others, have been increasingly applied in
related underground coal mine scenarios, such as roadway inspection. These algorithms
have demonstrated the capability to enhance the efficiency and accuracy of path planning
in relevant scenes. Moreover, scholars worldwide have delved into optimization control in
this domain. For instance, some have utilized the neural network algorithm to forecast and
regulate the displacement and pressure of the push-pressure mechanism [19], while others
have employed the fuzzy control algorithm to refine the motion trajectory of the controlled
object. Although these studies have yielded theoretical advancements for specific scenarios,
traditional algorithms encounter challenges when applied in the coal mine-filling work
environment. Due to their reliance on high-definition maps or mathematical models, they
suffer from issues such as high computational complexity, limited accuracy, and lack of
adaptability and self-adaptation. Consequently, these limitations impede the improvement
of efficiency and accuracy, rendering the direct application of traditional algorithms in solid
backfilling path-planning scenarios unfeasible. In recent years, there has been a growing
trend in employing bio-inspired algorithms to enhance the efficiency and adaptability of
path planning [10]. These intelligent algorithms demonstrate the capacity to devise optimal
or near-optimal paths and effectively address path-planning challenges within intricate
environments [20,21]. Notable methodologies include ant colony algorithms [22], genetic
algorithms [23], artificial neural network algorithms [24], particle swarm optimization

Mathematics 2024, 12, 479 3 of 27

(PSO) [25], and rapidly-exploring random trees (RRT) algorithms [26], all of which have
been put into practice. Furthermore, the concurrent progress in computing capabilities and
algorithmic advancements has empowered swarm optimization algorithms, recognized
for their global search strategy, to demonstrate notable competencies in solving complex
optimization problems [27]. Consequently, these techniques are experiencing a surge in
adoption for path planning.

The genetic algorithm (GA) and particle swarm optimization (PSO) have garnered
significant attention in research. GA is a search algorithm that simulates natural selection
and genetic mechanisms to iteratively optimize solutions through selection, crossover, and
mutation operations. In the context of planning paths in coal mines, GAs have been used to
solve multivariate and multi-objective optimization problems. For instance, Xu et al. [28]
effectively reduced systematic errors by improving the path planning of coal mine robots
using a genetic membrane algorithm, thereby demonstrating its value in both theoretical
and practical applications. Furthermore, an improved genetic algorithm for path planning
of coal mine detection robots has been proposed, refining the crossover and mutation
operators to enhance the efficiency and feasibility of path planning [29]. On the other
hand, PSO, an optimization method based on population intelligence, simulates bird
flock behavior to find optimal solutions. Due to its rapid search speed and superior
convergence, PSO is extensively utilized in coal mine path planning [30]. Studies such as
those by Reference [31] propose an enhanced PSO approach for planning optimal cutting
trajectories, aiming to significantly reduce mining costs, improve efficiency, and minimize
casualties. Despite these advancements, GAs suffer from slow search speeds, especially
when handling large-scale problems, resulting in longer computation times due to high
computational demands. Meanwhile, the PSO algorithm tends to converge towards local
optimal solutions, particularly when dealing with complex problems, leading to slower
algorithm convergence because of the subtle interplay of competition and cooperation
among particles. In some studies, researchers attempt to merge GA and PSO [32]. This
hybrid method, the genetic algorithm–particle swarm optimization (GA-PSO), amplifies
the search capability and practicality in handling the path planning problem of welding
robots. The scheme ultimately secures optimal or near-optimal welding paths through
the refined selection of genetic operators and optimization of particle inertia weights [33].
Reference [34] even developed a model of a coal mine rescue robot based on PSO and gene
expression programming, thereby validating the feasibility of combining GA and PSO
when addressing complex issues.

The proposed algorithm in this paper is aimed at providing a path-planning solution
for the solid backfilling and pushing mechanism in coal mining sites. It takes into account
the actual working conditions and complexities of coal mine operations. By integrating the
sharing mechanism and robust local search capability of the PSO into the genetic iteration
process of genetic algorithms, the approach comprehensively addresses the challenges of
solid backfilling. This integration enhances the efficiency and accuracy of path planning
by utilizing the global search ability of GA and the solution speed and adaptability of the
PSO algorithm.

In response to the mentioned problems, the paper consists of several sections. Section 1
serves as the introduction, providing context by outlining the research background and
current status. It is followed by Section 2, which delves into the construction of the scene
model and details the spatial state of coal mine solid backfilling face filling. In conjunction,
a corresponding mathematical model is constructed. After this, Section 3 elaborates on the
algorithm theory, presenting the theoretical foundation and proposing a targeted hybrid
improvement and adaptive adjustment algorithm. Section 4 is dedicated to the testing
and analysis of the algorithm’s performance, while Section 5 focuses on model simulation
experiments and analysis, particularly in relation to the spatial model and the state of the
air-mining area. Furthermore, Section 6 engages in a discussion of the future research
direction, and finally, Section 7 encapsulates the conclusion of the study.

Mathematics 2024, 12, 479 4 of 27

2. Solid Backfilling Path Planning Model
2.1. Spatial Modeling of the Extraction Zone

The complex mixing area of an underground coal mine filling space includes filling
equipment, filling material transport equipment, bulk material and finished filling body.
As the bulk material itself becomes loose, it is unloaded into a free-stacked state by the
filling conveyor and has a large amount of compression. The task of filling is to control
the pushing mechanism, push the filling material to the area to be filled and tamping
to improve its densification and roofing rate and improve the process of compressive
mechanical properties of the filling body. Traditional backfilling and tamping methods
are time-consuming and labor-intensive and do not allow for efficient and unmanned
backfilling. Therefore, the design and planning of the route, as well as ensuring the
push-up volume of the material required for filling, is one of the elements that need to
be studied.

As shown in Figure 1, in this model, the controlled area of the filling face will be
divided into three zones: filling equipment (i.e., the filling and pushing mechanism), the
drop zone, and the area to be filled. The filler-pusher starts from the initial position, passes
through the drop zone, and gradually pushes to the area to be filled, taking into account
the gravity of the filling material and the change in the internal stress until it reaches the
preset compaction level and forms a dense filling body [14]. In this paper, the length of the
area to be filled is taken as the distance [35] between groups of moving frames of filling
brackets, and the height of the pushing mechanism of the filling brackets is taken as the
height of a single filling, so that the area to be filled is divided into a-equivalent fractions.

l =

{
H
h H = kh
H
h + 1 H ̸= kh

(1)

Herein, the height of the top plate within the current filling area is represented by H,
while h denotes the height of the push plate in the given equation. In cases where l is a
non-integer, the filling height is considered to be less than the height of a single filling to
ensure the effectiveness of the top-of-the-filler filling body and maintain complementarity
with respect to the topmost height.

Figure 1. Zoning of the solid backfilling workspace.

To capture spatial and material information within the filling space, a three-dimensional
coordinate system is established for the filling working surface, with the origin positioned
at the midpoint of the upper top of the pushing mechanism of the filling bracket. The height

Mathematics 2024, 12, 479 5 of 27

of the filling material in the filling area is determined through laser scanning, which yields
point cloud information relating to the filling material. Subsequently, information fusion
techniques are employed to ascertain the filling material data [36–38]. Furthermore, a fixed
coordinate system is applied to the target points, allowing for seamless representation and
mutual conversion of coordinates between the laser scanning and the filling space. For
instance, ΨP denotes that the vector P is within the coordinate system Ψ, with the distance
on each axis of ΨP serving as the projection of that vector on the corresponding axis.

As shown in the figure, the three-dimensional coordinate system {Ψ} is instantiated
by three orthogonal unit vectors, and the point P is marked by a position vector indicated
by arrows. Equivalently, ΨP can be considered to represent a position in three-dimensional
space, or it can simply be denoted by an ordered set of three numbers. The components
of the position vectors on each axis of the system are denoted by the subscripts x, y, and
z, respectively:

ΨP =

Px
Py
Pz

 (2)

The study utilizes a laser scanner for spatial scanning, with the scanner acting as
the origin. The coordinates representing the scanner’s location are defined as a three-
dimensional coordinate system, denoted as {Υ}, for the purposes of this paper. In the
following, we present the conversion formula between the {Ψ} and {Υ} coordinate systems.

ΨP =Υ P

Ox
Oy
Oz

 (3)

Herein, Ox, Oy, Oz represent the vector distance from the origin of Υ to the origin of Ψ,
adjusting as the mount’s attitude changes.

2.2. Objective Function for Solid Backfilling Path Planning

The efficacy of filling in coal mines can be significantly influenced by a single filling
trajectory and pushing path, making the conceptualization of an optimal push-press path
scheme an urgent priority in this context. The primary focus of this paper is to conceptualize
a suitable push-press path scheme for the filling stent push-press mechanism in coal mines.
We aim to derive an optimal path that considers the steadiness requirement of the filling
body, spatial and material constraints, and ensures the total filling material required is
attained via the shortest path with minimum iterations. To achieve this, we propose a
constraint-based position model for each path point and design an objective function that
takes into account both the accumulation of material during the push-press process and
the demand amount, as well as the shortest distance of the push-press path.

We delineate the path planning schema below:

min f = ω1

∣∣∣∣∣∣
√√√√ 3

∑
j=1

(x2j − x1j)2 −Q

∣∣∣∣∣∣+ ω2

∣∣∣∣∣∣1− L

∑3
i=0

√
∑3

j=1(x(i+1)j − xij)2

∣∣∣∣∣∣ (4)

Herein, the first term represents the difference between the amount of material sent
and the amount of material to be sent, while the second term represents the contrast
between the advanced path and the optimal path. ω1, ω2 represent the weights assigned to
the two terms, such that ω1 + ω2 = 1. For this work, we set them both to 0.5. xij stands for
the i dimensional coordinate of the j node of the ith path; Q symbolizes the total amount
of material required; and L defines the displacement from the starting point of the pusher
plate to the target point.

Mathematics 2024, 12, 479 6 of 27

2.3. Constraint Conditions
2.3.1. Volume Constraints on Path Planning

The stability of the mine’s roof and the internal pressure of the filling body are taken
into account in the filling process when determining the volume of filling material needed
at various densities. This calculation utilizes the compression ratio of the filling material,
with the filling support’s push mechanism path being seen as effective in pushing the filling
material as long as it remains below the filling drop interface. This is expressed as follows:

Vc ∗ ρc = Vs ∗ ρs (5)

Herein, the required fallout volume is denoted by Vc, with ρc representing the bulk
density of the fallout. Vs indicates the filling area volume, and ρs represents the density of
the stabilized filling body.

2.3.2. Length Constraints on Path Planning

The path planning of filling equipment must prioritize the guarantee of the filling
effect while also aiming for a shorter path length, resulting in reduced filling time and
increased filling speed, ultimately leading to higher filling efficiency. To ensure the stability
of the filling process, the path planning must ensure that the quantity of material passed is
at least equal to the filling material needed for a single fill. Moreover, the path should be
designed to accommodate the passing through void regions outside the material area, thus
ensuring comprehensive coverage and fill precision.∫

Lchw ≥ Vs +
∫

Lkhw (6)

Herein, Lc represents the filling drop zone intersected by the path curve, while Lk
denotes the void zone crossed by the path curve. h and w represent the height and width
of the pushing plate of the pushing mechanism, respectively.

2.4. The Penalty Function

The penalty function [39] simplifies the process of finding a solution to the solid
backfilling path planning problem by transforming the constrained problem into an uncon-
strained one, thus effectively facilitating the optimization process with respect to constraints.
The penalty value is calculated as follows:

φ =
N

∑
n=1

(max{0,−un(x⃗)})2 +
H

∑
h=1

(
|zh(x⃗)|2

)
(7)

Herein, the numbers of inequality and equality constraints for path planning are
denoted by N and H, respectively, with φ representing the penalty. The result of converting
the initial n inequality constraints is signified by the function un(x⃗), while the result of
converting the initial h equality constraints is represented by zh(x⃗). The conversion of the
inequality constraints is expressed as follows:

u_n(x⃗) ≥ 0 (8)

Furthermore, for the equality constraints in the H terms of the path planning problem,
we represent their transformed format using zh(x⃗), which transforms as follows:

zh(x⃗) = 0 (9)

The penalty function method can be utilized for optimization to address variables
that exceed the range of the constraints. If a variable surpasses the limit designated by
the inequality constraints, the penalty value is set to |un(x⃗)|2, while it is set to |zh(x⃗)|2 if it
surpasses the limit set by the equality constraints. To strengthen the constraint, a larger

Mathematics 2024, 12, 479 7 of 27

positive integer, δ, can be used to multiply with the penalty value and added to the original
objective function. This procedure results in an augmented function related to the original
objective function.

fin(f) = f + δφ (10)

The above equation implies that if a sufficiently large positive integer is chosen for
δ, the objective function’s value will increase significantly when a variable exceeds the
proposed constraints. This rapid increase aids in identifying this solution as non-optimal
during the solution process. Therefore, it is essential to regulate the value of δ to strike a
balance between the effects of the penalty value. A smaller δ provides more flexibility in
managing the constraints and allows variables to slightly exceed the constraints, thereby
expanding the potential solution space.

3. Adaptive Genetic-Particle Swarm Hybrid Algorithm Based on Path Planning for
Solid Backfilling Mechanisms
3.1. Particle Swarm Optimization

The PSO is inspired by swarm intelligence, specifically simulating the foraging be-
havior of birds. In this model, each potential solution to an optimization problem is
represented as a “particle” within the search space. These particles interact and share
information to collectively identify the optimal solution. The particles are characterized by
two key attributes—velocity and position—which are continuously adjusted to achieve the
desired objective. The collaborative search for the optimal solution lies at the heart of the
algorithmic approach [25].

The position of a particle in the PSO corresponds to potential solutions, and its velocity
reflects the direction and speed of movement in the solution space. By continually updating
their velocity and position, particles undertake a search for the most optimized solution. In
a D-dimensional search space containing n dimensionless particles, the position of the ith
particle can be represented as follows:

Xid = [xi1, xi2, xi3 . . . xiD], (d = 1, 2, 3 . . . D) (11)

Moreover, the velocity and direction of the ith particle’s flight are structured as follows:

Vid = [vi1, vi2, vi3 . . . viD](d = 1, 2, 3 . . . D) (12)

The formula for adjusting particle velocity, as per Equation (13), is given by:

Vk+1
id = ωVk

id + C1ε(Pk
best − Xk

id) + C2µ(Gk
best − Xk

id) (13)

Furthermore, particles must adjust their positions in the iteration process, a process
that can be represented by the formula in Equation (14).

Xk+1
id = Xk

id + Vk+1
id (14)

In the context of PSO, the symbols Pbest and Gbest represent individual and global
optimal values, respectively. The dynamics of particles learning from both their individual
experiences and the experiences of the collective swarm are encapsulated by the terms
Pk

best − Xk
id and Gk

best − Xk
id. These terms, also referred to as self-recognition and social

recognition, are instrumental in shaping the learning process within the PSO framework.
The parameters ω and µ are random numbers drawn from the interval [0, 1] and are

typically reduced in scale during the iterative process. The constants C1 and C2 are weights
attached to individual and global extremes and are usually set to two in order to regulate
the effects of such extremes. This regulation is crucial for effectively managing the impact
of individual and global extremes in the iterative process.

Pbest i(k) = arg min
{

f it(Xi(1)), f it(Xi(2)), f it(Xi(3)), . . . , f it(Xi(k))
}

(15)

Mathematics 2024, 12, 479 8 of 27

Gbest(k) = arg min
{

Pbest1(k), Pbest2(k), Pbest3(k), . . . , Pbest4(k)
}

(16)

During the iteration process, the weight coefficient ωk of the particles decreases linearly,
as shown in the following equation:

ωk = ωmax −
(

ωmax −ωmin

Kmax
· k
)

(17)

Herein, the state of the collective swarm continues to evolve as more iterations are
performed, resulting in the continuous adjustment of particle positions. This is achieved
through the progression of these positions according to the velocity and position updating
formulas, which enables particles to iteratively converge towards the optimal solution. In
this iterative process, ωmax is set to 0.9, ωmin to 0.4, Kmax is the maximum number of itera-
tions, and k is the current iteration number. One of the key properties of the PSO algorithm
is the iterative adjustment of particle positions, allowing for the ongoing refinement of
the swarm’s state. This recurrent process continues until the aimed termination condition
is fulfilled.

3.2. Genetic Algorithm

The genetic algorithm (GA) search process involves considering factors beyond the
core information from the current population, including characteristics derived from ac-
cumulated experiences from previous iterations. Emulating natural selection, the process
involves retaining and passing on exceptional characteristics of the population through
processes such as crossover (hybridization), mutation, and other mechanisms characteristic
of biological evolution. This iterative process aims to find the optimal solution in the global
maximum, ultimately solving the problem at hand. The main process includes individual
coding, population initialization, fitness evaluation, selection, crossover, mutation, and
generation of a new population [40].

3.2.1. Coding Design

This paper focuses on the application of genetic algorithms to problem-solving, which
involves representing potential solutions as chromosomes. A chromosome, which consists
of a chain of binary numbers, real numbers, or other symbols known as “genes”, is used to
encode the solution. These chromosomes form a population that represents a set of potential
solutions. The representation of solutions within genetic algorithms typically involves a
specific coding strategy, such as binary encoding, real number encoding, or permutation
encoding. Binary encoding is chosen as the primary form of coding in this paper due to its
ease of management and its similarity to biological chromosome compositions.

3.2.2. Initializing Populations

The population initialization process in genetic algorithms usually begins with random
generation, which is instrumental in creating initial individuals in the space of the solid
backfilling mechanism route planning problem. This step is crucial as it sets the stage for the
genetic algorithm optimization process. The size and distribution of the first population play
a significant role in shaping the algorithm’s performance at this early stage. Mathematically,
this can be denoted as follows:

P0 = {x1, x2, . . . , xn} (18)

3.2.3. Fitness Function

This paper designs the fitness function as a minimization objective function. The
fitness function, represented as F(x), is a quantifiable measurement of a solution’s quality.
It is utilized to evaluate the strengths and weaknesses of individuals in a population,
primarily based on an individual’s performance within the solution space to determine its
fitness value. Proper design of the fitness function should accurately portray an individual’s

Mathematics 2024, 12, 479 9 of 27

performance, consequently influencing the convergence efficiency of the algorithm and the
optimal solution discovery capability [40].

F(x) = f (x)−min f (x) + e, x ∈ P0 (19)

Herein, the notation min f (x) represents the minimum value of the function, and e is
a small number chosen to ensure that the fitness function exceeds 0. Specifically, in this
case, e = 10−6.

3.2.4. Selection Process

The selection operation is crucial as it serves to intensify the probability of the algo-
rithm bypassing the locally optimal solution. This is achieved through the maintenance
of a small proportion of the less well-adapted individuals, allowing them to participate
in the offspring. Consequently, this facilitates the algorithm in discovering the globally
optimal solution with higher chances. As a result, this selection process not only improves
convergence speed but also enhances the quality of the results.

The stallion evolutionary algorithm, a variant of the evolutionary algorithm, enhances
recombination by relying on individuals’ relative fitness values and selecting the best
individuals (stallions) in each generation for recombination in order to maintain the popula-
tion’s superior characteristics. This selection mechanism of the stallion algorithm reinforces
the search efficiency of the genetic algorithm by strengthening the inheritance of the best
individuals. The selection probability of individual xi in the stallion algorithm can be
denoted as Psel(xi).

Psel(xi) =
f (xi)

∑N
j=1 f (xj)

(20)

where N signifies the population size. The total fitness, S, is defined as:

S =
N

∑
i=1

F(i) (21)

The technique for selection from the populous involves opting for a population size
denoted by M (M ≤ N), which represents the number of individuals intended for selection
into the next generation. After determining the population size, the next step is to compute
the step size, denoted as Step, which is essential for the selection technique. The equation
for calculating the step size is as follows:

Step = S/M (22)

The stallion evolution algorithm employs a detailed selection mechanism, as illustrated
in Algorithm 1. Initially, a random number r is generated within the range [0, Step], with
the initial value set at 0. The selection process begins with the aim of identifying the first
individual whose fitness value surpasses r. This is achieved by finding the smallest i
that satisfies the condition F(i) > r. The selected individual then advances to the next
generation, and r is subsequently increased by Step. This procedure is iterated exactly M
times until the selected population consists of M individuals.

The final selection of individuals is mainly guided by the following formula:

P(M) = maxF(x), x ∈ P0 (23)

Herein, the stallion evolution algorithm employs the fitness function F(X) to evaluate
the fitness level of an individual X. This determines the likelihood of selection for a
superior individual (stallion), with higher fitness levels correlating to a higher probability
of being chosen as a stallion. This biased selectivity towards individuals with higher fitness
levels allows for the progression of selected individuals to the next generation, where they
participate in further evolutionary activities such as crossover and mutation operations.

Mathematics 2024, 12, 479 10 of 27

Despite the random nature of the selection mechanism, individuals with higher fitness
levels are favored, ensuring diversity in the population and ultimately leading to the
discovery of improved solutions.

Algorithm 1 Stochastic universal sampling (SUS) mechanism.

Require:
Population size N
Number of individuals to be selected M
Fitness values array F, containing fitness values of N individuals
Random number generation function rand()

Ensure:
Array of selected individual indices Selected, housing indices of M chosen individuals

1: procedure SUS(F, N, M)
2: S← ∑N

i=1 F[i] ▷ Compute the total fitness
3: Step← S

M ▷ Compute the step size
4: r ← rand()× Step ▷ Generate an initial random number within the range [0, Step]
5: Selected← [] ▷ Initialize array for selected individuals
6: for k← 1 to M do
7: i← 1
8: while F[i] ≤ r do
9: i← i + 1

10: end while
11: Add i to Selected ▷ Incorporate the selected individual
12: r ← r + Step ▷ Increase the random number for subsequent selection
13: end for
14: return Selected
15: end procedure

3.2.5. Crossover and Mutation Operations

In genetic algorithms, crossover and mutation operations play a pivotal role, mirror-
ing the chromosome crossover and gene mutation seen in biological inheritance. These
operations are designed to amplify the diversity of the population as the genetic algorithm
progresses through its search process, ultimately aiming to improve the algorithm’s ability
to perform a local search. The probabilities of crossover (pc) and mutation (pm) serve as
governing factors dictating the algorithm’s balance between exploration and exploitation,
and in this paper, both values are set at 0.8.

(1) Crossover Operation

xnew = crossover(xi, xj) (24)

The first step in the process involves selecting a parent individual. Following this,
the next step is to ascertain the crossover point. In this study, binary encoding is used for
the process. It assumes that if the length of the individual’s encoding is denoted as L, the
intersection point may fall anywhere between 1 and L− 1. After determining the crossover
point, one or more points within the encoding of the parent individual are arbitrarily
chosen. The encoding of the two parent individuals is then assigned as follows:

A = a1, a2, · · · , aL
B = b1, b2, · · · , bL

(25)

If we denote the crossover point as k, the two new individuals, C and D, resulting
from the crossover have the following coding:

C = a1, a2, · · · , akbk+1, · · · , bL
D = b1, b2, · · · , bkak+1, · · · , aL

(26)

Mathematics 2024, 12, 479 11 of 27

At the crossover point, genetic information is exchanged between the parent individu-
als, resulting in the creation of a new individual.

(2) Variant Operation

We start by analyzing the mutation operation represented by the function Mutate.
Here, xnew denotes the individual after mutation, and xi represents the selected individual
from the current population for mutation, with pm denoting the mutation probability.

xnew = mutate(xi, pm) (27)

The mutation procedure consists of three stages. Initially, an individual is chosen
from the existing population. Subsequently, one or more loci are randomly selected on the
individual’s coding for the mutation. Finally, the genetic information of the selected locus
or loci is modified, typically involving the conversion of a 0 to a 1 or a 1 to a 0 in a binary
genetic code. Let us consider a scenario where the individual E = e1e2 . . . eL is chosen for
mutation and the mutation locus is denoted as m. The coding for the mutated individual,
denoted as F, can be expressed as:

F = e1e2 . . . em−1(¬em)em+1 . . . eL (28)

Herein, the ¬ symbol indicates the negation operation, which involves flipping the
binary value of the selected locus.

By using genetic operations such as crossover and mutation, the population generates
a new set of individuals. Consequently, the genetic algorithm can explore the solution
space and ultimately find the optimal solution.

3.2.6. The Recurring Process of the Algorithm

The entire algorithmic process can be recursively represented as:

P(t + 1) = evolve(P(t)) (29)

Here, evolve denotes a combined process of selection, crossover, and mutation procedures.

3.3. Genetic-Particle Swarm Optimization

The proposed hybrid genetic-particle swarm optimization (GAPSO) algorithm is based
on the architecture of the genetic algorithm (GA). By combining the benefits of both GA and
PSO, the GAPSO algorithm seeks to enhance the efficiency and orientation of the population
evolution. The genetic algorithm (GA) contributes to preserving population diversity and
evolutionary capabilities through selection, crossover, and mutation procedures. On the
other hand, the particle swarm optimization (PSO) helps guide the population toward the
axiological direction of evolution, serving as an auxiliary mechanism within the algorithm.

The flow of the GAPSO algorithm is depicted in Figure 2. In the GAPSO model, the
GA element plays a key role in maintaining the diversity of the population and guiding
it towards superior individuals, achieved through chromosome selection and crossover
operations. However, the evolution process may result in the degradation of certain
individuals, disrupting the overall evolutionary process. To address this, the PSO is
incorporated to optimize the evolutionary direction of these degraded individuals. This is
achieved through continuous updates to the velocity and position of the particles, steering
the degraded individuals back toward the optimization trajectory. The pseudocode for the
GAPSO algorithm is presented in Algorithm 2.

Mathematics 2024, 12, 479 12 of 27

Figure 2. Flowchart of the GAPSOS algorithm.

(1). Initiate population.
(2). Compute and store both the individual and population fitness values.
(3). Use GA, which includes selection, crossover and mutation operations, to update the

population. Amend the fitness value of particles and the population.
(4). Assess individual degradation by computing the fitness value of all i individuals,

f ′(xi). If f ′(xi) < f (xi), the i individual is regarded as degraded.
(5). Employ the PSO to recalculate the fitness value by updating the location and velocity

of any degraded individuals.

Mathematics 2024, 12, 479 13 of 27

(6). Determine if the fitness value refined by the PSO has improved; if so, update the
fitness value.

(7). Assess if the termination conditions have been achieved, i.e., if the maximum iteration
count or the optimal population fitness value meets the threshold.

(8). Repeat iteration: if termination condition(s) is not attained, return to step (3); other-
wise terminate.

Algorithm 2 GAPSO Algorithm.

Require:
1: Parameter initialization:

Population size N, number of iterations I, upper bound bu, lower bound bl , termination
condition initialized to Condition = False
Crossover probability pc, mutation probability pm, individual best Pbest, and global
best Gbest

2: Randomly generate an initial population within the boundaries
3: Calculate fitness values F for the population, where f (xn) signifies the fitness of each

individual n
4: while Condition = False do
5: for i ≤ I do
6: Use genetic algorithm principles to update the current population. Re-evaluate

the chromosome fitness as Fnew = F
7: if Fnew > F then
8: Update individual best: Pbestnew = Pbest
9: end if

10: Based on PSO, select new particles, evaluate new particle fitness Fp, and update
total population fitness Fg

11: if Fpnew > Fpold then
12: Update the individual best again: Pbestnew = Pbestold
13: end if
14: if Fgnew > Fgold then
15: Update the global best: Gbestnew = Gbestold
16: end if
17: if termination condition is achieved then
18: Set Condition = True
19: end if
20: end for
21: end while

3.4. Adaptive Genetic-Particle Swarm Optimization

The computational process of solid-filling mechanism path planning somewhat mit-
igates the general limitations of GA and PSO algorithms. This section centers on the
optimization of the hybrid algorithm in tandem with the specific path-planning process
for solid-filling and propelling mechanism path planning. The algorithm’s optimization
process for solid-filling and propelling mechanism path planning is the primary focus.
Figure 3 illustrates the AGAPSO process.

The optimization of the genetic algorithm primarily revolves around adjusting the
crossover probability and mutation probability, which directly impact the algorithm’s
global evolutionary process. The crossover function plays a vital role in facilitating the
emergence of highly-evolved individuals across different chromosomes, while the mutation
operation is crucial for escaping local optima. On the other hand, the effectiveness of PSO
is predominantly determined by the inertia weights. Specifically, larger inertia weights
enhance the algorithm’s global search capabilities, while smaller weights strengthen its
local search abilities. Therefore, fine-tuning the crossover probability, mutation probability
of the genetic algorithm, and the inertia weight of the PSO is essential for enhancing the
overall performance of the optimization algorithm.

Mathematics 2024, 12, 479 14 of 27

Figure 3. Flowchart of the AGAPSOS algorithm.

This paper proposes a dynamic approach to setting crossover and mutation proba-
bilities for particles in the genetic algorithm optimization phase. In traditional genetic

Mathematics 2024, 12, 479 15 of 27

algorithms, these probabilities are fixed values, resulting in all particles evolving at a
uniform rate. This can lead to issues such as oscillations and slow convergence during
the optimization process. By dynamically adjusting crossover and mutation probabilities
according to each individual particle’s current state within the population, this adaptive
evolution enhances the optimization performance of the genetic algorithm. Consequently,
this approach facilitates rapid path planning for solid-filling equipment.

Initially, the fitness value of each particle is computed according to the attributes of
the genetic algorithm and PSO. This paper utilizes the reciprocal of the objective function
as the fitness function, with the minimum fitness value as the optimization goal. The fitness
function expression is as follows:

f it =
1

∑M
i=1 ∑N

j=1

(
ω1

(Yij+Eij+δ)Qij
Z∗S + ω2

Qij∗T
ti∗Z

) (30)

Unearth the optimal fitness value fmin:

fmin = argmin
{

fit(Xi(1)), fit(Xi(2)),

fit(Xi(3)), . . . , fit(Xi(k))
} (31)

The average fitness value favg is computed as:

favg =
1
M

M

∑
n=1

f it (32)

According to Reference [41], the optimal results in particle crossover probability range
from 0.6 to 0.9. This means that when a particle’s fitness value exceeds the average, it is
randomly selected within this probability range, ensuring the retention of the superior
particles. On the other hand, when the fitness value is below the average, the crossover
probability is set at 0.9, thus maximizing the opportunity for poorly performing particles to
undergo crossover operations.

In this study, the crossover probability of particles is adjusted during iterative processes
in accordance with the individual’s current fitness value, thus facilitating the effective
retention of superior solutions throughout the optimization process of the genetic algorithm.
Consequently, the setting of the crossover probability should duly consider the fitness value
of particles, as it enhances the convergential capability and global search potential of the
genetic algorithm. This strategy ensures the enhancement of the genetic algorithm’s ability
to converge and its potential for global search.

pc =

{
pcmax −

(pcmax−pcmin)−(fave− f ′(xi))
fave− fmin

f ′(xi) ≤ favg

pcmax f ′(xi) > favg

}
(33)

Herein, pc represents the crossover probability of the current particle, with its max-
imum and minimum values denoted by pcmax and pcmin, respectively, set at 0.9 and 0.6.
f ′(xi) refers to the fitness of the current particle.

The mutation process plays a significant role in genetic algorithms by enabling the
algorithm to break free from local optimal solutions. It achieves this by adjusting the
mutation probability of a particle adaptively, consequently maintaining population di-
versity during later iterations and effectively improving its global search capability. To
elaborate, increasing the mutation probability for particles with high fitness values allows
the algorithm to explore new potential solution spaces, while decreasing it for particles
with low fitness values focuses the algorithm on crossover and optimization processes to
maintain the current search direction. In general, setting the mutation probability in the
range of 0.01 to 0.1 is widely considered appropriate.

Mathematics 2024, 12, 479 16 of 27

The adaptive mutation probability adjustment strategy helps maintain balance during
the iterative process by promoting population diversity and effective utilization of excellent
solutions. The mutation operation formula is defined as follows:

pm =

{
pmmax −

(pmmax−pmmin)−(fave− f ′(xi))
fave− fmin

f ′(xi) ≤ favg

pmmax f ′(xi) > favg

}
(34)

Herein, pm represents the current particle’s mutation probability, with its maximum
and minimum values denoted by pmmax and pmmin, set at 0.1 and 0.01, respectively. Addi-
tionally, f ′(xi) denotes the fitness of the current particle.

In the iterative process of a genetic algorithm, effectively optimizing the trajectory
of a particle with a deteriorated fitness value can be achieved using the particle swarm
optimization (PSO). To impart the PSO with adaptive adjustment capabilities, refining the
inertia weights is crucial. The inertia weight (w) directly influences the direction and speed
of optimization for the particles. Commonly oscillating between 0.4 and 0.95, the value of
the inertia weight is adjustable according to the particle’s current adaptation value. The
inertia weights can be dynamically described as follows: if a particle shows a commendable
fitness value, indicating proximity to a potentially viable solution, its velocity can be
curtailed for a more precise local search. Conversely, a particle with a low fitness value
necessitates a broader search scope to discover a superior solution; thus, an increase in the
particle’s velocity enhances its global search capability. Consequently, adjustments in the
inertia weights can be dynamically set according to the particle’s current adaptation value
and iteration number. In this study, the inertia weight will undergo updates as outlined. In
the iterative process of a genetic algorithm, effectively optimizing the trajectory of a particle
with a deteriorated fitness value can be achieved using the particle swarm optimization
(PSO). To impart the PSO with adaptive adjustment capabilities, refining the inertia weights
is crucial. The inertia weight (w) directly influences the direction and speed of optimization
for the particles. Commonly oscillating between 0.4 and 0.95, the value of the inertia weight
is adjustable according to the particle’s current adaptation value. The inertia weights can
be dynamically described as follows: if a particle shows a commendable fitness value,
indicating proximity to a potentially viable solution, its velocity can be curtailed for a more
precise local search. Conversely, a particle with a low fitness value necessitates a broader
search scope to discover a superior solution; thus, an increase in the particle’s velocity
enhances its global search capability. Consequently, adjustments in the inertia weights
can be dynamically set according to the particle’s current adaptation value and iteration
number. In this study, the inertia weight will undergo updates as outlined.

ω =

{
ωmax − (ωmax−ωmin)−(fave− f ′(xi))

fave− fmin
f ′(xi) ≤ favg

ωmax f ′(xi) > favg

}
(35)

Herein, the symbol ω represents the inertia weight, with ωmax and ωmin representing
the maximum and minimum values, set at 0.95 and 0.4, respectively.

The above equations provide insights that suggest larger fitness values and higher
inertia weights are advantageous for global search in the early stages of the algorithm.
Conversely, during the later convergence stages, smaller fitness values and decreased
inertia weights are more beneficial for a local search. Thus, the adaptive genetic-particle
swarm optimization (AGAPSO) proposed in this study brings significant improvements to
critical parameters within the GAPSO algorithm. The original fixed parameters transform
into variable parameters that adapt to the particle population, leading to a substantial
increase in algorithm variability. Consequently, the theoretical enhancement of particle
optimization speed and precision is attained.

4. Algorithm Performance Test and Analysis

In this section, the path-planning model of the push-pressure mechanism is simulated
using the AGAPSO algorithm to validate the algorithm’s feasibility in addressing path

Mathematics 2024, 12, 479 17 of 27

planning problems. Python, an interpreted high-level programming language, widely
used in big data and artificial intelligence domains, is employed for this purpose due to
its inherent strengths in algorithm editing. The experimental configuration encompasses
100 particles, a maximum of 300 iterations, and each particle comprises four features. The
evaluation of the algorithm is based on the minimum adaptation value after iterations, the
average value, and the number of iterations.

Upon closer examination of Figure 4, significant insights are revealed from the it-
erations of the three algorithms. It becomes apparent that AGAPSO exhibits superior
convergence accuracy, as evidenced by its lower fitness value in comparison to both the
single GA algorithm and the hybrid GAPSO. Additionally, the convergence speed analysis
depicted in the figure illustrates that AGAPSO and GAPSO reach optimal solutions after
approximately 5 iterations, while the GA algorithm requires around 15 iterations to achieve
the same level of optimization. Consequently, the first two algorithms demonstrate faster
convergence speed, thereby highlighting the effectiveness of AGAPSO and GAPSO in
reaching optimal solutions more rapidly than the GA algorithm.

Figure 4. Iteration effect diagrams for the three algorithms.

The statistical metrics data of the algorithm optimization for the solid filling mech-
anism path planning problem are presented in Table 1, demonstrating the performance
comparison among three algorithms: AGAPSO, GAPSO, and GA. Examination of the
overall effectiveness reveals that the AGAPSO algorithm outperforms the GAPSO and
GA algorithms, as illustrated in the figures above. Specifically, the maximum, minimum,
D-value (difference between maximum and minimum), and average values of AGAPSO are
significantly lower than those of GAPSO and GA. Notably, the minimum value of AGAPSO
(6.28 × 10−4) is notably lower than that of GAPSO (2.88 × 10−2) and GA (2.88 × 10−2).
This significant difference suggests that AGAPSO demonstrates superior performance in
the best-case scenario. Furthermore, the D-value of AGAPSO (6.90× 10−3) is notably lower
than that of GAPSO (5.90 × 10−2) and GA (1.15 × 10−1), indicating that the results of the
AGAPSO algorithm exhibit higher stability and lower volatility. Additionally, the average
value of AGAPSO (3.64 × 10−3) is noticeably lower than that of GAPSO (5.26 × 10−2) and
GA (8.01 × 10−2), underscoring its superior average performance compared to the other
two algorithms.

To better illustrate the superiority of AGAPSO over GAPSO and GA algorithms, we
calculate the percentage improvement for each metric.

Mathematics 2024, 12, 479 18 of 27

(1) Minimum value:

AGAPSO improves the minimum value compared to GAPSO.(
1− 6.28× 10−4

2.88× 10−2

)
× 100% ≈ 97.82% (36)

AGAPSO improves the minimum value compared to GA:(
1− 6.28× 10−4

2.88× 10−2

)
× 100% ≈ 97.82% (37)

(2) D-value (stability):

AGAPSO has increased D-value compared to GAPSO:(
1− 6.90× 10−3

5.90× 10−2

)
× 100% ≈ 88.31% (38)

The D-value of AGAPSO compared to GA was increased by:(
1− 6.90× 10−3

1.15× 10−1

)
× 100% ≈ 94.00% (39)

(3) Average values:

AGAPSO improves the mean value compared to GAPSO:(
1− 3.64× 10−3

5.26× 10−2

)
× 100% ≈ 93.08% (40)

AGAPSO improves the mean value compared to GA:(
1− 3.64× 10−3

8.01× 10−2

)
× 100% ≈ 95.46% (41)

Table 1. Comparison of algorithm performance.

Algorithm Maximum Values Minimum Values D-Value Average Value

AGAPSO 7.53× 10−3 6.28× 10−4 6.90× 10−3 3.64× 10−3

GAPSO 8.78× 10−2 2.88× 10−2 5.90× 10−2 5.26× 10−2

GA 1.44× 10−1 2.88× 10−2 1.15× 10−1 8.01× 10−2

Based on the above calculations, it is evident that AGAPSO demonstrates substantial
improvement in comparison to GAPSO and GA across various metrics, including minimum,
D-value, and average performance. In particular, AGAPSO exhibits an improvement of
nearly 98% in the minimum value, signifying its superior performance at the optimal level
compared to the other two algorithms. Furthermore, AGAPSO showcases improvements
ranging from approximately 88% to 94% in terms of stability (D-value) and 93% to 95% in
average performance, underscoring its significant superiority in these aspects. This analysis
indicates that AGAPSO offers a more comprehensive evaluation and superior optimization-
seeking performance in the context of path planning for the push-press mechanism.

5. Model Simulation Experiment and Analysis

This section utilizes the AGAPSO algorithm proposed in this paper to compute the
path planning model for the solid backfilling push-press mechanism. Concurrently, a com-
parative analysis is conducted with the GA algorithm and the GAPSO algorithm, focusing
on observing the convergence states of the three optimization algorithms. Subsequently,

Mathematics 2024, 12, 479 19 of 27

the planning of the filling environment in real-life scenarios is analyzed to evaluate the
pushing efficiency and stability. This approach is employed to confirm the superiority of
the AGAPSO algorithm in the context of the solid backfilling stent pushing mechanism.

5.1. Model Simulation Experiment

The improved algorithms are verified for their practicability and superiority by uti-
lizing the spatial state of the actual mining airspace and the fallout model to plan the
push-pressure path and comparing the three algorithms as well as the filling efficiency in
the case of the fill-push pressure.

Section 2.1 discusses the state space of the air-mining zone. To evaluate the effective-
ness and accuracy of the presented algorithms, a series of simulation experiments were
conducted with a focus on the tamping trajectory of the solid backfilling face within a coal
mine. The simulations replicated the working face of a mine with an average mining height
of 800 mm, along with the incorporation of a corresponding hydraulic bracket measuring
1500 mm in width. Furthermore, the components of the bracket, including the gangue
blocking plate and the push solid plate, were designed to measure 1500 mm in width and
200 mm in height.

For the purpose of this study, it was assumed that shifts of 1000 mm would be made,
although the bracket was designed to accommodate single shifts within the range of
500–1000 mm. The initial planning consideration focused on filling the existing hollows,
taking into account the mining height and the height of the push-pressure mechanism. As
a result, the area was divided into four distinct layers, which required four stages of fill.
The center position of the filling push-pressure mechanism was established as the origin
(0, 600, 200). It was acknowledged that the bi-dimensional nature of the filling operation
allowed for the process to be conceptualized within a two-dimensional space.

The reference point for accurately representing the position of the push plate within
the filling area and ensuring complete submersion of the push mechanism within the
material was determined as the top vertex of the centralized push plate. Following this,
a series of target coordinates were established, mapping the intended movement of the
pushing mechanism from the origin (0, 0) to the nodes (1000, 600, 200), (1000, 600, 400),
(1000, 600, 600), and finally (1000, 600, 800).

The scraper transporter, filling support, and filling roof and floor were recognized as
obstacles in this process. The surface state of the filling drop was assessed using a surface
function in the following formula.

Z = α · sin
(

R
β

)
e
(
− R

β

)
+ γe(−(X−η)2+(Y−ι)2/κ) (42)

The equation contains several key parameters: the symbol α represents the height
of the surface center, while the ratio R/β captures the surface’s slope. Additionally, the
parameter γ refers to the overall height of the surface. Meanwhile, the symbols η, ι, and
κ denote the horizontal coordinate, vertical coordinate, and degree of prominence of the
surface center, respectively.

The enhanced algorithm proposed above will be validated through the presentation of
four experimental scenarios designed to replicate real operating contexts. These scenarios
aim to achieve four different objectives pertaining to the search for filling paths. Each
scenario will be comprised of three experiment sets that compare the search paths of
the traditional genetic algorithm (GA), genetic algorithm particle swarm optimization
(GAPSO), and assisted ga particle swarm optimization (AGAPSO) algorithms.

The initial nodes are represented by the green nodes on the left side of the three-
dimensional coordinate system, as illustrated in Figure 5, while the target nodes are
depicted by the blue nodes on the right. These target nodes are further categorized into
goal 1, goal 2, goal 3, and goal 4 based on their respective heights. The experimental results
are visually depicted in Figures 6–9. The positioning and shape of the fill dropping are
identified by the black pattern, the search paths of the GA algorithm are represented by the

Mathematics 2024, 12, 479 20 of 27

light green lines, while the search paths of the GAPSO algorithm are denoted by the blue
lines. Additionally, the final path discovered by the AGAPSO algorithm is indicated by the
red lines.

Figure 5. Schematic of filling environment and target.

Figure 6. Pathway planning chart for goal 1.

The traditional push-pressing method involves pushing the material directly from
the starting point to the target point. This approach is simple and theoretically the most
efficient. However, when the target point is higher, the material needs to be dropped
several times, ultimately affecting filling efficiency. When comparing the paths calculated
by various algorithms, it is observed that the path determined by the AGAPSO algorithm
closely approximates the theoretical optimal path. For target two, the material demand
exceeds what can be pushed directly by the push-press path due to an increased blank
area from the material surface to the target point. Consequently, the optimized path

Mathematics 2024, 12, 479 21 of 27

of the AGAPSO algorithm deviates slightly from the traditional path, while the paths
optimized by the GA and GAPSO algorithms exhibit larger offsets. As for objectives
three and four, the traditional push-press method fails to fulfill the filling requirements,
necessitating additional material dropping to achieve the desired filling material height.
This inadvertently diminishes filling efficiency. Figures 3 and 4 illustrate that in order to
meet the filling material demand, the algorithm-optimized path traverses a portion of the
distance within the filling material, enabling the pushing and pressing of the material.

Figure 7. Pathway planning chart for goal 2.

Figure 8. Pathway planning chart for goal 3.

Mathematics 2024, 12, 479 22 of 27

Figure 9. Pathway planning chart for goal 4.

5.2. Analysis of Filling Effect

To assess the state of the filling material before and after the execution of the algorithms,
100 simulations are carried out for each experiment. Subsequently, the outcomes are
evaluated based on key metrics, including calculation time, path length, amount of material,
and overall efficiency. These parameters are then quantified to derive the average values,
which are subsequently compared to ascertain the efficacy of the filling paths associated
with the three algorithms. The comparison results are detailed in Table 2.

Table 2. Comparison of the specified filling targets with the corresponding algorithm performance.

Target
of Filling

Required
Material

Quantity l(m3)
Algorithm Time for

Computation (s)
Length of
Path (mm)

Actual Material
Quantity (m3)

Redundancy
in Material

Growth Ratio
of Path

Goal 1
(1000, 600, 200) 0.12

Traditional 0.0005 1000.00 0.272 1.267 -
GA 0.194 1034.8 0.255 1.125 0.035

GAPSO 2.564 1004.3 0.273 1.275 0.004
AGAPSO 2.581 1000.9 0.214 0.783 0.001

Goal 2
(1000, 600, 400) 0.1398

Traditional 0.0005 1019.8 0.245 0.753 -
GA 0.197 1060.5 0.244 0.745 0.040

GAPSO 2.563 1035.5 0.220 0.574 0.015
AGAPSO 2.594 1020.5 0.199 0.423 0.001

Goal 3
(1000, 600, 600) 0.1596

Traditional 0.0005 1077.0 0.055 0.655 -
GA 0.195 1097.8 0.168 0.053 0.019

GAPSO 2.586 1095.3 0.130 0.185 0.017
AGAPSO 2.611 1087.0 0.155 0.029 0.009

Goal 4
(1000, 600, 800) 0.1835

Traditional 0.0005 1166.2 - - -
GA 0.198 1369.6 0.200 0.090 0.174

GAPSO 2.597 1288.6 0.192 0.046 0.105
AGAPSO 2.631 1268.4 0.185 0.008 0.088

The redundancy in material k is related to the required material quantity Vn and the
actual material quantity used Vr through the following equation:

k =
|Vr −Vn|

Vn
(43)

Mathematics 2024, 12, 479 23 of 27

A smaller value of k means that the actual amount of material used is closer to the
required amount, which improves filling effectiveness. Conversely, a larger value of k
indicates less efficient filling.

The paper adopts the traditional push-press method of filling as the standard of
reference, as the effectiveness of the filling process is directly proportional to the speed
of the action, and the speed is influenced by the length of the push-press route. Thus, for
a more efficient process, shorter routes are preferred. To measure the efficiency of route
planning, the path’s actual growth rate d is utilized as a parameter, as identified by the
following equation:

d =
Li − L0

L0
(44)

Herein, Li represents the path lengths computed by various algorithms, and L0 stands
for the path lengths obtained from traditional algorithms.

This paper presents a comparative analysis of the filling results before and after path
planning for various filling targets using simulated data. Analysis of the table reveals that
an increase in the target node height results in a corresponding rise in the material demand,
driven by the voiding zone between the heights of the material filling targets. In terms of
calculation time, the traditional pushing method generally requires minimal computation
time and primarily involves identifying the target node. However, as the height of the
pushing target increases, the traditional pushing method struggles to accomplish the
pushing target in a single instance due to the increasing complexity of the algorithm,
consequently leading to an increase in the algorithm’s computation time. Nonetheless, in
comparison with the GAPSO algorithm, the AGAPSO algorithm’s computation time only
sees a marginal increase of 0.03 s. Given the primary goal of ensuring a robust filling effect
and efficiency, this slight increase in computation time is not significant.

As shown in Figure 10, a comparison of the GA and GAPSO algorithms demonstrates
that the AGAPSO algorithm calculates the smallest path growth rate d for both, indicating
that it adheres most closely to the shortest path.

Figure 10. Schematic comparison of the growth ratio of the algorithm-optimized paths under
four objectives.

Figure 11 demonstrates that the GAPSO algorithm, which is proposed in this paper,
has the lowest material redundancy among the four filling objectives, indicating that it best
meets the material requirements.

Mathematics 2024, 12, 479 24 of 27

Figure 11. Comparison of the material redundancy ratios of different algorithms for the four objectives.

The comparison of GAPSO and GA optimization based on precision is presented in
Table 3. The results reveal that AGAPSO optimization led to a substantial improvement
in accuracy during lower-level of planning objectives, with enhancements of 27.57% and
19.16%, respectively. Furthermore, accuracy was also notably enhanced at the highest
level planning objectives, showing an improvement of 3.78% and 8.11%. When taking into
account both the quantity of material and path length, it is apparent that the path length
and material volume, as calculated by the AGAPSOA algorithm, more closely align with
the expected material requirement. This finding aligns with the design goals of the paper’s
path planning.

Table 3. Accuracy improvement performance of AGAPSO over other algorithms for filling route
planning.

Goal AGAPSO→ GA AGAPSO→ GAPSO

Goal1 19.16% 27.57%
Goal2 22.61% 10.55%
Goal3 8.39% 16.13%
Goal4 8.11% 3.78%

6. Discussion

The purpose of this study is to propose an optimization method for the path planning
of solid backfill propulsion machinery in coal mines, the adaptive genetic-particle swarm
optimization algorithm (AGAPSO). Our research questions focus on how to improve the
efficiency and accuracy of path planning through algorithmic optimization.

Through method selection and detailed data analysis, we find that the AGAPSO
algorithm has made significant progress in integrating the advantages of global search
capability and local search, and has achieved higher filling efficiency and safety in coal mine
solid backfill operations. Our research results not only theoretically enrich the research
field of solid backfill propulsion mechanical path planning but also provide a more efficient
solution in practical applications.

Specifically, in our experiments, AGAPSO achieved an average convergence speed
that was approximately three times faster than the base GA algorithm. In terms of accuracy,
the AGAPSO algorithm attained a lower fitness value, indicating enhanced convergence,

Mathematics 2024, 12, 479 25 of 27

by approximately 88% compared to GA and 94% compared to GAPSO. Moreover, the
reduction in path length and material redundancy was substantial. AGAPSO showed a
27.57% improvement in optimization efficiency over the GA algorithm alone and a 19.16%
improvement over the improved GAPSO algorithm.

AGAPSO demonstrates marked improvements in convergence speed and accuracy,
underscoring the critical importance of integrating global and local search capabilities.
Moreover, the substantial advancements of AGAPSO in reducing path length and material
redundancy further substantiate its potential utility in enhancing the safety and economic
feasibility of solid backfilling in coal mines.

While the AGAPSO algorithm exhibits theoretical potential and practical advantages,
it is essential to acknowledge that its real-world application might be constrained by
the need for sophisticated hardware and accurate environmental data. Additionally, the
representation of the coal mine environment in our samples may not fully encapsulate the
complexity of real-world conditions. This limitation underlines the necessity for extensive
empirical testing and validation of the algorithm in diverse and complex mining conditions
to ensure its robustness and reliability.

Future research should prioritize enhancing the adaptability and efficiency of the
AGAPSO algorithm in varied mining environments. This endeavor could involve detailed
empirical testing across different mining conditions, using the data gleaned from such
tests to fine-tune the algorithm. For example, integrating advanced optimization strategies
like deep learning and reinforcement learning could potentially amplify the algorithm’s
performance, as suggested by the substantial improvements observed in our study.

Furthermore, integrating AGAPSO with mine filling systems, monitoring systems, and
automation equipment can significantly augment operational efficiency. This integration
should be backed by a data-driven approach, where insights from real-world applications
of AGAPSO inform the continuous refinement and optimization of the system.

Ensuring environmental protection and operational safety remains paramount. Future
research should leverage the data from AGAPSO’s applications to bolster these aspects,
ensuring that the development of filling technology remains both sustainable and efficient.

Through a meticulous data-driven approach, we aim to further substantiate the theo-
retical and practical contributions of AGAPSO, paving the way for its broader application
and continuous enhancement in the field of coal mine solid backfilling.

7. Conclusions

This study proposes an optimization method, adaptive genetic-particle swarm opti-
mization (AGAPSO), a novel approach designed to optimize path planning for coal mine
solid backfilling and pushing mechanisms. The research addresses the critical need for
enhanced efficiency and precision in path planning within the complex and dynamic en-
vironments of coal mines. The AGAPSO algorithm integrates the powerful global search
capability of GA and the local search advantage of PSO, which fills the gap of coal mine
solid backfill path planning research.

Our meticulous analysis and comparative studies highlight the superior performance
of AGAPSO. The algorithm not only expedites the convergence process but also ensures
higher precision in path planning compared to its counterparts. Specifically, AGAPSO
exhibits a three-fold improvement in convergence speed over the base GA algorithm and a
significant enhancement in stability and average performance by approximately 88% to
94%. These performance metrics underscore the algorithm’s potential to revolutionize path
planning in coal mine solid backfilling, offering substantial improvements in operational
efficiency and safety.

Its ability to optimize path length and reduce material redundancy by substantial
margins (27.57% over GA and 19.16% over GAPSO) not only demonstrates its superiority
in theoretical models but also signifies its potential in practical applications. These improve-
ments bear profound implications for the safety, economic viability, and environmental
sustainability of coal mine solid backfilling operations.

Mathematics 2024, 12, 479 26 of 27

Looking forward, the AGAPSO algorithm opens new avenues for research and ap-
plication. Its adaptability and efficiency in complex mining environments, coupled with
its integration potential with monitoring systems and automation equipment, set the
stage for a new era of intelligent mining operations. The AGAPSO algorithm’s significant
performance enhancements and adaptability pave the way for safer, more efficient, and
environmentally responsible mining practices.

In conclusion, the AGAPSO algorithm stands as a testament to innovative research
and development in the field of mining operations. Its superior performance, significant
improvements in operational efficiency, and potential for broad application underscore its
importance as a groundbreaking contribution to the field. As we continue to refine and
adapt this novel algorithm, we anticipate a future where mining operations are not only
safer and more efficient but also more harmonious with the environmental and economic
frameworks they operate within.

Author Contributions: Conceptualization, Y.L. and Z.Z.; methodology, Y.L. and Z.Z.; software, Z.Z.;
validation, L.B. and Y.W. (Yiying Wang); formal analysis, L.B. and Y.W. (Yanwen Wang); investigation,
L.B. and S.Y.; resources, Y.L.; data curation, Z.Z.; writing—original draft preparation, L.B., Z.Z., X.Z.
and S.Y.; writing—review and editing, L.B., Z.Z., X.Z. and S.Y.; visualization, L.B.; supervision, L.B.;
project administration, Y.L. and Y.W. (Yanwen Wang) and L.B.; funding acquisition, Y.L. and Y.W.
(Yiying Wang). All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Hebei Provincial Natural Science Foundation Project
(E2020402064).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zhang, J.; Tu, S.; Cao, Y.; Tan, Y.; Xin, H.; Pang, J. Research progress in underground intelligent sorting and in-situ filling

technology for deep coal mines. J. Min. Saf. Eng. 2020, 37, 1–10+22.
2. Liu, J.; Bi, J.; Zhao, L.; Xie, G. Research and application on automatic control of comprehensive mechanized solid backfill coal

mining. Coal Sci. Technol. 2016, 44, 149–156.
3. Zhang, P.; Li, F.; Zhu, H.; Niu, H.; Li, X. Statistical analysis and prevention countermeasures of coal mine accidents from 2008 to

2020. Min. Saf. Environ. Prot. 2022, 49, 128–134.
4. Miao, X. Progress of fully mechanized mining with solid backfilling technology. J. China Coal Soc. 2012, 37, 1247–1255.
5. Li, J.; Kou, Y.; Yang, Z.; Wang, S. Summary of research status of ‘three under’ coal filling mining. Sci. Technol. Innov. 2012,

12, 43–44.
6. Wang, G.; Wang, H.; Ren, H.W.; Zhao, G.R. Scenario objectives and development path of smart coal mine 2025. J. China Coal Soc.

2018, 43, 295–305.
7. Liu, J.; Li, X.; He, T. Current status and development of backfill mining in China. J. Coal Sci. Eng. 2020, 26, 141–150.
8. Zhang, J.; Miao, X.; Guo, G. Development Status of Backfilling Technology Using Raw Waste in Coal Mining. J. Min. Saf. Eng.

2009, 26, 7.
9. Liu, J. Research and Application of Kilometer Deep Well Filling Mining Technology and Equipment. Coal Sci. Technol. 2013, 41, 5.
10. Bo, L.; Yang, S.; Liu, Y.; Zhang, Z.; Wang, Y.; Wang, Y. Coal Mine Solid Waste Backfill Process in China: Current Status and

Challenges. Sustainability 2023, 15, 13489. [CrossRef]
11. Liu, J.; Zhao, Q. Coal Mining by Coal Filling; Coal Industry Press: Beijing, China, 2011.
12. Gao, H.; Zhao, L.; Du, X.; Yuan, W. Research and design of multi-hole bottom discharge filling scraper conveyor. Coal Mine Mach.

2014, 6, 131–133 [CrossRef]
13. Wei, G.; Li,Y. Superstatic filling hydraulic support structure. Coal Mine Mach. 2015, 36, 2.
14. Bo, L.; Yang, S.; Liu, Y.; Wang, Y.; Zhang, Z. Research on the data validity of a coal mine solid backfill working face sensing

system based on an improved transformer. Sci. Rep. 2023, 13, 11092. [CrossRef] [PubMed]
15. Zhang, Q.; Zhang, J.; Wu, X.; Huang, Y.; Zhou, N. Research on the reasonable tamping distance from the top of the hydraulic

support for solid-filled coal mining. J. Coal 2013, 38, 6.

http://doi.org/10.3390/su151813489
http://dx.doi.org/10.13436/j.mkjx.201406059
http://dx.doi.org/10.1038/s41598-023-38365-6
http://www.ncbi.nlm.nih.gov/pubmed/37422513

Mathematics 2024, 12, 479 27 of 27

16. Yan, S.; Shi, Y.; Wang, H.; Wang, Y. Experimental Research and Application of Solid Filling Cementitious Materials. Coal Eng.
2022, 3, 54.

17. Russell, S.J.; Norvig, P. Artificial Intelligence a Modern Approach; Pearson: London, UK, 2010.
18. Deng, Y.; Chen, Y.; Zhang, Y.; Mahadevan, S. Fuzzy Dijkstra algorithm for shortest path problem under uncertain environment.

Appl. Soft Comput. 2012, 12, 1231–1237. [CrossRef]
19. Zong, T.; Li, F.; Zhang, Q.; Sun, Z.; Lv, H. Autonomous Process Execution Control Algorithms of Solid Intelligent Backfilling

Technology: Development and Numerical Testing. Appl. Sci. 2023, 13, 11704. [CrossRef]
20. Li, F.; Da Xu, L.; Jin, C.; Wang, H. Intelligent bionic genetic algorithm (IB-GA) and its convergence. Expert Syst. Appl. 2011,

38, 8804–8811. [CrossRef]
21. Liu, Y.; Wang, C.; Wu, H.; Wei, Y.; Ren, M.; Zhao, C. Improved LiDAR Localization Method for Mobile Robots Based on

Multi-Sensing. Remote Sens. 2022, 14, 6133. [CrossRef]
22. Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef]
23. Mirjalili, S.; Mirjalili, S. Genetic algorithm. In Evolutionary Algorithms and Neural Networks: Theory and Applications; Springer:

Berlin/Heidelberg, Germany, 2019; pp. 43–55.
24. Huang, Y. Advances in artificial neural networks—Methodological development and application. Algorithms 2009, 2, 973–1007.

[CrossRef]
25. Schutte, J.F.; Reinbolt, J.A.; Fregly, B.J.; Haftka, R.T.; George, A.D. Parallel global optimization with the particle swarm algorithm.

Int. J. Numer. Methods Eng. 2004, 61, 2296–2315. [CrossRef]
26. Naderi, K.; Rajamäki, J.; Hämäläinen, P. RT-RRT* a real-time path planning algorithm based on RRT. In Proceedings of the 8th

ACM SIGGRAPH Conference on Motion in Games, Paris, France, 16–18 November 2015; pp. 113–118.
27. Zhao, Y.; Zheng, Z.; Liu, Y. Survey on computational-intelligence-based UAV path planning. Knowl.-Based Syst. 2018, 158, 54–64.

[CrossRef]
28. Xu, J.; Huang, Y. Path Planning of Robot in Coal Mine Using Genetic Membrane Algorithms. In Proceedings of the 2nd

International Conference on Information Technologies and Electrical Engineering, Zhuzhou, China, 6–7 December 2019; pp. 1–5.
[CrossRef]

29. Cui, S.G.; Dong, J.l. Detecting Robots Path Planning Based on Improved Genetic Algorithm. In Proceedings of the 2013 Third
International Conference on Instrumentation, Measurement, Computer, Communication and Control, Shenyang, China, 21–23
September 2013; pp. 204–207. [CrossRef]

30. Quan, G.; Tan, C.; Hou, H.; Wang, Z. Cutting path planning of coal shearer base on particle swarm triple spline optimization.
Coal Sci. Technol. 2011, 39, 77–79.

31. Wang, S.; Ma, D.; Ren, Z.; Qu, Y.; Wu, M. Study on Method of Cutting Trajectory Planning Based on Improved Particle Swarm
Optimization for Roadheader. In Advances in Swarm Intelligence, Proceedings of the 10th International Conference, ICSI 2019, Chiang
Mai, Thailand, 26–30 July 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 167–176.

32. Wang, X.; Shi, Y.; Ding, D.; Gu, X. Double global optimum genetic algorithm–particle swarm optimization-based welding robot
path planning. Eng. Optim. 2016, 48, 299–316. [CrossRef]

33. Tong, Y.; Zhong, M.; Li, J.; Li, D.; Wang, Y. Research on intelligent welding robot path optimization based on GA and PSO
algorithms. IEEE Access 2018, 6, 65397–65404. [CrossRef]

34. Wang, X.C.; Yue, X.G. Algorithm of coal mine rescue robot model based on PSO and GEP. Appl. Mech. Mater. 2013, 416, 739–742.
[CrossRef]

35. Jiao, S.; Liu, J.; Shang, L. Backfill automation system of comprehensive mechanized solid backfill coal mining. Coal Sci. Technol.
2015, 43, 109–113.

36. Wang, X.; Huang, X.; Bian, F.; Sun, J. 3D triangulation of terrestrial laser scanning data based on spherical projection. In
Proceedings of the Geoinformatics 2007: Cartographic Theory and Models, Nanjing, China, 25–27 May 2007; SPIE: Bellingham,
WA, USA, 2007; Volume 6751, pp. 59–67.

37. Monsalve, J.J.; Baggett, J.; Bishop, R.; Ripepi, N. Application of laser scanning for rock mass characterization and discrete fracture
network generation in an underground limestone mine. Int. J. Min. Sci. Technol. 2019, 29, 131–137. [CrossRef]

38. Jiang, Q.; Shi, Y.E.; Yan, F.; Zheng, H.; Kou, Y.Y.; He, B.G. Reconstitution method for tunnel spatiotemporal deformation based on
3D laser scanning technology and corresponding instability warning. Eng. Fail. Anal. 2021, 125, 105391. [CrossRef]

39. Dolgopolik, M.V. Smooth exact penalty functions II: A reduction to standard exact penalty functions. Optim. Lett. 2016,
10, 1541–1560. [CrossRef]

40. Mohamed, K.S. Bio-Inspired Machine Learning Algorithm: Genetic Algorithm. In Machine Learning for Model Order Reduction;
Springer International Publishing: Cham, Switzerland, 2018; pp. 19–34.

41. Yang, H.; Su, M.; Wang, X.; Gu, J.; Cai, X. Particle sizing with improved genetic algorithm by ultrasound attenuation spectroscopy.
Powder Technol. 2016, 304, 20–26. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.asoc.2011.11.011
http://dx.doi.org/10.3390/app132111704
http://dx.doi.org/10.1016/j.eswa.2011.01.091
http://dx.doi.org/10.3390/rs14236133
http://dx.doi.org/10.1109/MCI.2006.329691
http://dx.doi.org/10.3390/algor2030973
http://dx.doi.org/10.1002/nme.1149
http://dx.doi.org/10.1016/j.knosys.2018.05.033
http://dx.doi.org/10.1145/3386415.3387084
http://dx.doi.org/10.1109/IMCCC.2013.50
http://dx.doi.org/10.1080/0305215X.2015.1005084
http://dx.doi.org/10.1109/ACCESS.2018.2878615
http://dx.doi.org/10.4028/www.scientific.net/AMM.416-417.739
http://dx.doi.org/10.1016/j.ijmst.2018.11.009
http://dx.doi.org/10.1016/j.engfailanal.2021.105391
http://dx.doi.org/10.1007/s11590-015-0961-9
http://dx.doi.org/10.1016/j.powtec.2016.08.027

	Introduction
	Solid Backfilling Path Planning Model
	Spatial Modeling of the Extraction Zone
	Objective Function for Solid Backfilling Path Planning
	Constraint Conditions
	Volume Constraints on Path Planning
	Length Constraints on Path Planning

	The Penalty Function

	Adaptive Genetic-Particle Swarm Hybrid Algorithm Based on Path Planning for Solid Backfilling Mechanisms
	Particle Swarm Optimization
	Genetic Algorithm
	Coding Design
	Initializing Populations
	Fitness Function
	Selection Process
	Crossover and Mutation Operations
	The Recurring Process of the Algorithm

	Genetic-Particle Swarm Optimization
	Adaptive Genetic-Particle Swarm Optimization

	Algorithm Performance Test and Analysis
	Model Simulation Experiment and Analysis
	Model Simulation Experiment
	Analysis of Filling Effect

	Discussion
	Conclusions
	References

