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Abstract: Intelligent fault diagnosis encounters the challenges of varying working conditions and
sample class imbalance individually, but very few approaches address both challenges simultaneously.
This article proposes an improvement network model named ICDAN-F, which can deal with fault
diagnosis scenarios with class imbalance and working condition variations in an integrated way. First,
Focal Loss, which was originally designed for target detection, is introduced to alleviate the sample
class imbalance problem of fault diagnosis and emphasize the key features. Second, the domain
discriminator is improved by the default ReLU activation function being replaced with Tanh so that
useful negative value information can help extract transferable fault features. Extensive transfer
experiments dealing with varying working conditions are conducted on two bearing fault datasets
with the effect of class imbalance. The results show that the fault diagnosis performance of ICDAN-F
outperforms several other widely used domain adaptation methods, achieving 99.76% and 96.76%
fault diagnosis accuracies in Case 1 and Case 2, respectively, which predicts that ICDAN-F can handle
both challenges in a cohesive manner.

Keywords: fault diagnosis; transfer learning; domain adaptation; conditional domain adversarial
network; class imbalance

MSC: 68T01

1. Introduction

Monitoring the operational status of rotating machines has been highly emphasized
in the field of engineering, and one of the key issues is the need for timely and effective
diagnosis and feedback of faults occurring in the machines [1] to reduce economic losses
and potential personal hazards. Deep learning (DL) and measurement technology (MT)
have made remarkable achievements in the recent past; therefore, many scholars have
combined these techniques to conduct in-depth research on fault diagnosis (FD) as a prac-
tical engineering problem [2—4]. The DL-based FD, which allows one to learn complex
input-to-output functions directly from data, is considered a promising solution in to-
day’s industrial data volume [5]. It reduces human intervention compared to traditional
diagnostic methods that need to be combined with signal processing techniques.

However, a machine in reality often operates under conditions with differences
(e.g., speed, temperature, load, etc.), and the application of DL-based FD methods will
inevitably produce domain shift phenomena due to these differences, i.e., there is an incon-
sistent distribution that leads to significant diagnosis performance deterioration between
the data that were originally learned and the data that are about to be diagnosed [6], as
shown in Figure 1.
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Figure 1. Adverse effect of domain shift.

Moreover, in most similar studies, the DL-based FD methods would assume that the
probability of occurrence is balanced and the same between different data samples, but this
is contrary to the situation where the normal state is more in real industrial operation. In
other words, as shown in Figure 2, class imbalance can also discredit DL-based FD because
the model is inclined to be over-trained by the classes with more data samples, while classes
with fewer data samples will be squeezed by the decision boundary [7]. Thus, there is an
urgent need to study FD methods that are closer to real-world scenarios where there are
working differences and data class imbalance.
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Figure 2. Decision squeeze from class imbalance.

It has been widely reported that many scholars in the field of FD have also realized
the limitations of the above DL and achieved exciting research results using the transfer
learning (TL) approach. In TL-based FD methods, data with distributional differences are
divided into source and target domains and attempt to eliminate the differences between the
two domains as much as possible during model training to accomplish domain adaptation
(DA). DA aims to map the data to a common feature space and then extracts the transferable
features that follow similar distributions across the domains [8] and ultimately diagnoses
the brand-new data in the target domains. DA is a much-studied TL subtopic, and in the
recent past, its research focus has been centered on two mechanisms: statistical metric-based
versus adversarial-based [9].

For the former, representative techniques such as adaptive batch normalization (Ad-
aBN) [10], maximum mean difference (MMD) [11], and correlation alignment (CORAL) [12]
have been applied to FD. Zhang [13] et al. obtained statistical information in the target
domain to be fed back to the global with the help of AdaBN, which narrowed the distribu-
tional differences between the rolling bearing data domains and enhanced the effectiveness
of FD in different working conditions. Qian [14] et al. relied on MMD and CORAL to
transfer high-level representations of different domains to the same region in the subspace
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to design new paradigm metrics and constructed parameter-sharing CNNs to optimize
the difference in distributions obtained by the metrics to cope with the problem of bearing
data domain shift in different machines FD. The limitation of these methods, however, is
that they require human design or improvement in the measure of distribution distance,
but human design can bias the effect of DA between data. In fact, when the distribution
characteristics in DA cannot be calculated or are difficult to obtain, model networks that
rely on data interpretation cannot be led to learn [15].

The second mechanism, which seems to have gained more attention recently, is
inspired by the unique idea of adversarial games derived from generative adversarial
networks (GAN) [16] and was initially proposed to be applied in computer vision for
generating fake-to-fake images. The adversarial domain adaptation (ADA) strategy focuses
more on robustly and adaptively extracting features that are invariant between two do-
mains by constructing a domain adversarial neural network (DANN) [17] rather than
just correcting the distribution. Li [18] et al. used DANN to optimize FD under altered
operating conditions, without manually designing distance metrics and also achieved
good FD results. Furthermore, Long [19] et al. pointed out that the ADA strategy lacks
the bundling relationship between search features and classes, which is not conducive to
capturing the multimodal structure behind data distribution. Specifically, the marginal
distribution is the absolute sole protagonist in ADA, but there is still room for improvement
in the conditional distribution in practice. With this in mind, Yu [20] et al. introduced
the conditional adversarial domain adaptation (CADA) strategy to their FD task, which
uses conditional domain adversarial networks (CDAN) to force the adversarial process to
acquire features with intra-class compactness and inter-class separability, and experiments
proved that the optimization effect is robust.

Nevertheless, there are two unexplored issues with these excellent works. One is that
in the FD process of domain-adaptive DA, the effects of the importance of the class and the
number of samples within the class are ignored, and the samples are considered equally
important when they enter the network, implying that the fault features are as valuable as
the normal features and that the class with a large number of samples will receive more
attention. Secondly, in ADA or CADA, domain discriminators often have to be designed
more fragile, as a strong discriminator is not conducive to feature extractor (generator)
optimization [21]. This will derive the need to rationalize and improve the fragile domain
discriminators to obtain more robust and extensive information to guide the DA process.

Responding to the two issues mentioned above, this article proposes a new FD method
that improves the CDAN and can be used under different working conditions with class
imbalance data, which is referred to as ICDAN-F. Its main contributions are as follows:

1.  Animproved conditional domain adversarial network model for FD, ICDAN-F, is
proposed. Unlike previous methods that focus only on a single challenge, it is able to
address both challenges of class imbalance and working condition variation in FD.

2. The innovation is to introduce Focal Loss as a constraint in the training phase of
ICDAN-F This loss function can effectively deal with the problems of class imbalance
and feature focus inconsistency, and with low computational cost, it can be easily
applied to the network to optimize the FD model.

3. Replacing the ReLU activation function of the domain discriminator in conditional
domain adversarial networks with Tanh is another improvement. This modification
enables the negative value information to participate in the domain adaptation process
and better extracts those metastable fault features that are not affected by changes in
working conditions.

4. The feasibility of ICDAN-F and the effectiveness of the improvement are verified
by a large number of bearing fault experiments. Compared with similar methods
that address similar single challenges, ICDAN-F has an advantage in the accuracy of
bearing fault diagnosis. The experimental results show that ICDAN-F can accomplish
FD under the intertwining of class imbalance and working condition changes.
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For the remaining sections, Section 2 presents the necessary assumptions of this
research and the relevant theorems for building our proposed method. Experimental
details and analysis of results will be placed in Section 3. Section 4 is a discussion and
Section 5 will summarize the whole article.

2. Materials and Methods
2.1. Problem Definition and Assumptions

It is hoped that enough knowledge for FD can be learned from the existing working
condition data (source domain) to be transferred to the data that are available and generates
the working condition variation (target domain). To facilitate understanding of the core of
this work, some basic assumptions are presented here:

(1) Thesource data Ds= {(x}, ¥?) }f\il and target domain data Dy = {(x]t) }]N:t1 come from
the same device. These two domains are label-consistent, meaning the fault types in
the source domain are fully present in the target domain. Additionally, there is an
imbalance as fault class data are lower in quantity compared to the normal class.

(2) The source domain samples x°, sample size of N, are very sufficient subject to learning,
i.e., the fault types (labels) y; can be labeled, and obey a probability distribution
Cp = P(x;).

(3) The target domain samples x! and sample size of N, are recently obtained, and their
labels are not yet known, as they are on another distribution C; = Q (x]t) ,(Cp # Cy).

(4) Expect that there is a method to build a neural network model M(-) capable of
accomplishing the FD task § = M(x) of the target domain data without trying to
access the labels of the target domain and only via the source domain knowledge
already learned.

2.2. Domain Adversarial Neural Network

As previously summarized, DANN has become a popular and powerful method to
minimize domain differences by means of adversarial training [22]; it aims to locate a
representation space where the two domains are indistinguishable but where samples from
the source domain can still be correctly classified. This method is inspired by generative
adversarial networks (GANs), which internally generate an adversarial process in which
the generator learns to keep confusing the discriminator while the discriminator strives
not to be duped and ultimately seeks a Nash equilibrium [23]. DANN is two components
simulating a min—-max game, where the domain discriminator D is trained to distinguish
whether a feature belongs to the source or the target domain, while the other component,
the feature generator (extractor) with shared parameters, F, is trained to maximize the
loss aiming to fool D. To emphasize, a source classifier C, is required, and the loss of C is
minimized in order to guarantee a small classification error.

The structure of DANN is shown in Figure 3. During runtime, the source domain
samples are first utilized to calculate L¢ via cross-entropy (CE) loss as follows:

Le = ~E(x ), ) Liys—c 108[Ce(F(x]))] 1)
c=1

where 7, is the number of classes, C(-) is the likelihood that the classifier C think input is
predicted to be class ¢, F(x{) is the output of the feature extractor F, E is the mathematical
expectation, x; is the i-th sample from source domain, ¥ is the label corresponding to it,
and 1 is the indicator function. Next, using the limited information about the target domain,
the stimulus D identifies the domain labels of the current features as well as directs F to
extract domain-invariant features.
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The domain label 0 or 1 corresponds to source or target domains, and Lp generated
by D can be computed according to the binary cross-entropy (BCE) loss as F is continu-
ously directed:

Lp = ~Eypp, log[D(F(x3))] ~ E..p, log[1 ~ D(F(x))] @

where D(-) is the likelihood that the computation will be predicted to have domain label 0.

Then, the optimization objective of the whole structure is to expect the total feedback
LpannN to be minimal. Specifically, F and C are updated to shrink L for better classifications
while expanding to constrain F to find domain-invariant features that can lie to D:

Lpann = Lc — ApannLp 3)

where Apann is a parameter for adjusting weights.

classifier
4 - AY
[
 f5) C
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4 - N
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SN_ - \\ 7
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feature gradient reverse
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Figure 3. Structure of the DANN.

2.3. Conditional Domain Adversarial Network

CADA sought to pull different in-class features closer together separately, reducing
conditional distribution differences explicitly, which drove the creation of conditional
domain adversarial networks (CDAN) [19]. It aims to ameliorate the problem that exists
with the use of DANN: the alignment of feature distributions within the source or target
domains may not be secured even when the discriminator has successfully lied.

The structures of the two networks are much the same and have the same overall
goal. What is different is that CDAN conditionalizes the classifier prediction during the
optimization of the domain discriminator. That is, the inputs to D are now modified
according to Equation (4) to receive information containing categories to better align
features of the same class, regardless of the domain they come from.

h=F(x) ® C(F(x)) 4)

where ® is a multilinear mapping operation that captures the multiplicative interaction
between the two as well as multimodal information about the distribution. In addition, D
will now be guided by Equations (5)-(7) to focus on how to ignore hard-to-identify samples
and improve the transferability.

g = C(F(x)) (5)
H(g) = —ilgc log gc (6)

w(H(g)) = 14 " )
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The L loss needs to be calculated during training as follows:
Lpr = —E.p,w(H(g})) log[D(h})] — EX;NDtW(H(gf)) log [1 — D(h,t)} ®)
There is no change in the optimization of the overall objective:

Lecpan = Le — AcpanLp )

2.4. ICDAN-F for Fault Diagnosis

The structure of the proposed ICDAN-F, which will be used for FD, is demonstrated
here, as shown in Figure 4. Completely consistent with the CDAN’s structure, it contains
the three components necessary to accomplish unsupervised CADA: the feature generator
(extractor) F is served by a convolutional neural network (CNN); behind F is connected the
fully connected layer (FC or Linear) acting as the classifier C, and the domain discriminator
D is the simplest multilayer perceptron (MLP).

Overall, the optimization computation process is the same as CDAN, with D being
used to encourage F to extract domain-invariant features that can be transferred between
the two domains. However, improvements are planned to use a new Loy = L, instead
of the universal Equation (1), and after exploration, it is determined that the performance
of D is enhanced by applying the Tanh activation function. Next, some effort is devoted to
elaborating the details of this. Now, the optimization of the overall objective is

Licpan—r = Lcr — AcpanLpy (10)

classifier
feature Lo~

extractor L fs
\

gradient reverse
~~._ layer

-~ ~y =
1 ot
W WY
N NV
parameter-shared
classifier

@_ F
)—

Figure 4. Structure of the CDAN or the ICDAN-F.

2.4.1. Focal Loss

Both class imbalance and sample feature emphasis are known to negatively affect the
convergence of the network and the final FD performance [24,25]. In one-stage detectors, a
similar situation occurs when the potentially more important foreground portion of the
detected image is interfered with by a large amount of background, and the candidate
proposal contains too many useless and easily classified background samples [26]; this leads
to a class sample imbalance that is detrimental to training. Surprisingly, this phenomenon
is optimized by Focal Loss [27], where in a bid to guide the training of network model for
a detection task, samples are defined as negative and positive due to large or small data,
respectively, and try to reduce the proportion of easy example loss, making the model pay
more attention to the learning of hard ones [28]. Following the original derivation, the BCE
loss function is expanded as in Equation (11):

Lpce = —(ylog(§) + (1 —y)log(1 — 7)) (11)
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where y and § are genuine label values and predicted values, respectively. For a better
understanding, the BCE loss will be recast as follows in Equations (12)—(14):

sy —log®),  y=1
CE(#,y) = {_10g(1 — 1), otherwise (12

Define a new variable p;:

PR e (13)

1—19, otherwise

Now, BCE loss is rewritten to be more concise and clearer:

Lpce = CE(pt) = —log(pt) (14)

It is easy to promote multi-classification; the CE loss function expansion for multi-
classification is derived as shown in Equation (15):

1 N C
Lece = _NZ Y 1py,—qlog(pic) (15)
i=1c=1

where p; . is the probability matrix that the i-th sample is predicted to be in class ¢, C is the
number of classes, and N is the number of samples.

The CE loss does not distinguish between the samples in terms of difficulty or focus
on the presence of imbalance; therefore, focal loss is then tailored to design two parameters,
v and «, to control the impact to be faced:

Lroca = &-(1 — pt)"-Lpce (16)

Similarly, when defining a new variable, p., Equation (18) is obtained for multi-
classification,; the difference is that « is now a vector instead of a number. As previously
described, the focal loss will be applied to our method, i.e., Lcr = Lpyeq-

71, y=1
_ R EE TP 17
Pe Tne—1, y=mnc—1 17
- +d2+. +Pn-1), Yy=nc
Lrocar = & - (1= pe)” - Lece (18)

where 7 is the focal parameter that narrows the weights of easily classified samples, and «
is the weight parameter that mitigates the imbalance problem. The setting suggested by the
designer is y = 2, and « is set freely at a ratio of 3 to 1 for positive and negative samples.

For inaccurately classified samples, the loss is unchanged, and for accurately classified
samples, the loss becomes smaller. The network model will focus more on how to classify
the samples that harm the network performance better rather than just how to classify by
using the information provided by the majority of the samples [29]. Doing so overcomes
the bad effects of class imbalance on model training while also learning hard-to-classify
samples during training, ultimately boosting the classification of the model.

2.4.2. Feature Extractor

In the proposed method, two CNNs with shared parameters are deemed to constitute
the feature extractor as a whole. The popularity of CNNSs is largely attributed to their
hierarchical feature extraction ability [30], and the core convolutional kernel operation is
computed as in Equation (19):

Zy = Wi * x + by (19)
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where Z; is the k-th nonactivated feature map, Wy is the k-th convolution kernel, x is the
input feature map of a certain convolution kernel, and by is the bias.

The details of the CNN paradigm have not been uniformly specified in most studies,
and here, we first referred to an excellent comparative survey [31] to gather insights,
and then, based on the findings from that study, we conducted a design of experiments
to determine the structure and parameters of our feature extractor, F. This ensures that
our design aligns with validated research results and exhibits a high level of reliability
and utility. As a result, our feature extractor, F, incorporates the optimal structure and
parameters derived from the study and our tuning tests. As part of our classification
pipeline, we employed the fully connected layer (FC) and Softmax activation function as
the classifier, C, to predict the final classification results.

Using larger convolutional kernels as shown in Table 1 (e.g., 15 kernel size) in the
first layer helps the network to globally perceive larger local features. Complex and
abstract features can be extracted gradually by stacking meticulous convolutional layers
(e.g., 3 kernel size). Batch normalization helps to speed up training and stabilize the
model, while max-pooling reduces dimensionality and improves translation invariance.
A culling layer mitigates overfitting, and a fully connected layer maps features to specific
classes using Softmax activation for multi-class classification. These design choices improve
performance and generalization.

Table 1. Parameters of the feature extractor and the classifier.

Layer Parameter Setting ! Output Size Activation Function
Conv_1_F k=15s=1,p=0 16 x 1010 -
BatchNormal_1_F - 16 x 1010 ReLU
Conv_2_F k=3,5s=1,p=0 32 x 1008 -
BatchNormal_2_F - 32 x 1008 ReLU
MaxPooling_1_F k=s=2 32 x 504 -
Conv_3_F k=3,s=1,p=0 64 x 502 -
BatchNormal_3_F - 64 x 502 ReLU
Conv_4_F k=3,s=1,p=0 128 x 500 -
BatchNormal_4_F - 128 x 500 ReLU
AdaptiveMaxPooling_1_F out=4 128 x 4 -
Linear Layer_1_F in =512, out = 256 256 RelLU
Dropout_1_F 0=05 256 -
Linear Layer_2_F in = 256, out = 256 256 ReLU
Dropout_2_F 0=05 256 -
Linear Layer_2_C in = 256, out = 10 10 Softmax

s “

! In Parameter Setting, “k” is kernel size, “s” is stride, “p” is padding, “in/out” is in/out features size, and “0” is
odds of being dropped. In addition, the output size of C depends on the number of fault types being diagnosed.

o
S

2.4.3. Domain Discriminator

Domain discriminators D are generally designed to be very simple, which is the
consensus feedback from most of the relevant research. A strong discriminator will stop
updating the gradient too early, its loss converging quickly to zero; thus, no reliable path
for gradient updates to the generator to guide feature generation or feature extraction [32],
so the adversarial process will move in a bad direction. Therefore, following the design of
some articles [17,19,31,33], a rudimentary MLP is identified initially as the D, and Table 2
has all the details of it but does not use the ReLU activation function as in their design.

Table 2. Parameters of the domain discriminator.

Layer Parameter Setting ! Output Size Activation Function
Linear Layer_1_D in = 256, out = 1024 1024 Tanh
Dropout_1_D 0=05 1024 -
Linear Layer_2_D in = 1024, out = 1024 1024 Tanh
Dropout_2_D 0=05 1024 -
Linear Layer_2_D in=1024, out=1 1 Sigmoid

! In Parameter Setting, “in/out” is in/out feature size, and “0” is odds of being dropped.
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Meanwhile, in terms of efficiently updating the parameters to guide the F to extract
domain-invariant features, the use of a gradient reversal layer (GRL) is mandatory [23], the
principle of which is shown in Equations (21) and (22):

Ry(x) = x (20)
iR,
A= @1)
2
= | 22)

where [ is the matrix to be inverted, and A is the previously occurring parameter for
adjusting weights. The inversion proceeds dynamically with the ratio p of the current
iteration to the total iterations.

2.5. Activation Functions

Activation functions (AF) are so essential in neural networks that they allow them to
be utilized in more nonlinear problems [34]. Here, we present the computational principles
of five AF used in this research.

ReLU [35] is fast and efficient to compute and is now the preferred choice for activating
networks. It will directly ignore and assign zero values to negative values, thus helping to
alleviate the problem of gradients that tend to vanish, which is one of the reasons why it is
so fast [36].

ReLU(x) = max{0, x} (23)

However, negative values are sometimes meaningful, so there are other AF that refine
the negative semi-axis expression of ReLU, such as LeakyReLU [37] and PReLU [38].

LeakyReLU(x) = {“x * ig (24)
x x>

where « is the slope parameter, typically taken to be 0.01, which allows for a slight leakage
of information from the negative axis rather than zeroing out.

aix; x; <0
Xi x; > 0

PReLU(x) = {

(25)

Aa; = uAa; + eg—{i

where i is the present channel and «; is an adaptive slope parameter that can receive the

learning rate € and momentum y during training, and this information will determine an

adaptive update of task function € to make the activation more suitable for the nonlinear

problem at hand.

Tanh [39] has been widely used in neural networks before the advent of ReLU, and

due to its ability to provide enough information upon activation, its suitability for some
specific tasks is outstanding even now [40].

eX — pX
Tanh(x) = = (26)

Mish [41] can be viewed as an extension of Tanh, although the former is more sensitive
to information that is around the zero point.

Mish(x) = x-Tanh(In(1 + €*)) (27)
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By looking at the details in Figure 5, ReLU appears as a slanted line passing through
the origin, growing linearly when the input is greater than zero, and truncating to zero in
the negative region. LeakyReLU introduces a small value of negative slope in the negative
region, which makes the curve have a certain output in the negative region. PReLU adapts
to adjust the slope in the negative region by learning the parameters, which makes the
curve more flexible in the negative region [42]. Its slope in the negative region is greater
than LeakyReLU, and this green line will oscillate like a pointer in the third quadrant until
it stops learning.

Images of the Activation Functions

3 - — RelU
—— LeakyReLU
—-—- PReLU
| — |,
PEEE— Y T} |
: 151 — LeakyReLU
g 1.04 == PReLU
£ ' —— Tanh
% é 051" — Mish
) 2 0.0 .
. E =
_2 T 1T | I~ 8 -0.5 ./’./‘
~~~~~~~~~~~~~~~~ -1.04 4/'/
~~~~~~~~~~~~~ -15
_4 1 R B+
20" !
-4 -2 0 5 .
I ' ( ‘ Input Value
-15 -10 -5 0 3 i -

Input Value

Figure 5. Image of the activation functions.

Tanh’s curve shows that it can map values between —1 and 1. It has a higher slope in
the region where the input is close to zero, which is good for distinguishing small feature
differences, but it will saturate in the region close to the boundary. Mish also has a smooth
nonlinearity, with a central localization similar to Tanh’s curve, and performs well in the
region close to zero, but Mish becomes smoother in the tails on the negative semi-axis and
does not saturate on the positive semi-axis.

2.6. Experimental Data

Two bearing fault case datasets will be used for FD experiments. Data are normalized
by yu — o after being divided as samples, and no data enhancement or transformed image
operations are applied. The single sample data point length is 1 x 1024. The details of these
two datasets are illustrated below.

2.6.1. Case 1

The CWRU dataset [43,44] is widely used to validate FD methods for bearings, and
the equipment used to acquire the bearing’s vibration signals is shown in Figure 6. In
this case dataset, the faults are artificially synthesized into the bearings employing the
EDM technique.
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Figure 6. The CWRU equipment for collecting faults data.

Using 12 kHz drive-end bearing data, the SKF 6205 bearings had nine different single
fault types. Each of the three critical components (inner ring, rolling balls, and outer ring)
had three fault degrees (0.007, 0.014, and 0.021 inches) in that order. There are also normal
bearing data with more adequate signal lengths, so 10 fault types in total. Another key
piece of information is that the bearings for each of the 10 fault types were run separately
and collected from 4 working conditions, as seen in Table 3.

Table 3. Case 1 differences in working conditions.

Working
Condition Marker

Motor Load and
Approx. Speed !

A B C D

0 HP, 1797 r/min 1 HP, 1772 r/min 2 HP, 1750 r/min 3 HP, 1730 r/min

1 Load zone centered at 6:00.

Table 4 shows the divided Case 1 data samples, which were not overlapped or rotated,
and each sample 1 x 1024 long already contains about 2.5 turns of work data. For anyone
working condition, there are many more samples of normal types than of a certain fault
type, while there even is a slight decrease for some types. These phenomena are consistent
with realistic imbalanced data that we are concerned with in our study.

Table 4. Case 1 experimental data.

Working Condition
Fault Type Fault Degree (Inches) Fault Label

A B C D
Normal / 0 2351 470 475 475
0.007 1 120 120 120 120
IRF 0.014 4 115 115 115 115
0.021 7 120 120 120 120
0.007 2 120 120 115 115
BF 0.014 5 120 120 120 120
0.021 8 120 115 120 120
0.007 3 120 120 115 120
ORF 2 0.014 6 115 120 120 120
0.021 9 120 120 120 120

1 The value here indicates that the number of normal-type samples labeled 0 in working condition A is 235. 2 The
fault location of the ORF is very close to the load center.

An image of the samples with different fault labels over time is shown in Figure 7,
utilizing the Case 1 dataset run by A working condition. It enables further observation of
the degrees of similarity or difference between samples.
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Figure 7. Changes in samples with different fault labels over time (Case 1 A).

2.6.2. Case 2

The JNU dataset [45,46], which comes from Jiangnan University, is another experimen-
tal case. The sensor PCB MA352A60 with a 50 kHz sampling frequency collected vibration
signals from N205 and NU205 bearings during work. Its bearings faults were simulated
inner ring breakage (IB), a certain rolling-body breakage (RB), and outer ring breakage (OB);
this breakage is the same and slight, caused by man-made wire-cutting. Table 5 shows the
key information for this case, with NB meaning a normal bearing that had no damages.

Table 5. Case 2 key information.

Working Condition Marker E F G
Approx. Speed 600 r/min 800 r/min 1000 r/min
Bearine T nd Fault N205: NB, OB, RB  N205: NB, OB, RB  N205: NB, OB, RB
earing Lype and Fautis NU205 ': IB NU205: IB NU205: IB

1 N or NU does not affect their identical properties, only the way the parts are separated.

Table 6 shows the data sample division. In this bearing case, the data in the normal
class also far exceed the data in any one fault class and are close to the sum of all fault
classes data. Figure 8 presents different data samples from the G operating condition run
in Case 2.

Table 6. Case 2 experimental data.

Working Condition
Fault Type Fault Degree (mm) Fault Label
E F G
NB / 10 14651 1465 1465
IB 0.3 x 0.25 11 485 485 485
RB 0.5 x0.15 12 490 490 490
OB 0.3 x 0.25 13 490 490 490

! The value here indicates that the number of NB data samples labeled 10 in working condition E is 1465.
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3. Experiments and Results

In this section, the experiments require some computer hardware with deep learning
tools to aid in its achievement. This necessary information is shown in Table 7.

Table 7. Necessary information for experiments.

Computer Hardware Deep Learning Tools Training Settings

CPU—Intel(R) Core(™) W . . .
19-10900K System—Windows 10 Initial Learning Rate—0.001
Language—Python 3.8 Total Iterative Epochs—300

GPU—NVIDIA Quadro

P2200 Framework—PyTorch [47] 2.0.1 Batch Size—64

Optimizer—Adam

With existing hardware, the right choice of initial learning rate, total iterations, batch
size, and optimizer is crucial for optimizing model training convergence speed. After
parameter debugging, the initial learning rate is set to 0.001, striking a balance between
stability and speed. Generally, 300 iterations are sufficient to reduce overfitting risk and
shorten convergence time. A smaller batch size provides more stochastic training and
frequent gradient updates, while a larger batch size is limited by hardware memory and
slows down convergence. We chose a batch size of 64, considering hardware limitations.
The Adam optimizer, combining momentum and adaptive learning rate, is commonly used
to achieve faster convergence during training.

The experimental flows of ICDAN-F to accomplish FD are shown in Figure 9.

e  Step 1: Only the samples divided from the source domain data are input into F by
batch, and the classified results are predicted by C. L = Lp,¢, is computed to guide
F training.

e  Step 2: No samples are input from the target domain until 50 iterations of Step 1. The
reason for this is to obtain a pre-trained model that has fully learned the features of
source domain samples.

e  Step 3: At the 51st iteration start DA, target domain data during domain adversarial
are also fed as samples to the F, which shared parameters.

e  Step 4: Features output by F will be sent to D, identifying whether they belong to the
source or target domain and computing L to feedback GRL. At this point, L and
Lpr jointly guide the training of domain adversarial, and the continuous updates favor
F in extracting domain-invariant and transferable features and D in discriminating
domains more robustly.
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e  Step 5: After the 150th and 250th iterations, the learning rate is adjusted to 10% and 1%
of the initial value, respectively, in an attempt to seek more stable parameter updates.
e  Step 6: Stop parameter updating after the iteration number is 300 and load the never-
used target domain samples for testing FD results.

e  Step 7: Output the FD accuracy results for this experiment.

Repeat domain
adversarial DA
after adjusting
the learning rate

Start Fault Diagnosis

Only the samples that have been
divided from source domain data are
input into F in batches, and the

classified results are predicted by C,

L+ is computed to guide F training.

Has it completed
50 iterations?

Obtain a pre-trained model that
has fully learned the features of
source domain samples

}

Target domain
samples for turning
on the domain
adversarial DA

Features output from F will be sent
to D to appraise whether them
belongs to source or target domain, and

L pr is computed to feedback to GRL.
Lt & Lpr now guide the training of

domain adversarial DA together.

Has it completed
50 (250) iterations?

The learning rate will be adjusted to
10% (1%) of the initial value

Has it completed
300 iterations?

Save all network model parameters
for FD

{

Output FD accuracy
result

Figure 9. The experimental flows.

For testing the FD
performance, load
target domain
samples that have
never been used.




Mathematics 2024, 12, 481

15 of 26

3.1. Experimental Verification for Handling Class Imbalance

Before conducting DA, it is necessary to verify the performance of the proposed
ICDAN-F method in handling class imbalance-bearing data. Specifically, the target domain
in this section represents the same working conditions as the source domain and is affected
by class imbalance. The data are divided according to Table 4, only using samples from
working condition C of Case 1. Overall, 70% of the samples are allocated for training the
model, while the remaining part is reserved for testing the method’s performance.

After 100 iterations, the accuracy, precision, recall, and F1 score metrics allow for a
detailed analysis of the performance of ICDAN-F in different fault types.

TP+ TN
Accuracy = TP+ EN+ TN + EP (28)
TP
i ”
precision TP L FP (29)
TP
recall “TP+EN (30)
F1 qore = 2 X precision X recall (31)

precision + recall

where TP represents the count of true positive predictions, and FN represents the count of
False Negative predictions.

As observed in the detailed Table 8 of one specific experiment, ICDAN-F demon-
strates favorable performance in handling class imbalance fault data within the same
domain. However, it incorrectly diagnoses faults 4 and 9 while accurately identifying other
fault types.

Table 8. Detailed analysis of the proposed ICDAN-F.

Fault Type Label Precision Recall F1_Score
0 1.00 1.00 1.00
1 1.00 1.00 1.00
2 1.00 1.00 1.00
3 1.00 1.00 1.00
4 0.97 1.00 0.99
5 1.00 1.00 1.00
6 1.00 1.00 1.00
7 1.00 1.00 1.00
8 1.00 1.00 1.00
9 1.00 0.97 0.99

Figure 10 clearly reveals the abundance of normal samples. Corresponding to the
previous table, one actual fault 9 sample is erroneously diagnosed as fault 4. This observa-
tion indicates that while Focal Loss helps alleviate the impact of class imbalance, it is not
flawless in its performance in this experiment.

Furthermore, the diagnostic results of ICDAN-F are being analyzed in comparison
with existing state-of-the-art methods, with a particular emphasis on mitigating the impact
of class imbalance. They utilize the same number of samples and iterations, and the
diagnostic results of the methods are shown in Table 9.

The baseline CNN parameters are consistent with Table 1, and there is still room
to improve its FD performance in the presence of class imbalance. In contrast to CNN
and ICDAN-F, WGANML [48] and MFGAN [49] focus on mitigating the effects of class
imbalance via generative training, balancing the number of fault samples before proceed-
ing to FD. The average accuracy results suggest that using a generative approach to the
class imbalance problem may lead to more promising results. However, this approach
is computationally, time, and resource-intensive. Most importantly, ICDAN-F improves
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upon the baseline by showing some degree of class imbalance mitigation and only mildly
lags behind the top-performing methods. It can be concluded that ICDAN-F is feasible in
dealing with class imbalance in FD.

Confusion Matrix
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Figure 10. The confusion matrix of ICDAN-F.

Table 9. The diagnostic results of the SOTA methods under class imbalance.

Reference Whether to Generate Fault Samples Average Accuracies (%) !
CNN (Baseline) No 98.95
WGANML [48] Yes 99.89

MFGAN [49] Yes 100
ICDAN-F (Ours) No 99.74

! The accuracies of five replicate experiments are considered as one average accuracy.

3.2. Experimental Comparison Methods for Domain Adaptation

A brief description of the comparison method we set up to validate the sophistication
of our proposed ICDAN-F. Here, it focuses on the process of DA methods, so the parameters
previously formulated will not be changed. For all samples, 80% is used for training, and
the rest can only be used for testing.

1. Method without DA (NoDA, baseline): Turn off D of DANN, input only N to train F
and C, and load N; tests directly to complete the fault diagnosis on N; data.

2. AdaBN [10]: Similar to NoDA but will use N; to fine-tune the statistics within the
batch normalized (BN) layer of the current network according to Equation (32). The
fine-tuning is updated as often as every three training iterations.

d =K H
dk
4 A (32)
2, 2
2 gin %k d"njk
O'j A nj+k + nj+k + (nj+k)2
nj —nj+ k

where j is the serial number of the neuron inside BN, n is the total number of samples
counted by that neuron, and k, y, and ¢ are the sample quantity, mean, and variance
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of this one batch, respectively. y1; and sz used for the first update will be hypothesized
to standard Gaussian distributions. The schematic is shown in Figure 11.
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Figure 11. Schematic of the AdaBN.

3. CORAL [12]: one of the outstanding metrics used for DA, it specifically turns off the D of
CDAN and computes the CORAL loss using #° and 7t according to Equations (33)—-(35)
in an attempt to align the second-order statistics of the distributions C, and Cj.

1
Lcorar(xs, xt) = v | cs—Ch|} (33)
1 1 T
C =N [x] x5 — ﬁs(lsz) (17x)] (34)
t 1 T 1 o1 Tt
Ct = N, _1[xt Xp— ﬁt(l xe) (17 x¢)] (35)

where ||-||p are the F-paradigms, N; is the sample amount in this domain, T is the
transposition computation, x is the samples in this domain, and 4 is the absolute
value of the output size of C. C* and C t are the covariance matrices of the Ds and D.
Expect both L; and Lcora to be optimized to be as small as possible. The schematic
is shown in Figure 12.
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Figure 12. Schematic of the CORAL.

4. DANN [17]: following the previous Section 2.2, a domain adversarial neural network
is constructed, where the structure and parameters of both F and D are consistent with
the settings within the corresponding tables, but it should be noted that the commonly
used ReLU is applied in D instead of Tanh.
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5.  CDAN [19]: The conditional domain adversarial network constructed here follows
the previous Section 2.3. It has the same structure and parameter settings for F and D
compared to our proposed ICDAN-F. However, the optimization constraint of CDAN
is the cross-entropy loss instead of focal loss, and D internally uses the commonly
used ReLU instead of Tanh.

3.3. Experimental Transfer Tasks

All samples divided according to Tables 4 and 6 will be used for the experiments. By
displacing all the working conditions of a certain dataset, 18 transfer tasks are constructed,
as shown in Table 10, which are designed to accomplish cross-domain fault diagnosis with
fault data plagued by class imbalance.

Table 10. Experimental transfer tasks.

Task Markers Source Domain Target Domain Data
T1p A (OHP, 1797 r/min) B (1HP, 1772 r/min) Case 1
T24c A C (2HP, 1750 r/min) Case 1
T34p A D (3HP, 1730 r/min) Case 1
T4pa B A Case 1
T5pc B C Case 1
T6gp B D Case 1
T7ca C A Case 1
T8cp C B Case 1
T9cp C D Case 1

T10pa D A Case 1
T1lpp D B Case 1
T12pc D C Case 1
T13gp E (600 r/min) F (800 r/min) Case 2
T14rg E G (1000 r/min) Case 2
T15pf F E Case 2
T16fg F G Case 2
T17GE G E Case 2
T18¢r G F Case 2

The first column is the marker for the transfer task, the 1st marker through the
12th marker are associated with the Case 1 dataset, and the rest are for the Case 2 dataset.
The second column is the working condition of the source domain data, the third column
is the working condition of the target domain data, and the fourth column is the dataset
that will be used for this task. Their designations are regular; for example, T14p is the
first task where the source and target data are collected under working condition A (0 HP,
1797 r/min) and working condition B (1 HP, 1772 r/min), respectively.

3.4. Experimental Results

The full results recorded are presented in Tables 11 and 12. The necessary disclaimer is
that to minimize uncertainty to obtain robust results, the final diagnostic accuracies of five
identical experiments are averaged and considered to be the experimental result for a task.

For Case 1’s 12 tasks, observation of the results reveals that NoDA shows an average
result of 93.18 as the baseline. This indicates that FD across different working conditions
faces difficulties when DA is not employed and there is still room for improvement. Overall,
the results achieved in the experiment by the five different DA methods used are acceptable
as they do improve the domain displacement problem faced, yielding a higher overall aver-
age accuracy than the baseline. We included two statistical metric-based DAs, AdaBN and
CORAL, but they only bring a slight improvement; they achieved 93.41 and 95.14 average
results, respectively. The adversarial-based DA are stunning, with 99.64 and 99.19 average
results for the DANN and CDAN methods, respectively, and our ICDAN-F method takes it
a step further to achieve the highest of 99.76. ICDAN-F completes FD within Case 1’s eight
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tasks with perfect performance, which is not possible with other comparison methods. It
validates that our improved method is both correct and effective.

Table 11. Experimental results of Case 1.

Method  UUDA  AdaBN[10] CORAL[12] DANN[17] CDAN[19] [CDANF

Task (Ours)
Tlnp 98.85 1 99.77 95.65 99.91 100.00 100.00
T24c 9437 99.23 95.54 100.00 100.00 100.00
T3ap 86.97 92.18 91.19 100.00 96.17 98.45
Tdp, 99.17 94.07 95.33 99.81 100.00 100.00
T5sc 99.48 95.54 99.68 100.00 100.00 100.00
T63p 9433 90.93 93.63 99.94 99.77 100.00
T7ca 96.25 85.13 94.95 99.23 99.12 99.39
T8ch 96.57 97.04 98.12 99.35 99.48 100.00
T9ep 97.78 96.43 98.83 100.00 100.00 100.00
T10pa 80.61 84.60 85.75 98.39 98.70 99.31
T11pg 82.83 89.66 95.52 99.13 97.40 99.92
T12pc 90.51 96.32 97.53 99.86 99.62 100.00
Case 1AVG 93.18 93.41 95.14 99.64 99.19 99.76

! The value of 98.85 in the table represents the average accuracy result of five repetitions of the experiments is
98.85 percent.

Table 12. Experimental results of Case 2.

Method  \(0DA  AdaBN[10] CORAL[12] DANN[17] CDAN[19] ICDANF

Task (Ours)
T13er 9737 937 57.68 97.68 97.98 98.46
T14pc 9201 9445 53.69 9556 95.70 96.66
T155 63.76 82.70 6191 94.68 90.75 95.46
T16pc 98.09 96.16 63.18 98.29 98.33 98.36
T17cr 87.20 8091 53.58 90.65 89.62 9218
T18cr 98.19 9576 60.20 98.74 98.67 99.42

Case 2 AVG 89.43 91.06 5837 95.93 95.18 96.76

For Case 2’s six tasks, all DA methods performed less well than that of Case 1. This is
because the differences in working conditions between RPMs are more significant in Case 2
than in Case 1, which makes the effect of statistical metric-based DA unacceptable. The
average result of CORAL is 58.37, which is more than 40 less than that of NoDA, and it
can be said that CORAL is difficult to metricize and completely fails to meet the DA goal
in Case 2. The other four comparison methods worked in general, and similar to Case 1,
this time, the adversarial-based DA is also much better. Our method also gives the highest
result, 96.76, which is 0.83 and 1.58 higher than DANN and CADN, respectively. It shows
that when dealing with FD with large differences in working conditions, ICDAN-F, as an
improvement in CDAN, can accomplish FD better and surpass DANN.

The case average results of the two cases after employing different comparison meth-
ods for them are shown in Figure 13; there is a significant difference in the accuracy of
the case average results between the two cases, which may be due to the different charac-
teristics and task complexity of the two datasets. On the Case 1 dataset, the case results
of almost all methods show a high accuracy of more than 90%, but on the Case 2 dataset,
the case results of the various methods vary more. This confirms that adversarial-based
domain adaptation may be more stable and adaptive.

Figure 14a shows the results for the full range of experimental tasks within Casel.
Specifically for some interesting tasks, such as T3 4p and T10p4, large differences in working
conditions (0 HP, 1797 r/min and 3 HP, 1730 r/min) caused the DA process to be carried out
under hard-to-statistical metrics, and AdaBN with CORAL obtained much worse results
than DANN and CDAN. However, the latter was formed by our introduction of Focal
Loss and improvement in D (discriminator) to create the proposed ICDAN-F. It achieves
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a performance boost of 2.54 over CDAN in T11pp and a similar improvement of 0.79
over DANN. Furthermore, ICDAN-F demonstrates its advanced nature via consistent
enhancements in every task of Case 1. Notably, it achieves the only fully correct FD result
in Tépp, T8¢p, and T12pc, further highlighting its superiority. Perhaps the performance of
the adversarial-based DA methods is closer in the FD of Case 2, but in the three difficult
tasks, T14gg, T15pg, and T17gE, the results obtained with ICDAN-F are greatly improved,
which can attest to our advantage.

ICDAN-F P
CDAN 5518 99.19
DANN - 99.64

CORAL - 95.14
ADABN 5206 B
NoDa 5943 I
50 60 70 80 90 100
1 Casel AVG Results 1 Case2 AVG Results

Figure 13. Case average results.

Casel Experimental Results Case2 Experimental Results

Task10

Task18 Task17

sk16

Task4
—— NoDA —— AdaBN —— CORAL ~—— DANN —— CDAN — NoDA — AdaBN —— CORAL ~— DANN —— CDAN
— ICDAN-F —— ICDAN-F

(a) Case 1 (b) Case 2
Figure 14. FD results on all tasks: (a) tasks attributed to Case 1; (b) tasks attributed to Case 2.

For the T17 task, as shown in Figure 15, T-SNE reduces the dimension of the output
feature vector to achieve visual results [50]. It is used to demonstrate competitive methods
and the sparsity of the final diagnostic features in experiments [51].
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Figure 15. T-SNE visualized the separation of diagnostic features of different methods: (a) NoDA
(baseline); (b) DANN; (c¢) CDAN; (d) ICDAN-FE.

Correspondingly, a red point in the figures represents features extracted for one sample
with fault type NB and fault label 10, while similar corresponds to IB and 11 in green, RB
and 12 in blue, and OB and 13 in purple. We use red circles to mark noteworthy places
within the figure where, without using any DA method, as shown in Figure 15a, the
three features belonging to NB10, IB11, and RB12, after inputting the network, overlap
heavily and are indistinguishable. It implies that the FD of these three types of samples is
very terrible.

After employing a more advanced adversarial-based DA method, DANN succeeds in
keeping NB10 clustered and away from IB11 and RB12, and there is only a small amount of
overlap in the visualization features of IB11 and RB12. CDAN behaves similarly to DANN,
but it brings the intra-class features closer together, which is why the clustering centers of
IB11 or RB12 in Figure 15c¢ are farther apart than in Figure 15b.

The proposed ICDAN-F drives the different intra-class features all closer together,
and by looking at Figure 10d can see that NB10 appears closer together compared to the

previous two figures. In addition, IB11 and RB12 begin to appear perfectly separated rather
than partially overlapping connections, thanks to our addition of Focal Loss, which can
focus on class imbalance and emphasize the effects of the different sample features.
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4. Discussion

As previously described, a proper improvement in the domain discriminator (D) may
have a positive impact on the DA process, which in turn enhances the FD results. Here,
we keep the structural parameters and make improvements to D using some different
activation functions (AF). However, the AF of its output layer is not changed, and it will
always be sigmoid since the output of D is formulated between 0 and 1. We quantitatively
experimented with the five specific tasks of interest in the previous subsection for ICDAN-F.
The discussion here reviews some of the exploratory processes that were carried out before
determining the final ICDAN-F, and Table 13 shows the results of the FD experiments it
yielded after improving D using different AF.

Table 13. Experimental results by using different AF to improve D.

AAD Task o o Casel TllpgCasel TldpgCase2 Ti5ppCase? Ti7geCase2  AVG
ReLU 98.25 98.63 95.97 93.38 90.48 95.34
LeakyReLU 96.89 97.53 94.99 92.25 89.11 94.41
PReLU 95.34 98.83 94.53 91.88 89.66 94.05
Mish 98.12 98.44 95.29 90.96 90.58 94.67

Tanh (Ours) 98.45 99.92 96.66 95.46 92.18 96.54

A more visual line graphical approach is used to illustrate the effectiveness of the
improvement in D by using Tanh instead of ReLU, see Figure 16. Nowadays, in prevalent
neural networks in which ReLU will be used as the default AF, it is necessary to consider
ReLU as a baseline for the discussion. Remarkably, in these five specific tasks, CDAN
obtained an AVG result of 93.92 (see Tables 11 and 12), and after comparing it with the
baseline, we can tell that Focal Loss has single-handedly improved the FD performance
to 95.34.

—@l— ReLU LeakyReLU PReLU =¥ Mish =@~ Tanh (Ours)

T3

T11 T14 T15 T17 AVG
Task Makers

Figure 16. Results of different AFs on five specific tasks.

When ReLU was used as the AF for D, good results were presented for these five spe-
cific tasks, with an AVG result of 95.34. When LeakyReLU was used for improvement, the
AVG result was 94.41, at which point we conjectured that perhaps D should not activate
weak negative-axial information in FD tasks involving domain adversarial DA, which
would make the FD result worse. Further, another AF that can activate negative semi-axial
information by learning gradient orientation was used in D, that is, PReLU, and a result of
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94.05 was obtained after the experiment. It seems that our conjecture was correct: the FD
result was again weakly decreased after using the more expressive PReLU.

However, the turning point was when we employed Mish as the AF for improved D
and obtained an experimental result of 94.67 that was superior to LeakyReLU and PReLU.
At this point, we turned to the idea that activated negative-axis information does not
inevitably harm the FD results, e.g., Mish still activated the negative-axis information,
and it obtained better results than the last two AFs. It is well known that Mish’s activa-
tion expression on the negative axis is smoother rather than linear, and perhaps this is
its advantage.

Inspired by this, we then additionally chose Tanh to improve D, which is another
smooth AF. We obtained a result of 96.54, which is an improvement of 1.20 compared to
ReLU. We established that improving D by using Tanh is an approach that can outperform
the baseline results, and it is certainly not the only way to improve D. But the experiments
we have discussed verify that some of the negative information that flows into D is useful,
and the use of a similar smoother AF may be able to improve the performance of D, which
in turn leads to more satisfying FD results.

5. Conclusions

This article presents the ICDAN-F as a novel improvement to the conditional domain
adversarial network for effective fault diagnosis in the presence of class imbalances and
variations in working conditions. The proposed ICDAN-F incorporates Focal Loss as
one of the guiding optimization constraints and leverages the Tanh activation function to
improve the domain discriminator. In addressing the class imbalance, ICDAN-F exhibits
a slightly inferior performance compared to two other exceptional generative solutions
for fault diagnosis. Experimental results on two bearing fault datasets demonstrate the
superiority of ICDAN-F over five other widely adopted domain adaptation methods,
achieving fault diagnosis accuracies of 99.76 and 96.76 in Case 1 and Case 2, respectively.
Furthermore, experiments verify that employing smoother activation functions, such as
Tanh, enhances the discriminator’s efficacy in achieving favorable fault diagnosis outcomes.
A comparison between the pre-improvement (CDAN) and post-improvement (ICDAN-F)
shows a substantial enhancement in fault diagnosis performance; the latter is able to
address both challenges of class imbalance and working condition variation. However,
it should be noted that the assessment of ICDAN-F is conducted under the assumption
of label-consistent scenarios, where the source and target domains possess the same fault
types. Further investigations are required to explore label-inconsistent fault diagnosis
methods that can accommodate scenarios where the target domain exhibits different fault
types compared to the source domain.
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Abbreviations

The following abbreviations are used in this manuscript:

FD Fault diagnosis
DL Deep learning
TL Transfer learning

CNN Convolutional neural network
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DA Domain adaptation

GAN Generative adversarial network

ADA Adversarial domain adaptation

DANN Domain adversarial neural network

CADA Conditional adversarial domain adaptation
CDAN Conditional domain adversarial network

F Feature extractor in neural network

C Classifier in neural network

D Domain discriminator in neural network

FC Fully connected layer

MLP Multilayer perceptron

ReLU Rectified linear unit

LeakyReLU  Leaky rectified linear unit

PRelLU Parametric rectified linear unit

Tanh Hyperbolic tangent function

Mish A self-regularized non-monotonic neural activation function called Mish
SKF Svenska Kullager-Fabriken

EDM Electrical discharge machining

AVG The average

T-SNE T-distributed stochastic neighbor embedding

The list of symbols to be emphasized in this manuscript:

D Data from the source domain D; Data from the target domain
x; The i-th sample in the D; x]t- The j-th sample in the D
" The label of the i-th sample x: N; The total number of samples from

the Dt

T ity distributi

N; The total number of samples from the D;  Q (xj) fo}IleoS\:;)é:; :;?; f;i;i’jgiin
The classifier loss according to
cross-entropy loss

The probability distribution followed by

the source domain

The domain discriminator loss

Lp according to binary cross-entropy lossin  Lp-
DANN

Le The classifier loss according to focal loss

Lc

The domain discriminator loss in
CDAN
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