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Abstract: In a public health emergency, residents urgently require a large number of rescue materials
for treatment or protection. These rescue materials are usually located far from the emergency area.
The government must organize rescue materials transportation by selecting suitable transport modes.
Thus, we propose a material allocation model for public health emergencies under a multimodal
transportation network to determine the best rescue material supply route. In this model, we set
the demand priorities according to the emergency degrees to decide the transportation sequence.
Meanwhile, we introduce the psychological pain cost brought by the rescue material shortage into the
proposed model to trade off the priority and fairness of demand. Having compared it to the research
literature, this is the first study that considers multiple categories of materials, absolute pain costs,
relative pain costs and demand priority under multimodal transportation. The research problem
is formulated into an integer programming model, and we develop a modified genetic algorithm
to solve it. A set of numerical examples are conducted to test the performance of the proposed
algorithm, and to investigate features and applications of the proposed model. The results indicate
that the modified genetic algorithm performs better in the calculation examples at different scales.
For small-scale instances, the algorithm produces consistent results with Gurobi. As the instance size
increases, Gurobi fails to find the optimal solution within 1800 s, while this algorithm is able to find
the optimal solution within an acceptable time frame. Additionally, when dealing with large-scale
instances, the algorithm exhibits a significant advantage in terms of runtime. Sensitivity analysis of
key factors indicate that (1) Adjusting the relative pain cost coefficient can make the best trade-off
between fairness, economy and timeliness; (2) Compared with a single mode of transport, multimodal
transport can reduce the psychological pain cost and the logistics cost; (3) Improving the loading and
unloading capacity of nodes can reduce the delivery time of materials and the psychological pain
cost of residents, but the influence of other factors and cost-effectiveness need to be considered.

Keywords: rescue material allocation; multimodal transportation network; demand priority; psychological
pain; genetic algorithm

MSC: 90B06

1. Introduction

In public health emergencies, the supply of rescue materials has a significant im-
pact on the efficiency of rescue and epidemic control. Local rescue supply cannot meet
the demand of residents during severe outbreak, such as COVID-19. Consequently, the
government must organize the transportation of rescue materials far from the epidemic
area to address the material shortage. To ensure the rapid and extensive supply of rescue
materials, multiple modes of transportation should be used. How to optimize the route
for multimodal transportation is a key challenge in material allocation tasks. Previous
studies have addressed this challenge by proposing various models and structures. For
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example, Maghfiroh et al. [1] proposed a multi-modal distribution model considering
land, air and ship within a three-tier relief network. Chen et al. [2] proposed a three-tier
multimodal transport network structure for the cross-regional dispatch of emergency sup-
plies. The objective of these studies was to minimize rescue time and maximize rescue
utility. However, in the context of public health emergencies, material allocation should
consider the demand priority for curbing the spread of the epidemic effectively. Tofighi
et al. [3] determined the priority of demand points based on the degree of earthquake
damage and social conditions. In the case of shortage of relief resources, demand points
with higher priorities were assigned first. Zhu et al. [4] used the tolerable pain duration of
victims during transportation to characterize the rescue priority of victims with different
degrees of injury. They constructed an emergency rescue path model that considered the
same and different degrees of injury. Considering the psychological pain and fairness of
affected individuals is a crucial aspect of humanitarian relief operations, especially from
the perspective of the psychological state of the affected people. Cotes et al. [5] proposed
a facility siting model with prepositioned supplies. Their model specifically takes into
account the cost of deprivation, an estimate used to quantify the human suffering caused
by scarcity. Jamali et al. [6] proposed a stochastic programming model considering different
scenarios to weigh relief costs, deprivation costs and carbon emissions in humanitarian
logistics. The cost of deprivation was affected by the severity of the different injuries of
the patients, aiming to strike a balance between different aspects of sustainability. These
studies highlight the importance of considering the psychological pain cost in the rescue
material allocation to alleviate the psychological trauma of the affected people and improve
the rescue efficiency.

To the best of our knowledge, there have been no studies focusing on the trade-off
between psychological pain cost and the demand priority in the allocation of rescue material.
Therefore, this paper formulates a mixed integer programming model, which takes the
psychological pain costs and material allocation costs as the decision-making objectives.
The psychological pain costs are divided into absolute and relative pain costs. The absolute
pain cost is an economic valuation of the psychological pain of those affected by a public
health emergency without rescue material supply. The relative pain cost is expressed by
the absolute value of the deviation between the two absolute pain costs, characterizing
the fairness and timeliness in rescue operations. To highlight the priority requirements
of emergency rescue, we introduce demand priority to represent the urgency of different
epidemic areas that affect the material allocation sequence. To solve the proposed model,
we have developed an improved genetic algorithm. A set of case studies is conducted to
illustrate the influence of the demand priority and psychological pain on the rescue material
allocation. This study can provide theoretical guidance and decision-making support for
emergency supplies in public health emergencies, ultimately improving the efficiency of
emergency rescue efforts.

The rest of this paper is organized as follows: Section 2 reviews the literature related
to the problem of rescue material allocation. Section 3 proposes the mixed integer pro-
gramming model for the rescue material allocation problem. Section 4 presents a modified
genetic algorithm to solve the proposed model. Section 5 conducts case studies to evaluate
the performance of the solution algorithm and draw managerial insights. Section 6 applies
the proposed model and algorithm to a real case. Finally, Section 7 concludes the paper
and discusses the direction for future research.

2. Literature Review

The allocation of emergency materials is an indispensable part of responding to public
health emergencies, natural disasters and other emergencies. In the field of emergency
material allocation, early research focused on single-level logistics networks, where emer-
gency materials are distributed from the distribution center to the demand. For example,
Hu et al. [7] considered the situation of dispatching from a single emergency material
supply point to multiple emergency points and explored the application of container in-
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termodal transportation in the distribution of emergency materials to optimize the path
of the emergency material supply chain. In contrast, Zhang et al. [8] considered the dis-
patching of multiple emergency warehouses to multiple emergency points and minimized
the total time of material dispatching as the goal. Abounacer et al. [9] further studied the
multi-objective siting–transportation problem for disaster response, aiming to determine
the number, location and tasks of distribution centers and optimize material distribution.
Lyu et al. [10] focused on the shortage of materials at multiple supply points and multiple
disaster-affected points in the early post-disaster period, taking into account efficiency
and fairness, and built an emergency material distribution model to efficiently solve the
problem of emergency material allocation under scarcity. Zhu et al. [11] considered the
heterogeneous psychological pain of the affected people in post-disaster emergency rescue
and constructed a dynamic scheduling model of emergency supplies with two levels of
heterogeneous behavior. These studies focused on the single-level allocation of emergency
materials from different perspectives. However, the multi-level allocation of emergency
materials is common in real emergencies, and it is necessary to consider the decision-
making coordination between multiple levels to obtain a reasonable distribution scheme of
emergency materials.

Research on multi-level emergency material allocation has gradually attracted atten-
tion in recent years. In this type of network, emergency materials need to be transported
from the central warehouse to the distribution center, and then delivered to the demand
point. Such a multi-level material allocation problem makes it more complicated to op-
timize the transportation routes and quantities of emergency materials. Tofighi et al. [3]
studied the problem of a two-stage humanitarian logistics network design, including cen-
tral warehouses, local distribution centers and demand points, and developed a two-stage
scenario planning approach. This method involves determining the location of the central
warehouse and the local distribution center in the first stage, and developing relief plans
according to different situations in the second stage. At the same time, Pradhananga
et al. [12] considered the deprivation cost caused by the delay in the delivery of emergency
supplies and proposed an integrated three-level network model of emergency preparation,
emergency supplies distribution and response to ensure the efficient distribution of sup-
plies. Noham et al. [13] studied the two-level humanitarian supply chain design problem,
considering pre-disaster and post-disaster scenarios, where the optimal warehouse location
was determined before the disaster and the distribution of materials at the demand point
is determined after the disaster to improve the performance of the entire supply chain.
Song et al. [14] considered the waiting situation of emergency vehicles in the emergency
distribution centers, and proposed a multi-material, multi-level distribution emergency
material allocation plan optimization model to determine whether vehicles need to wait.
Wang et al. [15] proposed a three-level distribution network dynamic allocation model of
emergency supplies with multiple collection and distribution points, multiple distribution
centers and multiple disaster points by introducing the proportion of material demand
shortage into the exponential utility function to measure fairness. It aims to consider effi-
ciency and fairness in the multi-stage distribution of large-scale disaster emergency relief
materials, and further reduce costs. While these studies provide new ideas and methods for
multi-level emergency material scheduling, further research is needed considering the real
emergency. For example, Erbeyoğlu et al. [16] proposed a two-level relief network design
model under humanitarian logistics to achieve feasible, efficient and equitable post-disaster
distribution plans under different disaster scenarios. Shan et al. [17] studied the cross-
regional distribution of center–distribution and center–demand point three-level dynamic
material dispatching network considering factors such as timeliness differences, geograph-
ical dispersion and capital consumption of emergency materials across regions. Kawase
et al. [18] study multi-level relief stock allocation strategies in humanitarian logistics, posing
a dynamic stochastic optimization problem.

Considering the requirements for efficient allocation and cost of rescue materials in
emergencies, multimodal transportation is used to transport emergency materials based
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on the characteristics and complementarities of different transportation modes. Thus,
optimizing the allocation routes in a multimodal transportation network should consider
the coordination and conversion between different transportation modes, as well as factors
such as transportation costs and speeds of different transportation modes. Xiong et al. [19]
conducted a comprehensive study that considered time window constraints, road damage
and mixed loading of various emergency materials. They focused on the multi-level loca-
tion routing problem of multimodal transportation distribution of emergency materials
after the earthquake, to achieve the timely and fair distribution of emergency materials.
On this basis, Ning T. et al. [20] proposed a two-stage joint transportation method of
medical supplies considering capacity constraints. In the first stage, temporary transfer
points are determined, and the construction of a “helicopter-vehicle” joint transportation
network structure for medical supplies is considered; The second stage determines the
transport routes based on clustering; effectively reducing the number of vehicles. To further
optimize the scheduling strategy, Zhang et al. [21] established a two-tier optimal schedul-
ing model for emergency supplies considering multimodal transport. The upper-level
model considered multimodal transport and aimed at the shortest transportation time; the
lower-level model emphasized the fairness in emergency material distribution, aiming to
minimize the variance in material allocation at each demand point, ensuring the timeliness
and fairness of emergency material dispatch. Additionally, Gao et al. [22] studied the
site selection-combined transportation problem of large-scale emergency material deploy-
ment after an earthquake, taking into account timeliness and fairness, and considering
the coordinated combined transportation of emergency materials by road, aviation and
railway. Furthermore, Li et al. [23] established a multimodal transport hub-radiation com-
prehensive emergency rescue material transportation network to determine the location
of candidate hub nodes and transportation plans for different modes of transportation.
This made it possible to ensure the timely guarantee of basic living materials and mini-
mize the transportation cost of the transportation company. To address uncertainties, Liu
et al. [24] comprehensively considered the dual uncertainties of demand and transportation
environment and established an optimization model for the multimodal transportation of
emergency supplies with the goal of maximum reliability. The aim is to deliver emergency
supplies to their destinations on time and reliably.

Early studies primarily focused on optimizing rescue operations in terms of timeliness
and cost-effectiveness. However, in recent years, more and more studies have turned
their focus on humanitarian logistics and consider the psychological conditions of the
affected people. They introduce the economic value valuation of the psychological pain
caused by the disaster-affected people’s inability to obtain materials into the objective
function. For example, Cotes et al. [5] incorporated the loss caused by people’s inability to
obtain life-sustaining materials as deprivation costs into the decision-making target, and
developed a facility siting model with transportation costs, inventory costs, fixed costs of
facilities and deprivation costs as targets. Considering the dynamic features, Zhu et al. [25]
used risk perception theory and fairness aversion function to quantify the risk perception
satisfaction and distribution fairness of the disaster victims regarding the delivery time
and quantity of emergency supplies and constructed a multi-stage scheduling model based
on psychological perception for emergency supplies allocation, aiming to improve the
satisfaction of the disaster victims with the rescue outcomes. Zhu et al. [26] constructed
the relative deprivation cost based on the deprivation cost of disaster victims as one of the
decision objectives. They studied the dynamic allocation problem of emergency supplies
considering fairness to mitigate the trauma of disaster victims and enhanced the rescue
fairness by alleviating the psychological trauma of disaster victims. Moreover, Zhang
et al. [27] measured the loss of disaster victims waiting for emergency supplies using the
deprivation cost function. They integrated emergency facility location, emergency supplies
reserve and allocation based on scenarios, to reduce human suffering during and after
disasters. Gong et al. [28] considered the psychological factors of disaster victims under an
uncertain environment and proposed to construct a risk perception function to describe the
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psychological risk perception degree of disaster victims for obtaining relief supplies. They
developed a multi-period dynamic allocation optimization decision model for emergency
supplies, so that decision-makers can choose their attitude toward cost and psychological
loss of disaster victims. It is worth noting that Gao et al. [22] proposed to construct a
pain cost function to depict the psychological pain degree of disaster victims, with the
minimum psychological pain cost and emergency logistics cost of disaster victims as the
objective. They constructed a multi-objective programming model for emergency supplies
allocation location and intermodal transport. On this basis, Khodaee et al. [29] proposed a
humanitarian supply chain model for vaccine distribution during the COVID-19 pandemic,
regarded the human injury degree caused by the inability to obtain vaccines and other
key items in critical situations such as deprivation function and included them in the
decision objectives, with transportation cost, shortage cost, deprivation cost and holding
cost as objectives, to minimize human suffering and death toll. Sun et al. [30] took the
total deprivation cost and total operation cost caused by delayed access to medical services
as objectives and studied a scenario-based robust optimization model, which integrated
medical facility location, casualty transportation and material allocation. The objective was
to save lives and alleviate human suffering.

However, most of the existing studies on the allocation of emergency supplies are
on natural disasters, and there are relatively few studies on the allocation of emergency
supplies in the context of public health emergencies. Considering the damage to facilities
and roads caused by natural disaster emergencies and the uncertainty of material demand
due to the uncertainty of the number of people affected by the disaster, most of the studies
on the allocation of natural disaster-related emergency materials consider the stochasticity
and uncertainty of some of the parameters in the scheduling process, and there are more
studies on the vehicle routing problem and the site selection-routing problem, among
others. Meanwhile, the existing literature mainly focuses on the reduction in the cost or
time of emergency supplies allocation and the improvement of subjective and objective
fairness, and there are fewer studies on the portrayal and reduction of the psychological
pain of the disaster victims under the complex rescue scenarios. They have underestimated
the combined effects of demand prioritization and psychological distress on the distribution
of supplies. Thus, this paper introduces both the demand priority and psychological pain
into the multi-type rescue materials allocation under a multimodal transportation network
to trade off the priority and fairness of the demand. The aim of our study is to design
optimal transportation routes that minimize the total cost of emergency material allocation,
including the average psychological pain cost of the affected residents, transportation
cost, loading cost and transfer cost. To illustrate the shortcomings of this study and our
contribution, Table 1 provides a comparative table of modeling studies of emergency
supplies allocation.

Table 1. Comparison between the related literature and this paper.

Authors and
Year

The Number of
Distribution

Levels
Type of
Problem

Multi-Modal
Transport

Psychological
Pain Cost

Demand
Priorities

Multi-Type
Materials Solution Method

Zhang et al.
(2012) [8] One Allocation Heuristic algorithm based

linear programming
Abounacer et al.

(2014) [9] One Location–
Allocation

√
Epsilon-constraint method

Tofighi et al.
(2016) [3] One Allocation

√ √ Differential evolution (DE)
algorithm

Noham et al.
(2018) [13] One Location–

Allocation
Heuristic algorithm based on

Tabu-search
Cotes et al.
(2019) [5] Two Location

√ √
CPLEX

Zhu et al.
(2019) [4] One Routing

√ √ Meta-heuristic algorithm
based on the ant colony

optimization
Xiong et al.
(2019) [19] Two Allocation

√ √
Hybrid heuristic algorithm

Zhu et al.
(2020) [11] One Allocation

√
Genetic algorithm
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Table 1. Cont.

Authors and
Year

The Number of
Distribution

Levels
Type of
Problem

Multi-Modal
Transport

Psychological
Pain Cost

Demand
Priorities

Multi-Type
Materials Solution Method

Erbeyoğlu et al.
(2020) [16] Two Allocation

√ Logic-based Benders
decomposition approach

Ning et al.
(2021) [20] Two Location-

Routing
√ √ Quantum bacterial foraging

(QBF) algorithm
Gao et al. (2022)

[22] One Allocation
√ √ √

Genetic algorithm
Khodaee et al.

(2022) [29] Two Allocation
√

CPLEX

Li et al.
(2022) [23] Two Allocation

√ √ Grey wolf optimization
algorithm

This study Two Allocation
√ √ √ √

Modified genetic algorithm

3. Model Formulation
3.1. Problem Statement

When a public health emergency occurs, it is necessary to transport the multi-type
rescue materials from the supply warehouses in different locations to the epidemic area
through the transfer centers. In the epidemic area, there are a number of emergency points
whose demands for rescue materials are known.

The demands of each emergency point must be satisfied by only one transfer center.
These transfer centers are used to collect various types of rescue materials that are trans-
ported from different supply warehouses via trains, trucks or airplanes. Subsequently,
the packaged materials are distributed to the emergency point by trucks. Each supply
warehouse and transfer center has a fixed storage capacity and transfer capacity for rescue
materials. In the process of the material allocation shown in Figure 1, the loading sequence
in supply warehouses or transfer centers is determined based on the demand priority. The
mode selection and volume size of the transportation will be influenced by both logistics
and psychological pain costs. The objective of this allocation problem is to determine
the best mode and volume of transportation and the corresponding assignments between
the transfer centers and emergency points so as to minimize the total cost, including the
psychological pain costs, transportation costs, loading costs and transfer costs.
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3.2. Notation List

In this section, the meanings of notations used in this paper are described. Notation
explanations are given in Table 2.
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Table 2. Notations explanation.

Notation Description

I Set of supply warehouses, let i ∈ I
J Set of transfer centers, let j ∈ J
K Set of emergency points, let k ∈ K
N Set of material types, let n ∈ N
M Set of transportation modes, let m ∈ M, m = 1 indicates train, m = 2 indicates airplane, m = 3 indicates truck

cmn The unit transportation cost of material n by transportation mode m
dijm The distance from supply warehouse i to transfer center j by transportation mode m
djk The distance from the transfer center j to emergency point
vm The average speed of transportation mode m
γi The loading capacity per unit time of supply warehouse i
γj The transfer capacity per unit time of transfer center j

Omi The number of transportation mode m for supply warehouse i
Oj The number of trucks for transfer center j
om The loading capacity of one vehicle for transportation mode m
λk The demand priority of emergency point k
hi The unit cost of loading in supply warehouse i
gj The unit transfer cost of transfer center j

Qni The storage capacity of material n in supply warehouse i
Rj The transfer capacity of transfer center j
qnk The demand of emergency point k for material n
θnk The minimum satisfaction rate of emergency point k for material n

T0
mnij The departure time of material n from supply warehouse i to transfer center j by transportation mode m

T1
mnij The arrival time of material n from supply warehouse i to transfer center j by transportation mode m
T2

nj The average completion time of unloading material n in transfer center j
T3

njk The average departure time of material n from transfer center j to emergency point k
Tnk The average departure time of material n from transfer center j to emergency point k

Tmax
n The maximum delivery time for material n

BigM extreme large number
wmnij Transportation volume of material n from supply warehouse i to transfer center j by transportation mode m
wnjk Transportation volume of material n from transfer center j to emergency point k by trucks

ymnij
0–1 variable, when it is equal to 1, it means that material n is transported from supply warehouse i to transfer
center j through transportation mode m; otherwise, there is no this assignment

ynjk
0–1 variable, when it is equal to 1, it means that material n is distributed from transfer center j to emergency
point k; otherwise, there is no this assignment

3.3. Cost Component Quantification

In the material allocation problem, the unsatisfied demand at emergency points results
in a potential cost, i.e., the psychological pain cost. In the meantime, the transport of rescue
materials also incurs the corresponding transportation cost, loading cost and transfer cost.
These costs constitute the total cost of the material allocation problem together.

The psychological pain cost includes two components: absolute pain cost and relative
pain cost. The former measures the pain, cold, hunger and other pain perceptions caused
by not being able to obtain relief supplies in time. On the other hand, the relative pain
cost measures the pain caused by differences in the arrival time and distribution of rescue
materials. Gao et al. [22] proposed two functions considering psychological factors of
disaster victims to describe their psychological pain perception. Based on these two
functions, we formulate the absolute pain cost and the relative pain cost, respectively.

The function of the absolute pain cost Ank for emergency point k due to the lack of
material is shown as follows:

hn(t) = an exp(bnt) (1)

Ank = ∑
j∈J

wnjkhnk(Tnk) + (qnk −∑
j∈J

wnjk)hn(max
k∈k

Tnk) (2)
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where hn is the cost of material scarcity per unit, and t is the duration of material scarcity; an
and bn are coefficients, which changes with the type of materials. The cost of scarcity is the
economic value of human suffering caused by a lack of access to rescue materials. Thus, the
cost of scarcity is a function of the duration of scarcity and the socioeconomic characteristics
of the individual. Scarcity costs are characterized by (1) monotonicity. Scarcity costs
increase with the duration of scarcity. (2) Convexity. The cost of scarcity increases more and
more rapidly as the time of scarcity increases. (3) Nonlinearity. Nonlinearity is a natural
consequence of human response to shortages of life-sustaining supplies [31].

The relative pain cost Rnkk′ between emergency points k ∈ K and k′ ∈ K for material n
is formulated by

Rnkk′ = |Ank − Ank′ |, ∀k, k′ ∈ K (3)

The psychological pain cost of affected residents F, including the average absolute
pain cost and relative pain cost, is formulated as follows:

F = ∑
n∈N

∑
k∈K

Ank + α ∑
n∈N

∑
k∈K

∑
k∈K′

Rnkk′ (4)

where α is the relative pain cost coefficient.
The total transportation cost is expressed as

Z1 = ∑
m∈M

∑
n∈N

∑
i∈I

∑
j∈J

wmnijdijcmn + ∑
n∈N

∑
j∈J

∑
k∈K

wnjkdjkc3n (5)

The first term represents the transportation cost from the supply warehouse to the
transfer center, and the second term represents the transportation cost from the transfer
center to the emergency point.

The total loading at the supply warehouses is expressed as

Z2 = ∑
i∈I

∑
j∈J

∑
n∈N

∑
m∈M

hiwmnij (6)

The total transfer cost at the transfer centers is expressed as

Z3 = ∑
n∈N

∑
j∈J

∑
k∈K

gjwnjk (7)

The total logistics cost of rescue materials, denoted by Z, is formulated as

Z = Z1 + Z2 + Z3 (8)

3.4. Delivery Time Formula

We study the rescue material allocation problem in a multi-level supply network.
This network includes three-level nodes, i.e., supply warehouses, transfer centers and
emergency points, and two-level transportation, i.e., from a supply warehouse to a transfer
center and from a transfer center to an emergency point. The arrival time of materials at
the demand point is considered as the key factor. The average delivery time Tnk denotes
the time that material n arrives at emergency point k. Tnk mainly includes four parts time
shown in Figure 2, i.e., the loading time at the supply warehouse, the transportation time
from the supply warehouse to the transfer center, the transfer time at the transfer center
and the transportation time from the transfer center to the emergency point.
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T0
mnij denotes the loading time of material n which is transported to transfer center j

by transportation mode m at supply warehouse i. The loading sequence of rescue materials
is determined by the priority of transfer centers. The priority of transfer center j is for-
mulated by ∑

k∈K
λk ∑

n∈N
wnjk, denoted as φ. This section assumes that Φ(φ′, φ) is judgment

function, if the value of φ′ corresponding to transfer center j′ is greater than the value of
φ corresponding to transfer center j; then, the loading priority of the material flowing to
transfer center j′ is higher than that of the material corresponding to transfer center j, and
at this time, the value of Φ(φ′, φ) is equal to 1, and otherwise it is equal to 0. Thus, the
formula of T0

mnij and Φ(φ′, φ) is as follows:

Φ(φ′, φ) =

{
1 i f φ′ > φ
0 i f φ′ ≤ φ

(9)

T0
mnij =

{ ∑
j′∈J

Φ( ∑
k∈K

λk ∑
n∈N

wnkk′ , ∑
k∈K

λk ∑
n∈N

wnjk)wmnij′}+ wmnij

γi
(10)

T1
mnij denotes the arrival time of materials n from the supply point i to the transfer

center j by transportation mode m, which is formulated by

T1
mnij = T0

mnij + dijmymnij/vm (11)

T2
nj demotes the average time for material n when all of material n complete unloading

at transfer center j, which is formulated by

T2
nj =

∑
m∈M

∑
i∈I

{
T1

mnij + wmnij/γj

}
∥M∥∥I∥ (12)

T3
njk denotes the departure time of material n from transfer center j to emergency point

k. The loading sequence of rescue materials is determined by the priority of emergency
points. Thus, the formula of T3

njk is as follows:

T3
njk = T2

nj +

{
∑

k′∈K
Φ(λk′ ∑

n∈N
wnkk′ , λk ∑

n∈N
wnjk)wnjk′

}
+ wnjk

γj
(13)

Tnk denotes the time for material n to arrive at the emergency point k and is formulated
by

Tnk = ∑
j∈J

(T3
njk + djkynjk/v3) (14)

3.5. Material Allocation Model

This paper proposes a material allocation model for public health emergency under a
multimodal transportation network by considering the demand priority and psychological
pain. The model formulations are as follows:

minH = F + Z (15)

Subject to
∑
j∈J

wmn,ij ≤ Qn,i; ∀n ∈ N, i ∈ I (16)

∑
m∈M

∑
n∈N

∑
i∈I

wm,n,ij = ∑
n∈N

∑
k∈K

wn,jk ≤ Rj, ∀j ∈ J (17)
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∑
m∈M

∑
i∈I

wm,n,ij = ∑
k∈K

wn,jk, ∀j ∈ J, ∀n ∈ N (18)

∑
j∈J

wn,jk ≤ qn,k, ∀k ∈ K, ∀n ∈ N (19)

∑
j∈J

wn,jk ≥ qn,k ∗ θn,k, ∀k ∈ K, ∀n ∈ N (20)

∑
j∈J

[ ∑
n∈N

wm,n,ij/om] ≤ Om,i, ∀i ∈ I, ∀m ∈ M (21)

∑
k∈K

[ ∑
n∈N

wn,jk/o3] ≤ Oj, ∀j ∈ J (22)

Tn,k ≤ Tmax
n (23)

wm,n,ij ≤ BigMym,n,ij, wm,n,ij ≥ ym,n,ij, ∀i ∈ I, j ∈ J, m ∈ M, n ∈ N (24)

wn,jk ≤ BigMyn,jk, wn,jk ≥ yn,jk, ∀j ∈ J, k ∈ K, n ∈ N (25)

yn′ ,jk = yn,jk, ∀n, n′ ∈ N, j ∈ J, k ∈ K (26)

∑
j∈J

yn,jk = 1, ∀n ∈ N, k ∈ K (27)

ym,n,ij, yn,jk ∈ {0, 1}, ∀m ∈ M, ∀i ∈ I, ∀j ∈ J, ∀k ∈ K, ∀n ∈ N (28)

wm,n,ij, wn,jk ∈ N, ∀m ∈ M, ∀i ∈ I, ∀j ∈ J, ∀k ∈ K, ∀n ∈ N (29)

Equation (15) indicates the minimization of the average psychological pain cost of the
affected people and the total logistics cost of rescue materials; Equation (16) indicates that
the demand of all emergency points for material n does not exceed the storage capacity
of material n in the supply warehouse; Equation (17) indicates that the total amount of
materials flowing from the supply warehouses to each transfer center is equal to the total
amount of materials flowing from the transfer center to emergency points, and the total
amount of materials flowing from the transfer center to emergency points does not exceed
the material capacity of the transfer center; Equation (18) indicates that the total amount of
materials received by the transfer center is equal to the total amount of materials flowing
to emergency points; Equation (19) indicates that the quantity of received material at the
emergency point does not exceed the actual material demand of the emergency point;
Equation (20) indicates that the quantity of received material at the emergency point must
exceed the minimum material demand of the emergency point; Equation (21) indicates
that the number of vehicles by the supply warehouse for transportation mode m does
not exceed the maximum available quantity; Equation (22) indicates that the number of
vehicles by the transfer center does not exceed the maximum available quantity; Equation
(23) indicates that the time for material n to reach emergency point k should not exceed
the maximum delivery time; Equations (24) and (25) indicate the correspondence between
decision variables; Equations (26) and (27) indicate that the emergency point can only
be served by one transfer center; Equations (28) and (29) define the domain of decision
variables.

4. Modified Genetic Algorithm

Our proposed model addresses the allocation and transportation problem of emer-
gency materials for multiple categories within the network including multiple supply
warehouses, multiple transfer centers and multiple emergency points. The scheduling
network is complex and involves a large number of variables, posing significant challenges
for solving the difficult problem to solve.

Genetic algorithms are intelligent optimization algorithms that apply Darwin’s natural
evolutionary rule of “survival of the fittest” to solve computational problems. Compared
with other algorithms, the genetic algorithm has a strong global search ability, can search
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for the optimal solution in a large-scale solution space and is suitable for solving complex
optimization problems. In addition, the genetic algorithm is encoded in a more flexible way
and is able to represent a variety of complex solution spaces. In this paper, the flowchart of
the modified genetic algorithm for solving the proposed model of allocation of emergency
materials is shown in Figure 3.
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(1) Parameter Initialization: The input parameters of the genetic algorithm in this
model mainly include relevant parameters such as the supply and demand of materials,
emergency priorities of emergency points and more. Additionally, the algorithm parameters
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mainly include population size, number of iterations, crossover rate and mutation rate
among others.

(2) Chromosome Coding: The chromosome coding method in this paper is as follows:
In the emergency material dispatching model, it is assumed that the number of supply
warehouses, transfer centers, emergency points and material types are n1, n2, n3 and n4,
respectively, and the number of transportation methods is M = 3. The chromosome is
divided into two segments. The first segment represents the quantity of materials allocated
from the supply warehouse to the transfer center. It adopts the decimal four-dimensional
encoding method. (m, n, i, j) represents the gene index, where i represents the index of the
supply warehouse, and j represents the transfer center index, n represents the material
type index, and m represents the transport mode index. Chromosome (m, n, i, j) indicates
the quantity of emergency supplies n allocated to transfer center j by supply warehouse
i using transportation mode m, and contains n1 × n2 × n4 × M genes in total. The
second paragraph indicates the quantity of materials allocated from the transfer center to
the emergency point, and adopts the decimal three-dimensional coding method. (n, j, k)
represents the gene index, where j represents the index of the transfer center, n represents
the index of the material type and k represents the emergency point index. Chromosome
(n, j, k) indicates the number of emergency supplies n allocated to emergency point k by
transfer center j, including n2 × n3 × n4 genes in total.

(3) Population Initialization: Since the chromosomes generated when the population
is initialized are usually random, this paper adjusts the initialized chromosomes so that the
chromosomes generated through initialization meet the constraints in the scheduling model.

(4) Fitness Function: Fitness indicates the degree of adaptation of an individual to the
environment. The genetic algorithm selects the new generation of individuals mainly based
on the chromosomal fitness function value to realize the selection of the best and the worst,
and the chromosomal genes with high fitness function are inherited to the next generation
of individuals. In this algorithm, all the individuals in each generation are sorted according
to the fitness value, and then the newly generated individuals are replaced by the next ones
in the original population. The objective function of the model in this paper is to minimize
the suffering cost of disaster victims and the minimum total cost of emergency supplies
deployment. After converting the objective function into a single objective function, set
the fitness function to the reciprocal of the transformed objective function. The smaller the
value of the objective function, the larger the value of the fitness function.

f itness =
1

ω1min(F) + ω2min(Z)

(5) Select operation: The mutated chromosomes were selected using the roulette
method. First calculate the probability of each chromosome being selected as
p(x) = f itness(x)

∑ f itness(x) , ∑ f itness(x) which is the cumulative fitness of the chromosome. Ran-
domly generate any decimal, judge from the first chromosome and the first chromosome
whose cumulative probability is greater than or equal to the decimal is the chromosome
that performs the mutation operation.

(6) Cross-operation: The genetic algorithm usually performs a crossover operation on
two bodies. However, due to the violation of the demand constraint of the research problem
and the inflow and outflow equality constraints of the transfer center, it is not feasible to
perform crossover on two bodies. In order to avoid the problems of the above-mentioned
common crossover strategy, the crossover operation used in this algorithm is to exchange
two random position indices on the second segment of the chromosome in a selected
individual, and then adjust the first segment of the chromosome to meet the constraints.
The crossover strategy is shown in Figure 4. The basic rule of crossover is to randomly
select two individuals chrom(n, j2, k1) and chrom(n, j3, k3) that serve different emergency
points from different transfer centers, exchange the two different transfer centers to obtain
new individuals chrom(n, j3, k1) and chrom(n, j2, k3), and then adjust the first segment of
the chromosome so that the constraints are satisfied.
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(7) Mutation Operation: For the structural settings of the three-dimensional gene
fragment and the four-dimensional gene fragment in this paper, the mutation operation
will produce a large number of infeasible solutions. Therefore, according to the design rules
of the non-completely random mutation operator in the genetic algorithm, the chromosome
after each mutation is guaranteed to be optimal by designing the mutation operator. This
algorithm randomly selects a location for the first segment of the chromosome to mutate
the transport mode. The mutation strategy is shown in Figure 5. For the second segment of
the chromosome, a transfer center j2 is randomly selected that is different from the transfer
center j3, reducing the allocation of transfer centers j2. A part of the emergency materials n
for the emergency point k1 is added to the emergency materials n distributed by the transfer
center j3 to the emergency point k3. Due to the limitation of the minimum satisfaction
rate of material supply and demand, the exchange quantity is not completely random
but subject to certain constraints. aa, seen in equation (30) includes minq(n, k), which is
the minimum satisfaction, q(n, k), which is the demand, Q(1, n), which is the total supply
of materials n and f f (1, n), which is the total distribution of materials n. The mutation
strategy is shown in Figure 6.

aa = min(q(n, k1)−minq(n, k1), chrom(m, n, j2, k1)−minq(n, k1),
q(n, k3),−minq(n, k3), chrom(m, n, j3, k3)−minq(n, k3), Q(1, n)− f f (1, n))

(30)
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(8) Elimination of Infeasible Solutions: The model needs to meet the constraints of the
number of vehicles and the throughput of the transfer center. Individuals that do not meet
the above constraints will be eliminated.

(9) Termination Principle: According to the set maximum number of iterations, when
iteration reaches the maximum number of generations, calculation is terminated, and
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the scheme produced by the chromosome with the largest fitness value is selected as the
optimal solution.
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The whole model solution framework is given in Algorithm 1.

Algorithm 1: Modified Genetic Algorithm

Input: All parameter values involved in the model.
Output: Material distribution transportation program and objective function value.
1. Fit←zeros (populationSize, 1)% Store the fitness value for each individual
2. Chrom1←zeros (M,N,I,J, populationSize)% Storing each individual
3. Chrom2←zeros (N,J,K, populationSize)
4. for n←1 to populationSize
5. flag←false
6. While not flag do
7. Chrom1, Chrom2←Initialize()
8. flag←isfeasible (Chrom1, Chrom2)
9. End
10. Obj←calculateObj ()
11. Fit←1/Obj
12. End
13. maxF←0% Record the optimal fitness value
14. bestsolution1←zeros (M,N,I,J)% Record the optimal solution
15. bestsolution2←zeros (N,J,K)
16. gen←1
17. solution←zeros (1,maxGen)% Record the optimal objective function value for each

generation
18. Ns←populationSize *Ps
19. while gen < = maxGen do
20. Fit←calculateFitness (Chrom1, Chrom2)
21. If max(Fit) > maxF
22. bestsolution1←Chrom1
23. bestsolution2←Chrom2
24. maxF←max (Fit)
25. solution←1/maxF
26. End
27. Sort(Fit, Chrom1,Chrom2)
28. Selchrom1, Selchromy1←Selection (Chrom1, Chrom2,Ns)
29. Selchrom1, Selchromy1←Cross (Selchrom1, Selchromy1)
30. Selchrom1, Selchromy1←Mutation (Selchrom1, Selchromy1)
31. StoreNewIndividuals (Chrom1, Chrom2, Selchrom1, Selchromy1)
32. gen←gen + 1
33. end
34. return bestsolution1, bestsolution2, solution
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5. Numerical Analysis

In this section, a series of numerical experiments are conducted to test the performance
of the proposed model and algorithm. Taking the 2008 Wenchuan Earthquake as the context,
we use the relevant data obtained from the China Earthquake Administration (Beijing,
China) for the location information of emergency points, including 69 emergency points,
three supply warehouses and three transfer centers. The distribution of all nodes is shown
in Figure 7. The modified genetic algorithm is coded in Matlab 2023b, the Gurobi10.0.1
optimizer is coded in Python 3.10 (Python, Wilmington, DE, USA) and runs on a computer
with a processor of Intel® Core™ i5-12500H CPU @ 2.50GHz (Intel, Santa Clara, CA, USA),
a memory of 16 GB and an operating system of Windows 11-x64 (Redmond, WA, USA). In
this case, when solving with Gurobi, we used its default run settings, and Gurobi uses the
branch-and-bound method for solving by default.
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5.1. Data Introduction

In this scenario, two types of rescue materials N are considered: medicines and masks.
The nodes in the experimental network are real cities, and the distance between each node
dijm, djk is estimated by the Vincenty formula according to the latitude and longitude,
depicted in Figure 7. The demand of each emergency point qnk is randomly distributed in
the range [10, 9000], and the priority of the emergency points λk is randomly distributed in
the range [0, 0.5]. Additionally, reasonable assumptions are made about the storage capacity
of materials Qni based on demand. The settings of supply warehouses, transfer centers
and emergency points are shown in Appendix A. The calculation scenario involves three
modes of transportation, and the relevant data are shown in Appendix A. The minimum
satisfaction rate θnk of medicines and masks for each emergency point is 0.7. The unit
material shortage cost parameters are set as a1 = 0.2, a2 = 0.02, b1 = 0.1, b2 = 0.01. The
relative pain cost coefficient α is 0.5, and the maximum time window Tmax

n is set to [20, 40].
This paper constructs six sets of numerical example data for algorithm performance analysis,
including 5 emergency points, 10 emergency points, 20 emergency points, 40 emergency
points, 50 emergency points and 69 emergency points. The corresponding material supply
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Qni is set to 90% of the demand. The time at which rescue materials start to be transported
from supply warehouses is set to 0:00. The genetic algorithm parameters are set as follows:
population size Num = 50, crossover probability P1 = 0.8, mutation probability P2 = 0.8, the
maximum iteration G = 300 for examples including 5, 10, 20, 40 and 50 emergency points,
the maximum iteration G = 500 for the example including 69 emergency points.

5.2. Algorithm Performance Analysis

To evaluate the algorithm performance, this subsection contrasts the solutions de-
rived from the modified genetic algorithm with those attained using Gurobi 10.0.1 solver.
Six groups of scenarios are solved by the algorithm and Gurobi. Each scenario is solved
10 times using the algorithm. Gurobi’s execution time is capped at 1800 s. The results are
shown in Table 3.

Table 3. The solution results of the proposed algorithm and Gurobi.

K

Modified Genetic Algorithm GUROBI

Psychological
Pain Cost

Logistics
Cost

Total Cost
(Best) Average Standard

Deviation
Running
Time (s) Total Cost GAP (%) Running

Time (s)

5 1995 14,813 16,808 16,872 36 22 16,808 0.0 10
10 4049 29,211 33,260 33,316 41 51 33,260 0.0 295
20 31,724 58,192 89,916 89,997 49 274 92,920 12.5 1800
40 209,107 183,603 392,710 392,785 63 431 441,247 21.3 1800
50 954,931 218,152 1,173,083 1,173,197 123 524 N/A N/A 1800
69 1,454,256 243,544 1,697,800 1,698,307 318 946 N/A N/A 1800

In the table, we can observe that, for small-scale instances (5 ≤ K ≤ 10), the algorithm
produces consistent results with Gurobi. As the instance size increases (20 ≤ K ≤ 40),
Gurobi can only find feasible solutions within 1800 s. When K ≥ 50, Gurobi is unable to
find feasible solutions within the specified time limit. From the perspective of solution
time, although Gurobi has a shorter runtime when K = 5, the algorithm exhibits a clear
advantage in terms of runtime as the problem size increases. All the instances can be
solved by the proposed algorithm within an acceptable time although the computational
time is increasing with the scale of instances. In all instances, the algorithm consistently
achieves an average value within 1% difference from the optimal solution, with a small
standard deviation. This indicates that the algorithm can consistently produce stable
solutions that are close to the optimal solution across multiple runs. Figure 8 shows the
convergence curves of different instances. In this figure, the improved genetic algorithm has
good convergence when solving instances with different emergency points. Additionally,
most instances can obtain the optimal solutions within 250 iterations. Thus, the proposed
algorithm has strong performance in solving the proposed model.

Furthermore, we also see that all the costs are increasing with the increase in the
scenario scale. However, the increasing trend is different. For example, the increase trend
is approximately linear for the logistic cost, but is exponential for the psychological pain
cost. Meanwhile, the proportion of psychological pain cost in the total cost is gradually
increasing. This indicates that the logistics cost is stable and linearly related to the scale
of emergencies. However, the psychological pain cost will see a dramatic increase when
the scale of emergencies is large. For the instance of 69 emergency points, the proportion
of psychological pain cost in the total cost is more than 80%. These results mean that
the government should organize the emergency rescue rapidly to control the scale of
the emergency and reduce the potential cost (for example, the psychological pain cost of
residents), even if this will result in additional logistics or material costs.
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5.3. Analysis of Solution Results

To verify the effectiveness of the model, we conducted an analysis of 20 emergency
points. The transportation volume, satisfaction rate and delivery time of materials are
shown in Table 4. Additionally, the psychological pain cost and the logistics cost are equal
to CNY 31,724 and CNY 58,192, respectively.

Table 4. The solution results from the proposed model.

Emergency
Points

Transfer
Centers

Transportation Volume (Box) Satisfaction Rate (%) Delivery Time (h)

Medicine Mask Medicine Mask Medicine Mask

K27 J2 126 622 99.2% 100.0% 6.35 19.15
K7 J2 79 901 100.0% 100.0% 8.06 18.21

K23 J2 86 568 88.7% 70.0% 7.20 20.49
K12 J3 86 908 100.0% 83.0% 7.84 18.39
K18 J1 92 677 100.0% 97.8% 6.84 21.61
K26 J1 285 1773 100.0% 100.0% 6.49 16.50
K50 J1 168 692 100.0% 100.0% 7.14 19.15
K42 J2 473 1242 100.0% 70.1% 7.07 18.39
K44 J3 25 949 71.4% 100.0% 6.74 15.11
K19 J2 135 1413 100.0% 88.9% 6.41 15.74
K64 J3 21 270 70.0% 100.0% 8.80 19.67
K62 J2 85 250 100.0% 70.2% 7.23 20.68
K41 J1 519 1377 96.6% 100.0% 5.68 14.03
K37 J1 148 1158 100.0% 100.0% 6.71 20.83
K36 J2 66 845 71.0% 88.9% 6.38 18.48
K31 J2 90 297 100.0% 100.0% 6.32 18.63
K20 J1 62 951 100.0% 100.0% 6.32 19.32
K39 J2 168 568 100.0% 70.0% 5.75 16.30
K58 J1 487 1772 100.0% 100.0% 5.85 17.28
K17 J3 1611 2545 77.8% 81.2% 7.88 17.41
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In Table 4, we observe that the material satisfaction rate of some emergency points
is less than 1, and the material satisfaction rate of all emergency points is greater than
0.7, which meets the requirements of the minimum material satisfaction rate (>0.7) in the
calculation scenario. This indicates that the total supply of medicines and masks is less than
the total demand, and the allocation system is in a state of material shortage. Considering
delivery time, the average delivery time for medicines is shorter than that for masks. This
is because the demand for masks at the emergency points is greater than the demand for
medicines. The delivery time of materials to emergency points is affected by transportation
volume of the materials, demand priority and distance between nodes. For example, for
K36 and K39, the medicines are transferred through J2, the transportation volume is 66 and
168 boxes, respectively, the demand priority is 0.1197 and 0.1986, respectively, and the
delivery time of materials is 6.38 and 5.75 h, respectively. This ensures that materials are
delivered to affected areas with high urgency in priority. These results mean that the
government should take measures as soon as possible to increase the supply of materials
to meet the needs of emergency points. In addition, the government should reasonably
establish demand priorities, and give priority to transporting materials to emergency
points with high demand to ensure that materials can reach the affected area in time.
Figure 9 shows the mode of transportation from supply warehouses to transfer centers.
The transportation system adopts the combined transportation of the train, airplane and
truck. The train has great advantages in rescue due to its low transportation cost and
large transportation volume. Airplane transportation is fast, and truck transportation plays
an important role in the material distribution process due to its flexibility. Multimodal
transport can make full use of the advantages of different means of transportation, minimize
transportation time and cost, and improve transportation efficiency. Thus, the established
model can meet the material demand of the affected area and ensure the timely arrival of
materials. In actual rescue, decision-makers should rationally allocate emergency materials,
effectively arrange transportation capacity input, and improve the fairness and timeliness
of emergency materials allocation as much as possible to strengthen emergency material
security, reduce negative psychological emotions of residents and improve rescue efficiency.
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5.4. Sensitivity Analysis

To evaluate the impact of the parameters on the results, a sensitivity analysis is
performed on the relative pain cost coefficient, transportation modes and node loading
and unloading capacity. These parameters are affected by many complex real-world
factors, such as the construction of nodes, the severity of crises and the attitude of decision
makers. We choose 20 emergency points as samples and explore their impact on the
objective function by setting a series of values. The results of this analysis are shown in
Figures 10–12.
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According to Figure 10, the psychological pain cost is decreasing gradually with
the increase in relative pain cost coefficient, and the logistics cost and the total cost are
increasing gradually. However, the absolute pain cost fluctuates less. This indicates that, as
the degree of influence of relative pain costs increases, the difference in the delivery time
and the transportation volume of materials at emergency points decreases. Simultaneously,
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this results in additional logistics or material costs. Therefore, decision-makers can achieve
their goals by determining their preferences and choosing optimal values for the importance
of different objectives, taking into account restrictions in terms of delivery time and budget.
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According to Figure 11, the psychological pain cost is the highest and the logistics
cost is the lowest for train transportation mode, while air transportation mode shows the
opposite result. Truck transportation mode lies between them. The total cost of multimodal
transportation mode is lower than the other three single transportation modes. These
results indicate the role and impact of different transportation modes in the allocation of
rescue materials. Due to the slow speed and low cost of train transportation, although it
saves in logistics cost, it delays the delivery time of materials and increases the waiting
and anxiety of the residents. Airplane transportation shows the opposite result. Truck
transportation has certain advantages in terms of speed and cost, but it is also limited by
factors such as road conditions and distances, and there is a certain degree of instability.
Multimodal transportation makes full use of the benefits of various transportation modes,
considering the balance of speed and cost, achieving the rapid and low-cost allocation of
materials, improving the rescue effect and reducing the cost of suffering. Therefore, in the
decision-making of emergency material allocation, multimodal transportation should be
preferred, and the synergistic effect of various transportation modes should be used to
achieve the purpose of reducing costs and improving rescue efficiency.

According to Table 5 and Figure 12, the average delivery time and the psychological
pain cost are gradually decreasing, and the total cost and the logistics cost are gradually
increasing with the improvement in the loading and unloading capacity of supply ware-
houses and transfer centers. However, the rate of change in the average delivery time and
the psychological pain cost have gradually slowed down and will eventually stabilize. This
indicates that the delivery time is not only affected by the loading and unloading capacity
of nodes, but also by factors such as vehicle capacity, transportation volume of materials
and distance. Therefore, the government can shorten the delivery time and improve the
response speed of emergency rescue by improving the loading and unloading capacity of
nodes, but it needs to pay attention to the influence of other factors.

Table 5. Node loading capacity and corresponding loading cost.

Loading and unloading capacity (box/h) 600 800 1000 1200 1400 1600

Loading and unloading cost (CNY/box) 0.46 0.62 0.76 0.93 1.09 1.24
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6. Case Analysis
6.1. Background Information

In this section, the domestic COVID-19 outbreak in 2020 in the Hubei Province is
applied for case analysis. The data for the emergency points are the daily epidemic data of
Hubei Province published by the Wuhan Health Commission and the Hubei Provincial
Bureau of Statistics. The calculation of demand and priority of emergency points are based
on Xing [32]. The data for supply warehouses and transfer centers are based on reasonable
assumptions based on the actual situation of the epidemic. We still select two types of
materials, medicines and masks, and take Xi’an, Zhengzhou and Hefei, the neighboring
capital cities of Hubei Province, as the supply warehouses for emergency rescue materials
in Hubei Province. Wuchang Station, Xiangyang Station and Yichang East Station serve
as transfer centers for emergency rescue supplies in Hubei Province. Taking the cities
and autonomous counties under the jurisdiction of Hubei Province as Wuhan, Huangshi,
Xiangyang, Shiyan, Yichang, Jingzhou, Jingmen, Xianning, Xiaogan, Huanggang, Suizhou,
Enshi, Xiantao, Tianmen, Ezhou City and Qianjiang City are the emergency points. We
construct an emergency rescue supply network consisting of three supply warehouses,
three transfer centers and 16 emergency points. The relevant data are shown in Appendix B.
The rest of the parameters and operating environment are the same as those in Section 5.

6.2. Results Analysis

The computational results of the case study are reported in this section. The case can
be solved by the proposed algorithm within 237 s. The psychological pain cost and the
logistics cost are equal to CNY 7571 and CNY 37,823, respectively. The solution results of
case analysis are shown in Table 6.

Table 6. The solution results of case analysis.

Emergency
Points Transfer Centers

Transportation
Volume (Box) Satisfaction Rate (%) Delivery Time (h)

Medicine Mask Medicine Mask Medicine Mask

Wuhan Wuchang Railway Station 615 3139 100.0% 100.0% 5.93 15.59
Huangshi Wuchang Railway Station 25 485 71.4% 70.1% 7.01 21.49
Xiangyang Xiangyang Railway Station 48 1376 90.6% 86.5% 4.85 16.79

Shiyan Xiangyang Railway Station 20 666 71.4% 70.0% 6.45 19.03
Yichang Yichang East Railway Station 27 1098 71.1% 94.7% 6.78 19.16
Jingzhou Yichang East Railway Station 37 1560 71.2% 100.0% 7.66 18.71
Jingmen Yichang East Railway Station 31 811 72.1% 100.0% 7.79 22.32
Xianning Wuchang Railway Station 24 714 72.7% 100.0% 6.90 20.28
Xiaogan Wuchang Railway Station 70 1263 70.0% 91.7% 6.75 19.36

Huanggang Wuchang Railway Station 115 1578 100.0% 89.0% 6.71 18.00
Suizhou Xiangyang Railway Station 34 436 70.8% 70.1% 6.27 19.26

Enshi Yichang East Railway Station 13 949 100.0% 100.0% 9.07 22.63
Xiantao Wuchang Railway Station 10 300 76.9% 70.1% 7.09 20.80
Tianmen Wuchang Railway Station 9 250 75.0% 70.0% 7.55 21.52

Ezhou Wuchang Railway Station 25 208 89.3% 70.0% 6.79 21.47
Qianjiang Wuchang Railway Station 3 190 100.0% 70.1% 7.71 22.61

Analyzing Table 6, rescue materials are transported to emergency points with high
priority. For instance, for Wuchang, which experiences the most severe epidemic situation,
the greatest demand for supplies and the highest priority, its material satisfaction rate
is higher than that of Huangshi and the delivery time of material is shorter than that of
Huangshi even if the demand for materials is greater. Figure 13 displays the route of each
supply warehouse to the transfer centers regarding the used transportation mode and
the assignment of each transfer center to the emergency points. For instance, when the
COVID-19 outbreak occurred, Wuchang was used to collect two types of rescue materials
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that were transported from Xi’an, Zhengzhou and Hefei by trains, trucks or airplanes, and
then distribute materials to Wuhan, Huangshi, Xianning, Xiaogan, Huanggang, Xiantao,
Tianmen, Ezhou and Qianjiang by trucks.
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The model aims to achieve the goal of reducing the budget and the suffering of the
population, which is the most important of the various objective functions of the humanitar-
ian relief logistics problem. Among these, equitable distribution is more important under
conditions of scarcity. Especially in the case of public health emergencies, the amount
of available relief supplies is generally smaller than the total demand, and if equitable
distribution is not taken into account in the mathematical model, there may be a situation
in which some emergency relief points are completely ignored while others are fully met,
thus harming the welfare of the population, which is very important for crisis management
decision-makers, and this shows the importance of equitable distribution in the allocation
of relief importance in the distribution of supplies.

7. Conclusions

In this paper, we propose a multimodal transportation optimization research method
for the allocation of emergency rescue materials that considers the psychological pain cost
and the demand priority of emergency points. To highlight the requirements of timeliness,
fairness and economy, we take the psychological pain cost of residents and the logistics cost
of emergency materials as the decision-making targets. To characterize the rescue priority
more accurately, we determine the node loading order by setting the urgency. Then, we
construct an emergency allocation model to improve the rescue effectiveness and design
a modified genetic algorithm for solving the model. Taking the Wenchuan earthquake as
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the background, we solve different instances to verify the effectiveness of our proposed
algorithm. It was found that, for small-scale instances (5 ≤ K ≤ 10), the algorithm produces
consistent results with Gurobi. As the instance size increases (20 ≤ K ≤ 40), Gurobi can
only find feasible solutions within 1800 s. When K ≥ 50, Gurobi is unable to find feasible
solutions within the specified time limit. The algorithm has a significant advantage in terms
of runtime for large-scale instances. Our model can help to better determine the route of
material supply in the public health emergency, thereby alleviating residents’ psychological
pain and reducing budgets. We also conducted sensitivity analysis to observe the influence
of relative pain cost coefficient, transportation modes and loading and unloading capacity
of nodes on the objective function. Moreover, the model and algorithm have been applied
successfully to the 2020 Wuhan COVID-19 outbreak.

There are some limitations in the research on emergency material allocation discussed
in this paper. For example, this study only considers the static emergency material alloca-
tion problem. Future research could incorporate supply and demand dynamics. Another
important idea is that future research can employ the model to actual emergency rescue
scenarios, so as to verify its practicability and continuously improve the model. Specifically,
we can try to incorporate the psychological pain cost and demand priority into the optimiza-
tion decision-making of relief material supply routes under public health emergencies, so as
to achieve more effective disaster relief. In addition, further exploration can be conducted
on the trade-off between psychological pain cost and demand priority in the allocation of
rescue materials through multi-objective optimization, as well as the development of new
measurement methods for psychological pain cost.
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Appendix A

Details of the numerical analysis and inputs of the model.

Table A1. Relevant data of supply warehouses.

Supply
Warehouses Medicines /Box Masks/Box Lon (◦) Lat (◦) The Loading Capacity

per Unit Time (Box/h)
The Unit Cost of

Loading (Box/CNY)

I1 6966 18,228 108.93 34.34 1000 0.76
I2 9288 24,304 114.3 30.59 1000 0.76
I3 6966 18,228 106.62 26.64 800 0.62

Table A2. Relevant data of transfer centers.

Transfer
Centers

The Transfer
Capacity/Box Lon (◦) Lat (◦) The Loading Capacity

per Unit Time (Box/h)
The Unit Cost of

Loading (Box/CNY)
The Number

of Trucks

J1 35,000 103.65 30.99 900 0.70 2000
J2 40,000 103.85 31.68 1000 0.76 2000
J3 38,000 103.59 31.48 800 0.62 2000
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Table A3. Relevant data of emergency points.

Emergency Points Medicines/Box Masks/Box Lon (◦) Lat (◦) The Demand Priority

K1 581 2090 103.65 30.99 0.0714
K2 320 675 103.62 31.00 0.1113
K3 100 1345 103.60 30.88 0.1343
K4 50 1092 103.60 30.88 0.2931
K5 105 1231 103.66 31.11 0.1771
K6 87 1598 103.85 31.68 0.1217
K7 79 901 104.98 29.18 0.1546
K8 70 810 103.68 31.13 0.2091
K9 101 1450 103.47 30.47 0.0723
K10 116 1690 104.20 30.43 0.0655
K11 89 599 103.16 31.44 0.057
K12 86 1094 103.09 31.40 0.1458
K13 59 457 103.34 31.57 0.2062
K14 104 401 103.42 31.56 0.277
K15 98 301 103.59 31.48 0.0985
K16 50 233 103.49 31.05 0.0372
K17 2070 3136 103.42 30.93 0.0367
K18 92 692 103.42 30.33 0.0954
K19 135 1590 105.20 32.22 0.1254
K20 62 951 103.78 30.54 0.2341
K21 95 1158 102.36 31.00 0.2165
K22 138 1559 102.36 31.00 0.237
K23 97 811 103.60 32.66 0.0335
K24 75 713 104.57 31.53 0.0249
K25 285 1377 104.34 31.51 0.0243
K26 285 1773 105.04 30.40 0.1525
K27 127 622 104.20 31.63 0.0294
K28 25 949 104.17 31.13 0.2516
K29 42 428 104.06 31.25 0.0724
K30 35 357 104.16 31.20 0.2306
K31 90 297 104.02 31.31 0.2713
K32 12 271 104.22 31.34 0.2775
K33 5152 3118 104.04 30.75 0.1391
K34 157 692 104.32 31.41 0.2696
K35 208 1590 104.19 31.43 0.222
K36 93 951 104.47 31.62 0.1197
K37 148 1158 103.99 30.41 0.1582
K38 247 1559 103.90 30.72 0.1532
K39 168 811 104.26 31.96 0.1986
K40 128 713 104.51 31.32 0.2101
K41 537 1377 104.68 31.03 0.2111
K42 473 1773 105.09 31.10 0.071
K43 218 622 105.39 31.21 0.1359
K44 35 949 105.17 31.64 0.2701
K45 82 428 104.40 31.13 0.0357
K46 73 356 104.68 31.47 0.2499
K47 180 296 105.84 32.44 0.2349
K48 23 270 105.24 32.58 0.2975
K49 8315 3077 105.28 32.55 0.143
K50 168 692 104.37 29.89 0.2837
K51 222 1590 105.41 32.60 0.2475
K52 105 951 105.51 32.68 0.1635
K53 157 1158 105.85 32.43 0.1106
K54 268 1559 105.88 32.65 0.1613
K55 178 811 105.93 31.73 0.0544
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Table A3. Cont.

Emergency Points Medicines/Box Masks/Box Lon (◦) Lat (◦) The Demand Priority

K56 130 713 105.52 32.29 0.2911
K57 563 1377 105.97 32.32 0.2392
K58 487 1772 103.96 30.99 0.1287
K59 228 622 103.76 31.19 0.2271
K60 33 949 103.82 31.17 0.2806
K61 88 428 104.01 31.14 0.0981
K62 85 356 104.56 32.41 0.0197
K63 207 296 103.61 30.79 0.1605
K64 30 270 104.76 32.28 0.0091
K65 100 283 103.91 31.19 0.0662
K66 290 271 104.42 31.14 0.1291
K67 243 310 104.76 31.46 0.1421
K68 113 322 104.77 31.47 0.1015
K69 109 390 104.75 31.78 0.1706

Table A4. Relevant data of transportation modes.

Transportation
Modes

The Average
Speed (km/h)

The Loading
Capacity

(Box/Vehicle)

The Unit Transportation
Cost of Medicine
(Box/CNY × km)

The Unit Transportation
Cost of Mask

(Box/CNY × km)

The Number of Vehicles

I1 I2 I3

airplane 280 1000 5.70 × 10−3 1.80 × 10−3 80 80 80
train 75 3375 3.80 × 10−4 1.60 × 10−4 80 80 80
truck 100 500 1.90 × 10−3 5.00 × 10−4 80 70 70

Appendix B

Details of the case analysis and inputs of the model.

Table A5. Relevant data of emergency points.

Emergency Points Lon (◦) Lat (◦) Medicine/Box Mask/Box The Demand Priority

Wuhan 114.30 30.59 615 3139 0.2177
Huangshi 115.04 30.20 35 692 0.0419
Xiangyang 112.12 32.01 53 1590 0.0536

Shiyan 110.80 32.63 28 951 0.0309
Yichang 111.29 30.69 38 1159 0.0449
Jingzhou 112.24 30.34 52 1560 0.0571
Jingmen 112.20 31.04 43 811 0.0357
Xianning 114.32 29.84 33 714 0.0446
Xiaogan 113.96 30.92 100 1378 0.0545

Huanggang 114.87 30.45 115 1773 0.0634
Suizhou 113.38 31.69 48 622 0.0434

Enshi 109.49 30.27 13 949 0.0437
Xiantao 113.44 30.33 13 428 0.0733
Tianmen 113.17 30.66 12 357 0.0839

Ezhou 114.89 30.39 28 297 0.0704
Qianjiang 112.90 30.40 3 271 0.0412

Table A6. Relevant data of supply warehouses.

Supply Warehouses Lon (◦) Lat (◦) Medicine/Box Mask/Box

Xi’an 108.96 34.28 332 4507
Zhengzhou 113.66 34.75 442 6009

Hefei 117.32 31.89 332 4507
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Table A7. Relevant data of transfer centers.

Transfer Centers Lon (◦) Lat (◦) The Transfer Capacity/Box

Wuchang Station 114.32 30.53 9000
Xiangyang Station 112.16 32.06 7000

Yichang East Station 111.37 30.66 6000
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