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Abstract: This paper tests using two-regime Markov-switching models with asymmetric, time-
varying exponential generalized autoregressive conditional heteroskedasticity (MS-EGARCH) vari-
ances in random-length lumber futures trading. By assuming a two-regime context (a low s = 1
and high s = 2 volatility), a trading algorithm was simulated with the following trading rule: invest
in lumber futures if the probability of being in the high-volatility regime s = 2 is lower or equal
to 50%, or invest in the 3-month U.S. Treasury bills (TBills) otherwise. The rationale tested in this
paper was that using a two-regime Markov-switching (MS) algorithm leads to an overperformance
against a buy-and-hold strategy in lumber futures. To extend the current literature in MS trading
algorithms, two location parameter scenarios were simulated. The first uses an unconditional mean
or expected value (no factors), and the second incorporates market and behavioral factors. With
weekly simulations form 2 January 1994 to 28 July 2023, the results suggest that using MS-EGARCH
models in a no-factors scenario is appropriate for active lumber futures trading with an accumulated
return of 158.33%. Also, the results suggest that it is not useful to add market and behavioral factors
in the MS-GARCH estimation because it leads to a lower performance.

Keywords: Markov-switching GARCH; active portfolio management; algorithmic trading;
lumber futures; behavioral finance; news sentiment; economic policy uncertainty; asymmetric
Markov-switching GARCH

MSC: 91Gxx; 91-08

1. Introduction

Markov-switching (MS) models with either time-fixed or generalized autoregressive
conditional heteroskedasticity (GARCH) variance (henceforth MS-GARCH models) help
estimate models with non-linearities, such as breaks in the time series. These breaks
lead to an s number of regimes or states of nature in the behavior of the data (stochastic
process) [1–5].

Since the proposal to determine structural breaks in economic growth (Hamilton,
1989, 1990), MS and MS-GARCH models have helped forecast changes in time series
behavior, along with the probability ξs,t of being in each regime s at t + n. These forecasted
regime-specific probabilities could be helpful in several practical applications, such as
risk management (value at risk (VAR) or conditional value at risk (CVAR)), regime switch
contagion among economies, securities markets, or both, and even weather forecasts.

A potential use of interest herein is security trading, given the expected market
volatility conditions [6]. Since this original proposal, using these in trading algorithms is a
research line in development. Trading uses such as stock or currency trading, multi-asset
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portfolio management, or futures trading have been tested and discussed. Among these,
this paper is interested in random-length lumber futures trading. Previous studies have
tested using MS-GARCH models in other agricultural commodities, such as corn, wheat,
oats, soybean, coffee, cocoa, and sugar.

Random-length lumber futures trading is important in the U.S. construction industry
and impacts the broad economy. It also influences the performance of other countries’
economies, given their economic ties with the U.S. and its influence on the real estate
market. Several seminal studies, such as those of Hirshleifer [7] or Gan [8] discuss the
ties between the producers and processors of inelastic agricultural commodities (such as
lumber) and trading costs.

Like most agricultural commodities, lumber futures are subject to external economic
and social shocks and speculation [8–10]. In several economic and financial crises (such as
the 2008 subprime or the 2020 COVID-19 pandemic), lumber futures experienced growth
in their settlement price due to speculation, suggesting a change in the regime of the
settlement price.

This regime change could be forecasted to enhance the performance of a lumber
futures trader or a portfolio manager diversified in agricultural commodities futures.

This paper aims to test the benefits of using MS-GARCH models in short-term
(1-month) lumber futures trading. Previous work, as mentioned in the literature sec-
tion, tests the use of these models to determine buy or sell signals to outperform either a
passive (buy-and-hold) investment strategy or a future-specific benchmark.

Also, this paper aims to test trading algorithms for lumber futures’ positions in a
well-diversified portfolio, such as that of an institutional investor (insurance company,
pension fund, mutual fund, exchange-traded fund, or ETF). If a portfolio manager wants
to diversify her portfolio with lumber futures, she could manage this position in either
a passive (buy-and-hold) or active strategy with the back-tested algorithm herein. The
author’s theoretical position is that this investor could enhance her lumber futures position
using asymmetric MS-GARCH models due to a proper forecast of the high-volatility (s = 2)
regime’s probability (ξs=2,t+1) at t + 1. Therefore, comparing this trading algorithm’s
performance against a well-diversified (with multiple securities) portfolio is not the main
interest. The main interest is comparing against the passive or buy-an-hold position that a
given portfolio manager could have in this agricultural commodity. Analogously, a lumber
futures hedger could use the results in this paper to determine if an MS-GARCH trading
algorithm with news sentiment and market factors could lead to better performance in her
lumber production sales or inventory costs.

Previous works tested the benefit of MS and MS-GARCH models in agricultural and
soft commodities futures. They found these models useful for generating alpha or active
returns from a passive portfolio (or benchmark). One limitation of these works is the use
of either regime-specific (no factor) expected values (rs) in MS models or a single-regime
mean (rt) to estimate the residuals (εi) used in MS-GARCH model estimation. For the first
case (MS models), the previous works assumed a Gaussian log-likelihood function (LLF)
given regime i or regime j:

L(rt, ri, σi, P, ξi,t) =
T

∏
t=1

J

∑
j=1

I

∑
i=1

πi,jξi,t−1
1√

2πσi
e−(

rt−ri
σi

)
2

(1)

In the previous equation, πi,j is the time-fixed transition probability of migrating from
regime s = i to regime s = j. This probability is estimated in an s × s transition probability
matrix P. ξi,t−1 is the smoothed probability of being at regime s = i at t, and ri and σi are
the regime-specific probability density function (pdf) parameters.
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The original MS model of Hamilton contemplates a conditional mean expression of (1)
include the effect of exogenous variables or market factors (xk,t):

L(rt, σi, P, ξi,t, αi, βi,k) =
T

∏
t=1

J

∑
j=1

I

∑
i=1

πi,jξi,t−1
1√

2πσi
e−(

rt−αi+∑K
k βi,k xk,t

σi
)

2

(2)

Most previous works used the time-fixed variance estimation in (1) or (2) for energy
and agricultural futures price modeling. For the specific use of MS-GARCH models in
agricultural futures, previous works estimated the residuals from (1) and (2). They esti-
mated a Markov-switching model with regime changes only in the variance and symmetric
or asymmetric GARCH effects. They did this because Haas and Mitnik [3,4], along with
Ardia [11,12], suggest the estimation of MS-GARCH models in the residuals due to the
time dependence of the GARCH process in each regime. This led to the use of the next LLF
to estimate the MS-GARCH model:

L(εt, P, ξi,t) = ∏T
t=1 ∑J

j=1 ∑I
i=1 πi,jξi,t−1

1√
2π

e−(
εt
σi
)

2

(3)

The MS-GARCH models were estimated in the works related to agricultural futures
modeling or trading in a two-step process. First, the single regime mean equation was
estimated (ri or αi + ∑K

k βi,kxk,t), and, with the residuals of rt, the MS-GRCH model was
estimated at t.

As mentioned, this paper aims to extend the previous literature in two ways: first, to
test the benefits of MS-GARCH models in lumber futures trading, and second, to incorpo-
rate the effect that either future market factors (such as implied volatility, speculation ratios)
or behavioral ones (futures, equity, economic, social media, or pandemic sentiment) have
on the estimation of the smoothed regime-specific probabilities ξs,t and the corresponding
lumber futures trading signal.

To test the benefits, this paper’s authors simulated the performance of a weekly
portfolio that actively invested in lumber futures with the following trading rules in a
two-volatility (standard deviation σs) scenario:

1. Invest in a 1-month random-length lumber futures position in an investment position
given by the forecasted probability ξs=2,t+1 of being in the high-volatility regime
(s = 2) at t + 1.

2. Invest in a 3-month Treasury bill mutual fund in an investment position given by the
probability ξs=1,t+1 of being in the low-volatility regime (s = 1) at t + 1.

The authors’ theoretical position is that using this trading algorithm leads to better
trading signs and portfolio performance. Departing from this position, the authors tested
two working hypotheses in the following sequence:

H1: “Using an algorithm with MS-GARCH models leads to a better performance in the 1-month
lumber futures’ trading against a buy and hold strategy”.

H2: “Using an algorithm with MS-GARCH models, futures market trading factors and market
sentiment indexes leads to a better performance in the 1-month lumber futures’ trading against a
buy and hold strategy and the scenario with no factors in the estimation”.

The authors’ rationale is that using MS-GARCH models with a futures market and
behavioral factors in the mean equation helps improve lumber trading because the mean
equation incorporates the influence in the estimated residuals εt. Therefore, filtering
the observed regime s at t leads to better forecasts of ξs=1,t+1 and ξs=2,t+1 and better
performance.

To test the benefits of the MS-GARCH models of interest, the authors simulated the
estimation and use of these with Gaussian, Student’s t, and generalized errors distribution



Mathematics 2024, 12, 485 4 of 20

(GED) probability density functions (pdf) in the LLF. Also, the authors simulated the
estimation of these MS-GARCH models with four variance equations:

1 A time-fixed regime-specific variance (σs).
2. A symmetric autoregressive conditional heteroskedasticity (ARCH) variance (ε̂2

s,t).
3. A symmetric GARCH variance (σ̂2

s,t).
4. An asymmetric EGARCH [13] variance (σ̂2

EGARCH,s,t).

These MS-GARCH models were estimated in four scenarios according to the working
hypotheses. The mean equation used in the first sequential step of the MS-GARCH estima-
tion method was either an arithmetic mean or a financial and/or behavioral factors model.

If the results show the benefit of using MS-GARCH models with a futures market and
behavioral factors in the mean equation, a portfolio manager, a lumber hedger, or even a
futures trader could benefit from the algorithm to decide if it is appropriate to have a long
position in futures or not, given the forecasted low-volatility regime probability (ξs=1,t)
at t + 1.

Given this paper’s theoretical and practical motivations, the next section highlights the
most relevant and related literature reviews. The third section depicts the data gathering
processing and explains the MS-GARCH model estimation procedures. In this same section,
the authors discuss the main results. Finally, the fourth section concludes and suggests the
guidelines for further research.

2. Literature Review

Related to the use of MS and MS-GARCH models in lumber trading, no previous
works test this use. The original MS model of Hamilton [1,14] had a business cycle analysis
application. It modeled the non-linear behavior of a time series which has a multimodal
behavior with several regimes, states of nature, or “subsets” with their own location rs
and scale σs parameters. Even if several models could measure such behavior (such as a
normal mixture or threshold autoregressive models), the novelty of Hamilton’s proposal is
to assume that the behavior of the time series rt could change from t to t + 1 following a
first-order unobserved Markov chain process with an s × s transition probability matrix
P =

[
πs=i,s=j

]
. These transition probabilities, with a filtered and smoothed [15] regime-

specific probability ξs,t at t as input of a mixture LLF, such as (2) and (3), could be used to
estimate or forecast the probability of being in each regime at t or t + n:ξs=1,t+n

...
ξs=S,t+n

 = Pn

ξs=1,t+1
...

ξs=S,t

 (4)

The original proposal of the MS models allows the analyst to forecast, with a multiple
macroeconomics factor model, the probability of being in a recession (s = 2, rs=2 < 0).

With the s-dimensional mixture law in the maximized LLF of the MS model, the ana-
lyst could also estimate a model parameter vector with an s number of location and scale
parameters to characterize the behavior of the time series, given the regime-specific proba-
bilities ξs,t. If the value of ξs,t is high (usually ξs,t > 50%), the analyst could conclude that
the realization rt could be generated from that regime in the stochastic process. Therefore,
the corresponding regime-specific location and scale parameters could be used to make
inferences of rt in that regime.

A natural extension of the MS model of Hamilton (also known as Hamilton’s filter) is
to filter multivariate or conditional mean models such as MS models with an s number of
regime-specific regression models:

rt = αs +
K

∑
k

βs,k · xk,t + εt, σs,εt (5)
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Other authors used factor models such as (5) or MS vector autoregression (VAR) to
model the multivariate short-term relationship among variables. Kanas [16], Chen [17],
Walid [18], Mouratidis [19], Walid and Nguyen [20], and Tiwari et al. [21] used MS-VAR to
model the relationship of currency rates with either the expectations of stock market funda-
mentals, the central bank monetary policy, or a volatility contagion from equity markets.

Camacho and Perez-Quiros [22] performed an impulse-response MS estimation of
the relationship between the commodity prices and output growth of Argentina, Brazil,
Colombia, Chile, Mexico, and Venezuela. The authors found a size, time, and sign depen-
dency of commodity prices on their country output. Similarly, Fossati [23] characterized the
regime-specific behavior (two regimes) of the economic growth rates of Argentina, Brazil,
Chile, Colombia, Mexico, and Peru, finding evidence of such a structural break. Miles and
Vijverberg [24] tested the relationship between inflation and uncertainty in the UK and the
U.S. and found, with their MS model estimation, that inflation targets and a proper budget
lowered uncertainty in distress periods.

One assumption of the original MS model is that the scale parameter σs is time
fixed. This assumption could be relaxed by estimating a time-varying variance with
Engle’s autoregressive conditional heteroskedasticity (ARCH) model [25], or Bollerslev’s
generalized version (GARCH) [26]:

σ̂t = α +
P

∑
p=1

βp · εt−p +
Q

∑
q=1

γq · σ̂t−q + νt (6)

The analyst could model and even forecast a time-varying volatility that could be
high in uncertain or distressed market periods and converge to its long-term value in calm
ones. This model led to several uses, such as risk management of financial derivatives
valuation. This time-varying property in (6) MS and MS VAR models was extended to
an ARCH or GARCH version (MS-GARCH) in σs. Following this approach, Lopes and
Nunes [27] tested for currency market contagion between the Portuguese escudo and the
Spanish peseta. Shen and Holmes [28] tested the regime-switching behavior of the real
exchange rate (purchasing power parity) of Australia, China, Hong Kong, Indonesia, Japan,
South Korea, Malaysia, New Zealand, Philippines, Singapore, Taiwan, and Thailand.

From all the economic and financial analysis applications of MS and MS-GARCH
models, the test of regime-specific behavior, risk management, and market contagion in
financial markets is one of the broadest.

Ardia and Hoogerheide [29] estimated symmetric and asymmetric MS-GARCH mod-
els of constituents of the S&P500 stock index for the value at risk (VaR) and conditional
value at risk (CVaR) with daily and weekly estimations. The authors found no difference in
estimating the VaR and CVaR daily or weekly when using asymmetric MS-GARCH models
and found a better estimation with asymmetric MS-GARCH models.

Ye et al. [30] performed a Markov-switching quantile regression to test the contagion
between U.S. and Eurozone equity markets. The authors found a strong interdependence
between the U.S. and Eurozone markets in high-volatility or distress (s = 2) periods.

Rotta and Valls Pereira [31] estimated an MS correlation matrix with the method
proposed by Pelletier [32] to test for contagion effects in the Brazilian, Korean, UK, and U.S.
stock indexes. The authors found that using an MS-GARCH correlation matrix with the
asymmetric GARCH model of Glosten, Jagannathan, and Runkle [33] (GJR-GARCH) helps
to model the contagion effect. Also, the authors found that the highest contagion effect is in
the high-volatility or distress periods (s = 2).

The use of MS and MS-GARCH models in commodity futures markets was mainly
tested in the influence or spillover effect that these have from and on equity markets, the
estimation of hedge ratios, the long-term relationship between the futures and spot prices,
or risk exposure models (VaR or CVaR).

Herrera et al. [34] estimated a Markov-switching multifractal-peaks over threshold
(MSM-POT) model for the presence of short- and long-term memory in commodities such
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as the Brent and West Texas intermediate (WTI) oil futures, and the cocoa and cotton, and
copper and gold ones. The rationale of these authors was that commodity markets are a
good diversification source for portfolio managers, and to model this tail dependence and
switching tail behavior is of interest to capture and manage that diversification benefit.

This last statement is a departing one for the hypotheses tested herein. Commodities
are considered “alternative assets” for diversification purposes and the active trading of
the lumber futures position in an institutional portfolio could be useful. Therefore, the
MS-GARCH trading algorithm tested herein could be helpful for this purpose.

In the energy futures markets (mainly oil and natural gas) Balcilar et al. [35] and
Fang and You [36] tested the impact of oil prices in the business cycle of the U.S., those
in some developed countries, and also those in some emerging countries in a two-regime
context. The authors found that oil harms the output in the low-growth phase (s = 2) of
oil importers. Also, they found this regime to be short lived. The higher the oil price, the
lower the output of these economies; this relationship is higher when s = 2.

Hache and Lantz [37] estimated a Markov-switching vector error correction (MS-VEC)
to model the long-term relationship between the spot and future prices of the WTI. The
authors concluded that there is a two-regime behavior (normal and crisis). They concluded
that the activity of non-commercial traders (speculators) has a strong relationship with the
crisis (s = 2) regime in oil markets.

Alizadeh et al. [38] used MS models to estimate the two-regime hedge ratios in
the WTI oil market, finding these useful models to hedge spot positions in oil with
short-term futures.

Another set of previous works [39–45] tested the link or the spillover effect between the
energy future markets (oil, natural gas, or electricity) and stock markets or economies of G-7
countries such as France, Germany, the UK, or the U.S. These used several MS models such
as MS-GARCH, MS-VAR, MS-VEC, the hidden Markov decision tree or the MS-EGARCH
(an MS model with the asymmetric GARCH model of Nelson [13]). In a parallel practice,
Brigida [40] tested the cointegration of natural gas and oil prices in a two-regime context.
The author found a long-term relationship between these two commodities, suggesting that
the forecast of each commodity’s value should be performed in a regime-specific context
and that the “decoupling” periods between both futures are due to a regime shift in their
cointegration relationship.

The previous works on using MS or MS-GARCH models in agricultural commodities
are not as abundant as those on the energy ones. Still, the work of Lien et al. [46] proposes a
Markov-switching version of the Baba, Engle, Kraft, and Kroner (BEKK) GARCH covariance
model to develop a hedge ratio of the corn, wheat, coffee, and cocoa futures markets. The
MS-BEKK GARCH models led to a better performance in a portfolio that hedged the futures
of these commodities in a two-regime context.

Ahmed and Sarkodie [47], Foroni et al. [48], and Xiao et al. [49] modeled the per-
formance of agricultural and energy prices with the impact of news sentiment related to
economic policy uncertainty [50] and pandemic news (COVID-19) sentiment. All these
authors found that agricultural and energy commodities are negatively affected by an
increase in economic policy-related uncertainty, and only the agricultural ones had a bad
performance when the bad sentiment related to news of COVID-19 increased.

Given the scant literature about using news sentiment in pricing or trading, it is in the
authors’ interests to test the inclusion of several news sentiment indexes in the MS-GARCH
trading algorithm. They implemented this in the second hypothesis to test the potential
benefit of including such behavioral factors.

There is scant literature on subjects related to agricultural commodity futures MS or
MS-GARCH trading rules or algorithms like that of Brooks and Persand [6]. Only the
works of De la Torre-Torres et al. [51] and De la Torre-Torres et al. [52] tested the use of MS
and MS-GARCH trading rules in the corn, wheat, oats, soybean, cocoa, and coffee futures.
The authors found that using these models leads to an overperformance of active trading
in these futures against a buy-and-hold or directional investment in these commodities.



Mathematics 2024, 12, 485 7 of 20

Related to the specific case of lumber futures, only the work of Chen and Insley [53]
tested the use of MS models in lumber futures not for trading but to calibrate their two-
regime performance in a harvest and land model in the lumber industry.

As noted from this literature review, only one study tested the benefits of the MS
model for harvesting management purposes, and no study tests their use in lumber futures
trading or hedging activities. It is important to know if the MS or MS-GACRH models are
useful in lumber futures trading because they are used for diversification security due to
their low correlation with other markets. Also, future prices have an important impact on
building, furniture, paper or other sensitive industries. A proper hedging algorithm that
could forecast high-volatility regimes could be useful to hedge and forecast the probability
of these at t + 1 and the corresponding value of this commodity.

As noted from this gap in the literature, there are no works related to testing the use
of any algorithm in lumber futures trading and no works related to using the MS-GARCH
model (with or without financial and behavioral factors).

Departing from this practical need, this paper tests the use of the MS and MS-GARCH
models in a two-regime context in the following trading rules:

1. Hold a long position in lumber futures if the forecasted probability ξs=2,t+1 of being
in the high-volatility regime is lower or equal to 50%.

2. Invest in a risk-free asset (the U.S. 3-month Treasury bill) if this probability is higher
than 50%.

Departing from the previous literature review, the main contributions of this paper
include testing this trading algorithm in lumber futures and the addition of a multifactor
equation with market and behavioral factors.

The estimation of the MS-GARCH model with either the E-M or Markov chain Monte
Carlo (MCMC) method is impossible with a location parameter due to time path depen-
dence. Therefore, Haas et al. [3] and Ardia et al. [11] suggest MS-GARCH estimation in
residuals or a time series with zero location parameters (εt = rt − r). With this adjustment,
the impact of external shocks and factors, such as speculators’ presence, pandemic news, or
economic policy uncertainty, cannot be estimated in a two-regime context.

The relevance of incorporating market factors in a trading rule comes from the results of
Kenyon et al. [54], Van Huellen [55], Alquist and Gervais [56], and Floros and Salvador [57].
These works proved that factors such as Working’s speculation ratio [58] or other volatility
indicators, such as equity options-implied volatilities or energy (oil)-implied volatility.

Also, extending a model with “classical” factors to include behavioral ones is a natural
extension that behavioral economics suggests due to the not-so-rational behavior of market
agents, consumers, and suppliers in a given economy. With this purpose, this paper also
extends the literature by estimating the MS-GARCH model of the trading algorithm in a
two-step process:

1. Estimate the factor mean equation of the lumber futures price increase percentage
with market and behavioral factors.

2. With the residuals of the previous model, estimate the two-regime MS-GARCH model
and forecast the probability ξs=2,t of being in the high-volatility regime at t + 1.

Departing from these theoretical and practical motivations, this paper also tested using
three log-likelihood functions (LLF): symmetric Gaussian, Student’s t, and generalized
error (GED) distributions. Also, the paper tested the use of Engle’s symmetric [25] ARCH
and Bollerslev’s [59] GARCH models, along with the asymmetric version of Nelson’s [13]
(EGARCH). The authors believe that using asymmetric GARCH leads to better trading and
hedging performance. This means testing the performance of the trading rule against a
buy-and-hold one and against a producer that did not hedge its sales.

A final improvement tested in this paper is the combination of E-M and Metropolis–
Hastings MCMC estimations of the MS-GARCH model. The authors tested this because
they were looking for efficient but feasible estimation of these models, due to their potential
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use in risk management applications (in the financial industry practice) which need speed
and confidence in their estimation methods.

With regard to this literature review and given the theoretical and practical motivations,
the next section details how the authors gathered the data and performed the simulations,
and shows the main results and findings.

3. Trading Simulations
3.1. Data Gathering

To simulate the performance of a lumber futures trader that uses MS or MS-GARCH
models, the authors retrieved from the databases of Refinitiv and the Chicago mercantile
exchange (CME) the historical 1-month weekly settle prices (Pt) of the random-length
lumber (Refinitiv RIC LBc1). From the same databases, the authors extracted the weekly
yield of the 3-month U.S. Treasury bill (USTBills). The former time series is a risky asset used
for trading. The weekly value of the latter is a risk-free asset used in trading simulations
(r ft). The time series of both securities started on 7 January 1994 and ended on 28 July 2023.

With the historical settle prices, the continuous time return, or percentage variation,
was estimated as follows:

rt = ln(Pt)− ln(Pt−1) (7)

To model the general commodities futures market performance, the historical val-
ues of the Refinitiv core commodity futures index (commIndext) were downloaded and
transformed to the continuous time return as in (7).

Also, the historical values of the lumber futures accumulated traded volume at t, along
with the open interest, were retrieved from the Refitiniv’s databases. With this two-time
series, the Working’s hedge ratio (WHRt) was estimated:

WHRt =
acumulated volumet

open interestt
(8)

The higher the value of this ratio, the higher the presence of speculators in the lumber
futures market, because of the higher trading volume compared to the open interest.

To incorporate the impact of distress, the uncertainty of “fear” in the financial markets,
the authors downloaded the observed values of the implied volatility index (VIXt) of the
in-the-money and at-the-money 1-month options of the S&P500 stock index. Also, they
downloaded the historical percentage variations of the Refinitiv U.S. dollar index (DXYt).
The authors included these factors following studies like [39–45] which proved the spillover
effect and mutual influence of equity and currency markets on commodities.

With these factors, the simulations could be performed in two scenarios:

1. One in which the MS-GARCH models are estimated from the residuals of a time-fixed
location parameter (r).

2. Another in which the location parameter is a conditional mean of financial markets
and behavioral factors.

For the second scenario, the commodity market index ( commIndext), Working’s spec-
ulation ratio (WHRt), the S&P 500 implied volatility VIX index (VIXt), and the U.S. dollar
index (DXYt) were used as the financial market factors in the conditional mean equation:

r̂t = α + β1commIndext + β2WHRt + β3VIXt + β4DXYt + εt = α + F + εt (9)

The reason for using these factors relates to several works that suggest the main market
factors for pricing in agricultural futures [54,57,60,61].

For the behavioral or sentiment (uncertainty) factors, the weekly historical values of
three sentiment (uncertainty) indexes were downloaded:

1. The Baker, Bloom, and Davis [50] Global Economic policy uncertainty ECUNCt index
which measures the level of fear or uncertainty that the text of the main journals
around the world in their articles. If the count of terms such as economic policy,
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financial markets, or related concatenate with the presence of other terms such as
crisis, fear, or similar terms, the value of this index increases. This is a proxy of the
uncertainty or fear investors or economic agents could have due to reading these
journal articles.

2. The Baker et al. [62] infectious disease equity market volatility tracker (INFDISUNCt)
which is an uncertainty index with an emphasis on the influence of news and terms
related to infectious diseases and epidemic (or pandemic) episodes.

3. The Baker and Burgler [63] stock market volatility tracker (MKTVUNCt).

With these three sentiment or behavioral factors, the conditional mean equation in (9)
was extended to arrive at the final conditional mean equation used to estimate the residuals
εt of the MS-GARCH estimations at t:

r̂t = α + F + γ1ECUNCt + γ2 INFDISUNCt + MKTVUNCt + εt (10)

With the time-fixed (r) or conditional mean (r̂t) equations in (10), different residuals
were estimated at t. With these, twelve MS models in each scenario (r or r̂t) were estimated:

1. A time-fixed variance MS model, symmetric ARCH, GARCH variances, and the
EGARCH one with normal or Gaussian LLF.

2. A time-fixed variance MS model, symmetric ARCH, GARCH variances, and the
EGARCH one with Student’s t LLF.

3. A time-fixed variance MS model, symmetric ARCH, GARCH variances, and the
EGARCH one with GED LLF.

To test a potential solution to enhance speed and feasibility in the estimation, the
authors tested the MS-GARCH with the E-M algorithm using the Viterbi [64] algorithm
to estimate the smoothed probabilities ξs,t. If the estimation algorithm did not solve
this specific MS-GARCH model at t, then the MCMC method was used. The authors
performed this sequential two MS-GARCH estimation method to ensure a fast but also
feasible estimation of ξs,t.

To estimate the MS or MS-GARCH model at t, the authors estimated the weekly
continuous time return as in (7). They used the time series from 7 January 1994 to
t = the simulated week. The weekly simulations started from 2 January 2004 to 28 July
2023 (1022 weeks).

To execute the trading rule and simulations, the next trading rule’s pseudo code was
estimated for each location parameter scenario and for the MS or MS-GARCH model:

Algorithm 1 The steps followed in the simulation of each of the twelve simulated portfolios of the
lumber futures trading rule.

Loop 1: for t = 7 January 1994 to 28 July 2023 (t in weekly periods and T)
1. To estimate the weekly continuous time return of the settle price of the 1-month lumber futures
as in (7) from January 7 1994 to date t.
Loop 2: for l = the Gaussian, Student’s t or GED LLF
Loop 3: for m = the MS, MS-ARCH, MS-GARCH or MS-GARCH model
2. With the weekly lumber returns’ time series to estimate the two-regime MS (time-fixed
variance) or MS-GARCH model with the E-M algorithm.
3. Is the MS or MS-GARCH estimation feasible?
3.a. No: With the weekly lumber returns’ time series to estimate the two-regime MS (time-fixed
variance) or MS-GARCH model with the MCMC algorithm.



Mathematics 2024, 12, 485 10 of 20

Algorithm 1 Cont.

3.b. Yes: To continue with the next step.
4. With the estimated model to forecast the probability of being in the second regime the next
week (t + 1), using (4).
5. To run the trading rule:
5.a. if ξS = 2,t + 1 ≤ 50%: To take a long lumber futures position. This means a 100% investment
position in lumber futures.
5.b. Else: To invest the portfolio resources in a security that pays the weekly return of the 3-month
U.S. Treasury bill. This also means a 100% investment position in this security.
End loop 3
End loop 2
End

The previous pseudo code was executed in the two location types of location parame-
ters (unconditional mean or conditional mean with market and behavioral factors).

We tested Algorithm 1 in the three pdfs of interest in symmetric and asymmetric
time-fixed ARCH and GARCH variances. To check the robustness of each scenario and
as an alternative estimation method, the authors estimated a “best fitting” scenario. This
scenario uses the MS-GARCH probability forecast of the model with the best Akaike []
information criterion. Because we estimated the Ms and MS-GARCH models in sequence
(we used the ML method for algorithmic efficiency and the MCMC if the ML was not
feasible), we propose a pseudo-Akaike from the forecasted standard deviation (σ̂t+1) at
t + 1. For the ML estimation, we used the following σ̂t+1 forecast:

σ̂t+1 = πs=1 · σ̂s=1,t+1 + πs=2 · σ̂s=2,t+1 (11)

In the previous expression, πs is a mixing law estimated in the MS or MS-GARCH
model [3] that weights the persistence of each regime in the stochastic process. σ̂s=1,t+1 is
the regime-specific forecasted standard deviation at t + 1.

For the MCMC estimation, the Ardia et al. [11] MSGARCH library uses MCMCM
draws for this parameter.

From the estimation of the MS and MS-GARCH models, the authors also used the
regime-specific fitted degrees of freedom (tνt+1) and tail parameters (gedνt+1) for the
Student’s t and GED log-likelihood functions (LLF):

tλt+1 = πs=1 · tλs=1,t+1 + πs=2 · tλs=2,t+1 (12)

gedλt+1 = πs=1 · gedλs=1,t+1 + πs=2 · gedλs=2,t+1 (13)

With the parameters in (11) to (13), the authors estimated the LLF functions for the
Gaussian, Student’s t, and GED models. The values of σ̂t+1 are calculated from a time-fixed,
ARCH, or GARCH (symmetric or asymmetric) model. Also, it is important to mention that
the LLF was estimated from the residuals, using a factor conditional mean (r̂t) as in (2), (3),
and (10) or an unconditional (no factor) one (arithmetic mean in (2)):

εt = rt − r̂t (14)

The corresponding Gaussian, Student’s t, and GED LLF functions of interest are
as follows:

ˆLLFGaussian = ∑T
t=1 ln

[
1√

2πσ̂t+1
e
− 1

2 (
εt

σ̂t+1
)

2
]

(15)

ˆLLFStudent t =
T

∑
t=1

ln

 Γ
(

tλt+1+1
2

)
√
(tλt+1 − 2)π

(
tλt+1

2

)
1 +

(
εt

σ̂t+1

)
(tλt+1 − 2)

−(
tλt+1

2 )
2 (16)
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ˆLLFGED =
T

∑
t=1

ln


gedλt+1e

− 1
2

∣∣∣∣∣∣
(

εt
σ̂t+1

)

λ

∣∣∣∣∣∣
gedλt+1

λ2
(1+ 1

gedλt+1
)Γ( 1

gedλt+1
)

, λ =

 Γ
(

1
gedλt+1

)
41/gedλt+1 Γ

(
3

gedλt+1

)
 (17)

With the model-specific LLF functions (L̂LF(·)) in (15) to (17), the authors estimated
the model-specific (m) Akaike information criterion (AIC) as follows:

AICm = 2 · k − 2 · L̂LF(·) (18)

In the previous expression, AICm is the MS, MS-ARCH, or MS-GARCH model (sce-
nario) AIC, and this value was compared, at t, to select the “best fitting” model or scenario
according to which one had the lowest AIC. With this best fitting model, the authors
performed steps 4 and 5 in Algorithm 1. This selection process ensured the best data
fitting model selection even if the MS or MS-GARCH model was estimated with ML or
MCMC methods.

The reason for using this pseudo-Akaike selection method is that the ML quickly
infers the AIC from the data and the sample or classical fitting process. The MCMC uses a
deviance information (DIC) criterion with a Bayesian context. Therefore, the steps that led
to the AIC in (18) could be helpful, given that σ̂t+1, tλt+1, and gedλt+1 come from a specific
MS or MS-GARCH models and are filtered (or inferred (simulated) for the case of MCMC)
from the sample data or their population parameters (MCMC).

This best fitting scenario was labeled as “Best fitting” in the simulated portfolios.
At the end of each simulated date, the simulated portfolio was marked to market. That

is, it was valued with either the lumber futures settle price at t or the market price of the
fund that paid the 3-month U.S. Treasury bill rate. No future trading fees were incorporated
in the simulations.

The authors’ theoretical position was that the use of the MS or MS-GARCH models
in Algorithm 1 leads to a higher accumulated return to a speculator or investor. Also,
the theoretical position is that the use of market and behavioral factors leads to a better
performance compared to using a no-factor MS or MS-GARCH model and compared to a
buy-and-hold (passive or directional) one.

To summarize the performance of the simulated portfolios, the accumulated return
(Accreturn%) was estimated and expressed as a base 100 value on 2 January 2004. The base
100 value of the simulated portfolio was compared with that of the lumber futures settle
prices (the passive or buy-and-hold strategy).

It was also compared with the portfolio and lumber futures percentage variation
according to the Sharpe [65] ratio:

SR =
Accreturn%p − Accreturn%r f

σp
(19)

In the previous equation, r ft is the 3-month weekly equivalent rate of the 3-month
USTBILL, rp,t is the observed simulated portfolio’s return or percentage variation, and
σp,t is the standard deviation of the full simulation portfolio returns (risk exposure). The
rationale of the Sharpe ratio (as a slope in a risk–return two-axis plane) is the risk premium
(additional return from r ft) the portfolio paid for each 1% of extra risk exposure. The higher
the Sharpe ratio value, the better the performance of the portfolio against others with lower
Sharpe ratio values.

To complement the accuracy of the trading decisions in each simulated portfolio, the
authors summarized the performance with Jensen’s [66] alpha. This performance measure
estimates the extra return that the simulated portfolio paid against the general commodity
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market performance, given the manager’s (algorithm) ability and the portfolio’s market
exposure or beta (β):

α = rt − βrm,t (20)

In the previous expression, rm,t is the weekly percentage variation (as in (7)) of the
Refinitiv core commodity index (commIndext). This index is a proxy of the performance of
all the commodity (agricultural, energy, and metals) futures in the U.S. derivative exchanges.
The rationale of (12) is that if the trading algorithm leads to a better performance than
expected in the portfolio due to commodity market movements, the value of αp,t should be
higher. Therefore, the higher the α value, the better the portfolio performance due to active
management with the algorithm.

Once the simulation pseudo code and its assumptions have been detailed, the results
will be presented first for the no-factor MS and MS-GARCH models, followed by those
with market and behavioral factors.

3.2. Simulation Results for the Arithmetic Mean (No-Factor) MS and MS-GARCH Models

For the scenario where the single-regime location parameter is a no-factor or uncondi-
tional mean, Table 1 summarizes the performance of the nine simulated portfolios and the
buy-and-hold (passive) strategy. As noted, the passive strategy (last line of Table 1) paid an
accumulated return of 7.13% in the 1022-week period. This equals 0.34% in yearly terms.

Table 1. Summary of the simulated portfolios’ base 100 values in the no-factor scenario.

Simulated Portfolio Accumulated
Return (%)

Risk (Standard
Deviation %) Sharpe Ratio Jensen’s Alpha

(%)

MS with norm pdf −52.937 1.33 −0.061 −0.1
MS with tStud pdf 22.342 1.429 −0.005 −0.034
MS with GED pdf −20.089 1.434 −0.034 −0.076

MS-GARCH with norm pdf 147.759 2.216 0.052 0.011
MS-GARCH with tStud pdf 86.149 2.036 0.027 −0.028
MS-GARCH with GED pdf 151.03 1.902 0.062 0.05

MS-EGARCH with norm pdf 126.595 2.203 0.043 −0.008
MS-EGARCH with tStud pdf 68.63 2.164 0.018 −0.06
MS-EGARCH with GED pdf 158.333 2.13 0.059 0.032

Buy-and-hold (passive portfolio) 7.132 2.282 −0.01 −0.135
Best-fitting strategy 66.382 2.282 17.656 −0.077

The simulated portfolios using the MS (time-fixed variance) models for high-volatility
period forecasts are the ones that showed the lowest accumulated returns. The ones using
Gaussian and GED LLFs paid a negative accumulated return. The one using a GED LLF
with an asymmetric time-varying EGARCH variance paid the highest accumulated return
out of all the simulated portfolios. These results show that incorporating asymmetries in
the time-varying variance (or risk exposure), along with the fat tail in the LLF’s pdf, fits
better to forecast the presence, persistence, and fading of future high-volatility periods
(s = 2). Therefore, asymmetric EGARCH models are the best to forecast high-volatility
episodes at t + 1, leading to better sell signs for a lumber futures trader.

As Table 1 and a portfolio performance perspective noted, the best-performing portfo-
lio does not lead to the best risk–return (mean-variance) efficiency (the symmetric GARCH,
GED one does). Still, it is the second portfolio in the risk–return trade-off. The best-
performing portfolio paid a positive Jensen’s alpha of 0.32% (weekly return), and the
symmetric GARCH GED one paid a 0.05% alpha.

From Table 1, the authors conclude that Hypothesis H1 (the performance of the
simulated portfolios is better in a no-factors strategy than a buy-and-hold one) is true in
the GED asymmetric MS-GARCH model.

Figure 1 depicts the historical performance of the nine simulated portfolios against a
buy-and-hold strategy. As noted, the Ged MS-EGARCH portfolio (purple line) performs best.
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This review of Table 1 and Figure 1 suggests that using GED MS-EGARCH models
could lead to a better performance than using a buy-and-hold strategy. A review of
Figure 2 explains the results in this portfolio. The second subplot suggests that the GED
MS-EGARCH model accurately forecasts the probability of being in the high-probability
regime t + 1. As noted, in the periods in which ξs=2,t+1 > 50%, the trading algorithm
closed the long positions and invested in the USTBills. Those specific periods were the
high-volatility regime (s = 2), and, in most cases, when ξs=2,t+1 > 50%, the lumber futures
had lower settlement prices.
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Figure 2. The timing and detail of the historical performance of the MS-EGARCH simulated portfolio
in a no-factors scenario.

Even if the algorithm did not use directional trading signs (that is, it did not forecast
if prices would increase or decrease), the proper high-volatility regime forecast, due to a
time-varying EGARCH variance in the LLF, led to more accurate sell trading signals.
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By contrasting the performance of the time-fixed variance MS model portfolios, these
could create value because the sell trading signs lasted until the high-volatility period
ended. Because the EGARCH volatility is appropriate to forecast asymmetric (mainly
negative) shocks in the time series, the MS-EGARCH model was more accurate to forecast
S = 2 and create a sell trading signal. Therefore, there were fewer weeks invested in the
risk-free asset (USTbills) in this portfolio than in the ones using the MS model.

These first results align with the previous works that tested the use of MS-GARCH
models in agricultural commodities trading [51,52]. In those papers, using Gaussian or
Student’s t symmetric M-GARCH models led to an overperformance against the buy-
and-hold strategy in commodities such as corn, cocoa, and coffee. Those works did not
incorporate the use of asymmetric EGARCH variances. Therefore, this paper aligns with
the previous literature about using MS-ARCH or MS-GARCH models for commodity
trading and extends these by showing the use of MS-EGARCH in an unconditional or
arithmetic mean scenario.

Despite this, a result should be highlighted in Table 1: only three portfolios had
a marginally positive Jensen’s alpha. When a portfolio adds value to the investor, this
value is due to market fluctuations (βrm,t in (12)) and the manager’s (or algorithm’s) skill
(α = rt − βrm,t). If α > 0 by a significant amount, the portfolio manager or algorithm was
accurate in estimating an extra pay return against the market performance.

In the case of this paper’s simulations, the benchmark or market portfolio was the
entire commodity futures market (including energy and metals). The authors used this
benchmark because even if the present simulations use the lumber futures as a security of
interest, the performance of this commodity relies on the general asset-type demand from
investors or speculators. Since commodity futures are a natural diversification security, the
general commodity futures market’s benchmark (the Refinitiv core commodity index) was
the market factor of interest herein.

As noted in Table 1, the buy-and-hold strategy in the 1-month lumber futures led to
an underperformance of −0.13% (negative Jensen’s alpha) against the general commodity
futures market. The GED MS-GARCH and MS-EGARCH are the only portfolios that paid
a marginal alpha in the simulations. This suggests that the trading algorithm performs
better than the buy-and-hold strategy but pays negligible active returns against the broad
commodity futures markets.

A potential solution to this issue is to add factors in the MS-GARCH estimations.
Because MS-GARCH models are feasible only with the estimation of the scale parameters,
the following subsection shows the simulations with the conditional or factor (market and
behavioral) mean equation.

3.3. Simulation Results for the Market and Behavioral Factor Mean Equation with MS and
MS-GARCH Models

In this scenario, the MS and MS-GARCH models were estimated with the residuals
(εt) of the market and behavioral factor equation in (10).

Table 2 summarizes the performance of the simulated portfolios, and Figure 3 shows
the historical performance of the simulated portfolios (as in Figure 2).

As noted from Table 2, the accumulated returns suggest a better performance only
in the ones using the MS models if the market and behavioral factors are present in the
mean Equation (12). The theoretical expectation was that using these factors could lead
to better modeling of the regime change and forecast the probability ξs=2,t+1 of being
in the high-volatility regime at t + 1. Contrary to this expectation, using market and
behavioral factors led to an underperformance in the MS-GARCH simulated portfolios.
Their accumulated returns are lower than those in Table 1 (arithmetic mean in the location
parameter to estimate the residuals εt). Also, only the Student’s t and GED MS portfolios
paid a positive Jensen’s alpha.
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Table 2. Summary of the simulated portfolios’ base 100 values in the market and behavioral
factors scenario.

Simulated Portfolio Accumulated
Return (%)

Risk (Standard
Deviation %) Sharpe Ratio Jensen’s Alpha

(%)

MS with norm pdf 144.847 2.282 0.049 0
MS with tStud pdf 282.328 1.984 0.125 0.169
MS with GED pdf 216.161 2.092 0.087 0.092

MS-GARCH with norm pdf 144.847 2.282 0.049 0
MS-GARCH with tStud pdf 91.438 2.233 0.027 −0.046
MS-GARCH with GED pdf 92.618 2.212 0.028 −0.043

MS-EGARCH with norm pdf 144.847 2.282 0.049 0
MS-EGARCH with tStud pdf 131.654 2.276 0.044 −0.012
MS-EGARCH with GED pdf 123.475 2.273 0.04 −0.02

Buy-and-hold (passive portfolio) 7.132 2.282 −0.01 −0.135
Best-fitting strategy 123.848 2.282 41.792 −0.02
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Similarly to Table 1, the best-performing portfolio had a better risk–return profile, but
as Figure 3 suggests, this better performance is only due to recent short-term smoothed
probability ξ_(s = 2,t) changes in 2020 (the COVID-19 crisis). In that period, commodity
futures saw an important price increase and a subsequent fall. In this period, MS models,
due to their soft regime change, suggest investing in the USTbills. Only in this period
did the algorithm lead to accurate sell signals that explain this overperformance of MS
portfolios against the MS-GARCH ones.

From Table 2, the authors could conclude that using financial (market) and behavioral
factors to estimate the MS-GARCH models leads to a better performance than the simu-
lated portfolios in the no-factor scenario and the buy-and-hold strategy (Hypothesis H2).
Therefore, including these factors in the single-regime mean equation leads to residuals
that better fit the regime change at t + 1 and a better trading sign in lumber futures trading.

Following Figure 3, that conclusion is not valid. As noted, the use of the trading
algorithm did not add value to the simulated portfolio until the 2020 period. For practically
every week (as in Figures 1 and 3), the portfolio remained invested in lumber futures, and
during the 2008 U.S. financial markets crisis, invested in the USTBills. Therefore, using
market and behavioral factors in the mean equation to estimate the residuals (ε_t) of the MS
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or MS-GARCH models does not add value to the portfolio. This conclusion is supported
by the lower Jensen’s alpha in Table 2. The values of these portfolios are lower than those
in Table 1. In conclusion, using factors (financial or behavioral) does not enhance portfolio
management in the trading algorithms of interest.

In this simulation scenario, the Student’s t MS portfolio has the highest accumulated re-
turn (282.32%). The MS-GARCH portfolios in these simulations performed similarly to the
MS-GARCH of the previous scenario (arithmetic mean). Figure 4 depicts the performance
of the Student’s t MS portfolio.
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4. Concluding Remarks

A big challenge in active portfolio management or security trading activities is deter-
mining the right time to buy or sell the security of interest. Active portfolio management
aims to earn a higher return than a buy-and-hold strategy in that same security.

To determine a proper buy-and-sell trading signal, Markov-switching (MS) with time-
fixed variance (MS) models and their time-varying generalized autoregressive conditional
heteroskedasticity variance (MS-GARCH) version are useful to detect breaks and regimes
of behavior in financial and economic time series. These models assume that a given time
series is modeled with a hidden first-order Markov chain of s states or regimes. Given
this assumption, it is feasible to model and forecast the probability ξs,t+n of being in each
regime n periods ahead.

Among several economic or financial uses, these models could be appropriate to
forecast the probability of being in a high-volatility regime (s = 2) or a calm, lower-
volatility one (s = 1). Given these probabilities, a trader could buy (hold) or sell the security
of interest. This original proposal is due to Brooks and Persand [6]. Since that study, several
applications of MS and MS-GARCH models for trading have been tested, and little has
been written about using these models in agricultural commodity trading. Most of all, no
attention has been given to using MS models in lumber trading, an important commodity
in real estate and general U.S. and global economies.

This paper fills this gap by testing the use of MS and MS-GARCH models (with
symmetric and asymmetric variances) in lumber trading. It also extends the current
literature on trading with Markov-switching models by adding market and behavioral
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factors in the location (conditional mean) parameter. The factors included the return of the
commodity futures market given with the Refinitiv core commodity’s index return minus
the weekly rate of the 3-month U.S. Treasury bills (USTBills), the value of the S&P 500 at-the-
money and in-the-money 1-month options implied volatility index (VIX), the Refinitiv U.S.
dollar index, and the Working’s speculation ratio (lumber futures’ accumulated volume
against its open interest). The behavioral factors included in the simulations were the
uncertainty or fear indexes given by the U.S. economic policy uncertainty index [50], the
U.S. stock market volatility news tracker [62], and the infectious disease news volatility
tracker [63].

With these MS and MS-GARCH models, the Hypotheses 1 and 2 were tested:
Nine portfolios were simulated to test these hypotheses and the usefulness of MS-

GARCH models. Each portfolio used two-regime time-fixed variance MS models, MS-
GARCH, or MS-EGARCH models with symmetric Gaussian, Student’s t, and generalized
error distribution (GED) log-likelihood functions (LLF). Each portfolio, in a weekly analysis
and rebalancing, executed the next trading rule:

1. Take a long position in the 1-month lumber futures if the probability (ξs=2,t+1) volatil-
ity of being in the high-volatility regime (s = 2) in the next week (t + 1) is lower than
or equal to 50%.

2. Invest in a 3-month U.S. Treasury bill (USTBills) fund otherwise.

The theoretical position was to test that using MS-GARCH models is useful to create
alpha or overperformance (against a buy-and-hold strategy) in two scenarios: one using the
unconditional mean to estimate MS-GARCH models and another in which the conditional
mean uses market and behavioral factors.

To estimate the MS, MS-GARCH, or MS-EGARCH models, the authors used the
weekly historical continuous time returns (rt) of the 1-month lumber futures from January
7 1994 to the simulated week’s date. Also, each week, either the expectation–maximization
(E-M) or the Markov Chain Monte Carlo (MCMC) method was used.

The nine portfolios were simulated in two scenarios: one in which the location param-
eter was an unconditional mean and another in which the conditional mean was estimated
with the market and behavioral factors. In each scenario, the estimated residuals were
different due to the impact and potential directionality of the factors.

The results in the scenario with no factors showed that using GED asymmetric MS-
EGARCH models in the trading algorithm leads to a better performance (158.33%) than
that of a passive buy-and-hold strategy. This performance is explained with the proper sell
trading signals that the algorithm suggested, given the more accurate forecast of the high-
volatility regime’s probability (ξs=2,t+1). This proved that unconditional mean MS-GARCH
models are suitable for active lumber futures trading (hypothesis H1).

In the scenario that includes the market and behavioral factors in the location pa-
rameter (mean), there is no better performance of the simulated portfolios against the
results of the previous (no factor) scenario. The best-performing portfolio uses a time-fixed
Student’s t MS model, and the overperformance is due to extreme volatility during the
2020 COVID-19 period. Therefore, the performance of the other simulated portfolios (such
as the GED MS-EGARCH) leads to an overperformance against a buy-and-hold strategy
but adds less value than their no-factor scenario counterparts. These results conclude that
hypothesis H2 does not hold, and using behavioral or financial factors does not add to the
estimation’s data set and improve the performance in active lumber futures trading.

The main conclusion of this research is that using GED MS-EGARCH models with no
factors in the location parameter is the best solution to create active returns (a return higher
than that of the buy-and-hold strategy) in the 1-month lumber futures. This result aligns
with previous works that suggest that using MS-GARCH or MS-GARCH models is useful
in agricultural commodity futures trading.

As a guideline for further research, the authors suggest using other methods to forecast
the future direction of the forecasted return. MS-GARCH models can be estimated only



Mathematics 2024, 12, 485 18 of 20

with a scale (standard deviation) parameter due to path dependency in their inference. As
a result, a regime change in the location (expected return) cannot be incorporated.

Also, the use of MS-GARCH models in pair trading of lumber or other agricultural
futures’ term curve could be interesting, along with the pair trading of these futures against
other securities such as stocks or volatility futures.
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