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Abstract: In unveiling the non-parametric estimation of the conditional hazard function through the
local linear method, our study yields key insights into the method’s behavior. We present rigorous
analyses demonstrating the mean square convergence of the estimator, subject to specific conditions,
within the realm of independent observations with missing data. Furthermore, our contributions
extend to the derivation of expressions detailing both bias and variance of the estimator. Emphasizing
the practical implications, we underscore the applicability of two distinct models discussed in this
paper for single index estimation scenarios. These findings not only enhance our understanding of
survival analysis methodologies but also provide practitioners with valuable tools for navigating the
complexities of missing data in the estimation of conditional hazard functions. Ultimately, our results
affirm the robustness of the local linear method in non-parametrically estimating the conditional
hazard function, offering a nuanced perspective on its performance in the challenging context of
independent observations with missing data.

Keywords: local polynomial method; conditional hazard estimation; missing at random; single index
model; mean squared error

MSC: 62G20; 62G08; 62G05

1. Introduction

Functional statistics analysis, a fundamental aspect of statistical modeling, faces
increased intricacy when addressing missing data, a widespread problem in real-life situa-
tions. The adoption of the Missing at Random context (MAR), which posits that the lack
of data is independent of unobserved values, has spurred the advancement of complex
approaches to achieve a precise parameter estimate.

The local linear method, known for its flexibility in capturing local data characteristics,
has emerged as a promising approach in the field of survival analysis. Specifically, its use
becomes crucial when dealing with the complexities linked to MAR data. As we explore
this work, we are influenced by a vast amount of previous research that has contributed to
the theoretical and practical basis of functional statistics and survival analysis.

In the field of time series data analysis, ref. [1] laid the foundation for determining the
rates at which conditional density estimators converge uniformly and exhibit asymptotic
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normalcy in the framework of single functional index modeling. In their study, ref. [2]
investigated the use of local polynomial regression to identify functional predictors and
scalar output. They highlighted the effectiveness of these approaches in capturing intri-
cate interactions.

Barrientos-Marin, ref. [3] conducted a comprehensive investigation on the use of
locally modeled regression and functional data analysis, which significantly enhances the
range of statistical approaches available for analyzing functional data. Ref. [4] demon-
strated the applicability and robustness of local polynomial regression for FDA, hence
improving its comprehension. Ref. [5] examined the stability of the features of the estima-
tor of the conditional distribution in the single-index model, with a specific emphasis on
achieving high levels of uniform consistency.

The study highlighted the challenges and potential benefits of addressing such cir-
cumstances. Ref. [6] extended the local linear method to tackle regression problems with
missing at random and functional data, emphasizing its practical importance. The literature
is abundant with research that tackle the difficulties presented by missing data. Ref. [7]
provided an estimation of the average value in a similar context and dataset, which served
as the foundation for future advancements.

They concluded the symptotic results of some conditional nonparametric functional
parameters in associated data and Utilize a methodology that introduces the infinite-
dimensional framework to local linear concepts, as described in [8]. Ref. [9] made notable
progress in the field of local polynomial modeling, while ref. [10] made substantial contribu-
tions to the analysis of nonlinear time series. These advances have improved the statistical
toolset for assessing functional data.

Ref. [11] presented a thorough and complete overview of nonparametric functional
data analysis in their influential book. In works of [12] investigate mean estimation for
functional covariates with random missing data, offering methods to estimate the mean
function under the assumption of random missingness, crucial in statistical modeling.

As we begin our inquiry, we utilize the combined knowledge from these studies,
incorporating their findings into the assessment of the mean square error linked to the
local linear technique. Adopting a solitary index model, as proposed by [13,14], achieves a
trade-off between the intricacy and comprehensibility of the model. The objective of our
study is to enhance the existing statistical approaches for survival analysis when dealing
with missing data that occurs randomly.

Refs. [15–18] established the asymptotic normality of the estimator of the conditional
hazard function in a hilbertian random variable X in functional single-index model [19–22].
In the realm of statistical analysis, the challenge of handling incomplete datasets is a
recurrent theme, particularly in fields where data collection is subject to uncertainty and
randomness [23–27]. Traditional statistical methods often grapple with the complexities
posed by missing data, especially when the missingness is not random [28–32]. This
paper delves into an innovative approach, employing a local linear method within a
single index model, to estimate conditional hazard functions in scenarios where data are
missing at random (MAR). The methodology not only addresses the inherent challenges
of MAR data but also leverages the nuances of functional statistics to provide a robust
analytical framework.

Our focus on MAR contexts stems from their prevalence in real-world data scenarios,
ranging from clinical trials to financial time series, where missingness is often related to
observed data but not to the unobserved data. This study aims to bridge the gap in existing
literature by providing a comprehensive analysis of the effectiveness of the local linear
method in such contexts by meticulously evaluating the mean square error (MSE) of the
estimates, where it measures the average of the squares of the errors or deviations and
the strength of the model depends on a percentage of error. It is used in quantitative
fields like mathematics, statistics, and engineering, especially in areas involving prediction,
estimation, or modeling. The MSE is a powerful tool in statistical analysis, particularly in
the context of Functional Data Analysis (FDA).
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The objective of this research is to achieve significant advancements in the method-
ology and improve the discourse surrounding functional statistics techniques in various
scenarios and data types. This includes addressing the issue of survival analysis with
missing data.

In the subsequent sections, we present a comprehensive outline of the local linear ap-
proach and its utilization in estimates. Next, we provide the single index model and discuss
its significance in estimating the conditional hazard function (Section 2). In the following
part, we will outline the procedure for assessing the mean square error and provide the
essential assumptions required to support our primary finding in the subsequent Section 3.
The application and procedures are presented in Section 4, followed by a quantitative
analysis in Section 5. Lastly, we provide a summary and propose recommendations for
future studies in Section 6, followed by supplementary results and the corresponding proof
in Appendix A.

2. The Model and Estimator

The collection of n is independent of identically distributed stochastic processes Xi
and Yi, where 1 ≤ i ≤ n, is associated with the original random process (X , Y).

The space in which these processes are specified is H×R. The symbol H denotes a
Hilbert space equipped with the norm ||· ||. H is separable, which is derived from an inner
product <· , ·>.

Regarding the individual index Θ component of H, we define the semi-metric dΘ
as follows for any (x′, x′′) ∈ H2: The value of dΘ(x′, x′′) is equal to the absolute value of
the inner product between the difference of x′ and x′′, and in the vector Θ, dΘ(x′, x′′) =
| < x′ − x′′, Θ > |, in this scenario, we assume that Θ in H represents a structure with a
single index.

The functional index Θ appears as a filter allowing the extraction of the part of X
explaining the response Y and represents a functional direction which reveals a pertinent
explanation of the response variable. In other words, we assume that the F is differentiable
with respect to x and Θ such that < Θ, e1 >= 1, where e1 is the first vector of an orthonormal
basis of H.

This structure determines the conditional risk function of Y given < X, Θ >=< x, Θ >.
We may describe this as λx

Θ(· ). It can be expressed as

λX
Y (x, Θ, y) = h[y/ < x, Θ >], ∀(x, y) ∈ H×R.

We ensure the model’s capacity to be uniquely identified. This implies that for any X in H,
we have

λ1
[
y| <· , Θ′ >

]
= λ2

[
y| <· , Θ′′ >

]
⇒ λ1 ≡ λ2 and Θ′ = Θ′′.

X = x, the conventional version FX
Y (x, Θ, y) of the conditional distribution function of Y

exists for each x ∈ Nx. We aim to estimate the conditional hazard function λX
Y (x, Θ, y). We

also assume a density fXY (x, Θ, y) regarding the Lebesgue measure on the real numbers
R, for FX

Y (x, Θ, y). For y ∈ R and FX
Y (x, Θ, y)(y) < 1, we define the hazard function

as follows:

λX
Y (x, Θ, y) =

fXY (x, Θ, y)
1 − FX

Y (x, Θ, y)
,

The local linear estimator, denoted as λ̂X
Y (x, Θ, y) for λX

Y (x, Θ, y), in this paper will be
estimated for any y ∈ R by

λ̂X
Y (x, Θ, y) =

f̂XY (x, Θ, y)

1 − F̂X
Y (x, Θ, y)

, with F̂X
Y (x, Θ, y) < 1

Next, we examine the estimator when the data are incomplete, especially regarding the
Missing at Random (MAR) status for the answer variables. (Xi, ∆i, Yi), 1 ≤ i ≤ n represents
accessible incomplete n−sample data from (X , ∆, y). In this sample, Xi is totally observed.
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When Yi is completely observed ∆i = 1 , and if Yi not observed ∆i = 0. In addition,
the characteristics of the Bernoulli’s diagram ∆ are

P(∆ = 1/ < Θ,X >) = P(∆ = 1/X , Y)
= P(X )

Given an explanatory variable X, the conditional probability of seeing the response
variable Y is represented by the unknown functional operator P(X). In statistical analysis
involving missing data, missing at random is a commonly assumed condition that can be
applied in a variety of real-world scenarios ([14]).

The function Fx
Θ(·) is presented as a nonparametric regression model including a

dependent variable H(λ−1
H (· − Yi)). Assume λH is a set of real numbers (> 0) , and H is

a cumulative distribution function. The following observation serves as the basis for this
consideration:

E
[

H
[
λ−1

H (y − Yi)
]
/ < Θ,Xi = x >

]
→ FX

Y (x, Θ, y) when λH → 0.

This method is coupled with the idea that our data are randomly missing. In particular,
we use the functional local polynomial modeling approach, in which â is used to estimate
the conditional cumulative function F̂X

Y (x, Θ, y). The following problem is optimized to
determine the parameters (â, b̂).

The expressions can be directly calculated to yield the following results:

F̂X
Y (x, Θ, y) =

∑
1≤i,j≤n

H(λH
−1(y − Yj)

)
Tij(Θ, x)

∑
1≤i,j≤n

Tij(Θ, x)
, ∀y ∈ R (1)

and

f̂XY (x, Θ, y) =

∑
1≤i,j≤n

H(1)(λH
−1(y − Yj)

)
Tij(Θ, x)

λH ∑
1≤i,j≤n

Tij(Θ, x)
, ∀y ∈ R (2)

where we denote H
′

the derivative of H.
Noteworthy is the fact that

F̂X
Y (x, Θ, y) = F̂N(x, Θ, y)/F̂D(Θ, x) and f̂XY (x, Θ, y) = f̂N(x, Θ, y)/F̂D(Θ, x)

where

F̂N(x, Θ, y) =
1

(nλKϕΘ,x(λK))2

i,j=n

∑
i,j=1

H(λ−1
H
(
Y − yj)

)
Tij(Θ, x),

f̂N(x, Θ, y) =
1

(nλKϕΘ,x(λK))2λH

i,j=n

∑
i,j=1

H
′
(λ−1

H
(
Y − yj)

)
Tij(Θ, x).

and

F̂D(Θ, x) =
1

(nλKϕΘ,x(λK))2

i,j=n

∑
i,j=1

Tij(Θ, x)

with

Tij(Θ, x) = βΘ(Xi, x)
(

βΘ(Xi, x)− βΘ(Xj, x)
)

∆i∆jK(λ−1
K dΘ(x,Xi))K(λ−1

K ϱΘ(x,Xj))
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where (βΘ : H×H 7→ R), βΘ(Xi, x) =< x − Xi, Θ >, using K as a kernel function and
λK = λK,n (or λH = λH,n) being a set of positive real numbers, respectively. When dealing
with a single functional index and randomly missing data, our estimator can presented.

λ̂X
Y (x, Θ, y) =

λ−1
H

i=n,j=n

∑
i=1,j=1

Tij(Θ, x)H(1)(λH
−1(y − Yj)

)
i=n,j=n

∑
i=1,j=1

TΘ,ij(x)−
i=n,j=n

∑
i=1,j=1

Tij(Θ, x)H(λH
−1(y − Yj)

) , for n ≥ 1, y ∈ R. (3)

3. The Asymptotic Results
3.1. Assumptions and Necessary Background Knowledge

We make the following assumptions in order to determine the mean square conver-
gence of ĥXY (x, Θ, y) to λX

Y (x, Θ, y):
We denote by Nx a neighborhood of x ∈ F and by Ny a neighborhood of y ∈ R.
In addition, we represent constants C′ > 0 and C′′ > 0.

(H1) For any r > 0, ϕΘ,x(r) := ϕΘ,x(−r, r) > 0. There exists a function χΘ,x(·) such that

∀t ∈ (−1, 1), lim
λK→0

ϕΘ,x(tλK, λK)

ϕΘ,x(λK)
= χΘ,x(t).

(H2) We define the function ψl
Θ,j

ψl
Θ,j(x, y) =

∂l Fx(j)
(y)

∂yl (4)

and

Ψl
Θ,j(s) = E[ψl

Θ,j(X, y)− ∂l Fx(j)
(y)

∂yl /βΘ(x, X) = s] , ∀l ∈ {0, 2} , j = 0, 1, (5)

with g(k) represents the kth order derivative of g, the first derivative Ψ′
l,j(0), and the

second derivative Ψ′′
l,j(0) of Ψl,j(·) exists.

(H3) Functions γΘ(·, ·) and βΘ(·, ·) are such that
∀z ∈ F , C′|γΘ(x, z)| ≤ |βΘ(x, z)| ≤ C′′|γΘ(x, z)|, with C′ > 0, C′′ > 0,

sup
u∈B(x,r)

|β(u, x)− γΘ(x, u)| = o(r)

and

λK

∫
B(x,λK)

βΘ(u, x)dPX(u) = o
(∫

B(x,λK)
β2

Θ(u, x)dPX(u)
)

with B(x, r) = {z ∈ F : |γΘ(z, x)| ≤ r}.
(H4) (i) Consider the differentiable function fXY (x, Θ, y) of class Ck.

(ii) The kernel K within [−1, 1], satisfies

K2(1)−
∫ 1

−1
(K2(u))′χΘ,x(u)du > 0.

(iii) Given a differentiable kernel H and a positive, bounded, Lipschitzian continuous
function H′, we have∫

|t|2H′(t)dt < ∞,
∫

(H′)
2
(t)dt < ∞ and

∫
H′(t)dt = 1.
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(H5) ∃µ < ∞, fXY (x, Θ, y) ≤ µ, ∀x ∈ F , y ∈ R, ∃ 0 < η < 1, FX
Y (x, Θ, y) ≤ 1 − η, ∀x ∈

F , y ∈ R.
(H6) λK, λH satisfies

lim
n→∞

λK = 0, lim
n→∞

λH = 0, and lim
n→∞

nλ
(j)
H ϕx(λK) = ∞, for j = 0, 1.

λK and λH bandwidths.
(H7) In the neighborhood of x, P(x) is continuous, and 0 < P(x) < 1.

3.2. Main Results

Theorem 1. Under hypothesis (H1)–(H7), we demonstrate that

E
[
λ̂X

Y (x, Θ, y)− λX
Y (x, Θ, y)

]2
= B2

Θ,n(x, y) +
VΘ,HK(x, y)

nλHϕΘ,x(λK)

+ o(λ4
H) + o(λ4

K) + o
(

1
nλHϕΘ,x(λK)

)
,

where

BΘ,n(x, y) =
(B f

Θ,H − λx
Θ(y)BF

Θ,H)λ
2
H + (B f

Θ,H − λx
Θ(y)BF

Θ,H)λ
2
K

1 − Fx
Θ(y)

,

with

B f ,H(Θ, y, x) = 1
2

∂2 fXY (x,Θ,y)
∂y2

∫
t2H′(t)dt

B f ,K(Θ, y, x) = 1
2 Ψ′′

0,1(0)
[(

K(1)−
∫ 1
−1(u

2K(u))′χΘ,x(u)du
)(

K(1)−
∫ 1
−1 K′(u)χΘ,x(u)du

) ]
BF,H(Θ, y, x) = 1

2
∂2FX

Y (x,Θ,y)
∂y2

∫
t2H′(t)dt

BF,K(Θ, y, x) = 1
2 Ψ′′

0,0(0)
[(

K(1)−
∫ 1
−1(u

2K(u))′χΘ,x(u)du
)(

K(1)−
∫ 1
−1 K′(u)χΘ,x(u)du

) ]
,

also

Vh
Θ,HK(x, y) =

λX
Y (x, Θ, y)

(1 − FX
Y (x, Θ, y))


(

K2(1)−
∫ 1
−1(K

2(u))′χΘ,x(u)du
)

(
K(1)−

∫ 1
−1(K(u))

′χΘ,x(u)du
)2

.

Proof of Theorem 1. To establish the Theorem 1, we employ the next decomposition

λ̂X
Y (x, Θ, y)− λX

Y (x, Θ, y) =
1

1 − F̂X
Y (x, Θ, y)

[
( f̂XY (x, Θ, y)− fXY (x, Θ, y))

+
fXY (x, Θ, y)

1 − FX
Y (x, Θ, y)

(F̂X
Y (x, Θ, y)− FX

Y (x, Θ, y))
]

⩽
1

1 − F̂X
Y (x, Θ, y)

[
( f̂XY (x, Θ, y)− fXY (x, Θ, y))

+
µ

η
(F̂X

Y (x, Θ, y)− FX
Y (x, Θ, y))

]
⩽
[
( f̂XY (x, Θ, y)− fXY (x, Θ, y)) +

µ

η
(F̂X

Y (x, Θ, y)− FX
Y (x, Θ, y))

]
.

From Theorems 2 and 3, and the ensuing inequality, we derive the proof of Theorem 1:

∃ϵ > 0 such that ∑
n∈N

P(1 − F̂X
Y (x, Θ, y) < ϵ) < ∞. (6)
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Theorem 2. Assuming (H1)-(H7), we arrive at

E
[

f̂XY (x, Θ, y)− fXY (x, Θ, y)
]2

= B2
f ,H(Θ, y, x)λ4

H + B2
f ,K(Θ, y, x)λ4

K +
V f

Θ,HK(x, y)
nλHϕΘ,x(λK)

+o(λ4
H) + o(λ4

K) + o
(

1
nλHϕΘ,x(λK)

)

where V f
Θ,HK(x, y) = f x

Θ(y)

[ (
K2(1)−

∫ 1
−1(K

2(u))′χΘ,x(u)du
)

(
K(1)−

∫ 1
−1(K(u))

′χΘ,x(u)du
)2

] ∫
(H

′
(t))2dt.

We have

f̂N(x, Θ, y) =
1

n(n − 1)λHE[TΘ,12(x)] ∑
1≤i ̸=j≤n

Tij(Θ, x)H′(λ−1
H (y − Yj))

and
f̂Θ,D(x) =

1
n(n − 1)E[TΘ,12(x)] ∑

1≤i ̸=j≤n
Tij(Θ, x)

then

f̂XY (x, Θ, y) =
f̂N(x, Θ, y)
f̂D(Θ, x)

.

Proof of Theorem 2. It is derived from the intermediate results presented below.

Lemma 1. Based on Theorem 2’s hypothesis, we obtain

E
[

f̂N(x, Θ, y)
]
− fXY (x, Θ, y) = B f ,H(Θ, y, x)λ2

H + B f ,K(Θ, y, x)λ2
K + o(λ2

H) + o(λ2
K).

Lemma 2. Theorem 2 hypotheses allow us to have

Var
[

f̂N(x, Θ, y)
]
=

V f
HK(Θ, y, x)

nλHϕΘ,x(λK)
+ o
(

1
nλHϕΘ,x(λk)

)
.

Lemma 3. Again, Theorem 2 hypothesis lead us to

Cov( f̂N(x, Θ, y), f̂D(Θ, x)) = O
(

1
nϕΘ,x(λK)

)
.

Lemma 4. Another time according to Theorem 2’s hypothesis, we obtained

Var
[

f̂D(Θ, x)
]
= O

(
1

nϕΘ,x(λK)

)
.

Theorem 3. Assuming (H1)-(H7), we arrive at

E
[

F̂X
Y (x, Θ, y)− FX

Y (x, Θ, y)
]2

= B2
F,H(Θ, y, x)λ4

H + B2
F,K(Θ, y, x)λ4

K +
VF

Θ,HK(x, y)
nϕΘ,x(λK)

+o(λ4
H) + o(λ4

K) + o
(

1
nϕΘ,x(λK)

)



Mathematics 2024, 12, 495 8 of 20

where VF
Θ,HK(x, y) = FX

Y (x, Θ, y)(1 − FX
Y (x, Θ, y))

[ (
K2(1)−

∫ 1
−1(K

2(u))′χΘ,x(u)du
)

(
K(1)−

∫ 1
−1(K(u))

(1)χΘ,x(u)du
)2

]
.

We remark

F̂N(x, Θ, y) =
F̂N(x, Θ, y)

f̂D(Θ, x)

where

F̂N(x, Θ, y) =
1

n(n − 1)E[T12(Θ, x)] ∑
1≤i ̸=j≤n

Tij(Θ, x)H(λ−1
H (y − Yj)).

Proof of Theorem 3. We will depend on the following lemmas

Lemma 5. Based on Theorem 3’s hypotheses, we obtain

E
[

F̂N(x, Θ, y)
]
− FX

Y (x, Θ, y) = BF,H(Θ, y, x)λ2
H + BF,K(Θ, y, x)λ2

K + o(λ2
H) + o(λ2

K).

Lemma 6. Again we based on Theorem 3’s hypotheses, we obtain

Var
[

F̂N(x, Θ, y)
]
=

VF
HK(Θ, y, x)
nϕΘ,x(λK)

+ o
(

1
nϕΘ,x(λk)

)
.

Lemma 7. Another time, we based on Theorem 3’s hypothesis, we have

Cov(F̂N(x, Θ, y), f̂ x
Θ,D) = O

(
1

nϕΘ,x(λK)

)
.

Theorems 1–3, may be derived from these lemmas, where their proofs appear in
Appendix A.

4. Application

In the ever-evolving field of finance, understanding the complex relationships between
various financial indicators and stock prices is crucial for effective risk management and
investment decision making. This scenario explores the application of statistical methods to
model the dependence structure between stock prices and estimate the conditional hazard
function of a financial event, such as a market downturn, using a single functional index.

To embark on this modeling journey, we begin with a dataset comprising daily stock
prices of multiple companies observed over a certain period. The dataset includes two
main variables:

X: a set of financial indicators representing the health and performance metrics of each com-
pany.
Y: daily stock returns of each company, which are indicative of the daily price changes.

The primary objective is to capture the common underlying factor that affects stock
prices across different companies using a single functional index, denoted as Θ. This
index aims to condense the information contained in the financial indicators X and express
the conditional hazard function λX

Y (x, Θ, y). This function represents the likelihood of a
significant stock price movement given the financial indicators.

In real-world financial datasets, missing data can be prevalent due to various rea-
sons, such as holidays, weekends, or incomplete data collection. The study addresses
this issue by considering the missing data mechanism as missing at random (MAR), en-
suring that the statistical modeling takes into account the potential biases introduced by
missing observations.
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Estimation: To estimate the conditional hazard function, the study employs the local
linear estimator, denoted as λ̂X

Y (x, Θ, y). This estimator provides a robust and efficient way
to estimate the hazard function, and it is adapted for the infinite-dimensional framework.

The study aims to establish the mean square convergence of the estimator to the true
conditional hazard function. This is essential for validating the reliability and consistency
of the estimator under specified assumptions.

In practice, the application of this study involves several key steps. The first step
involves addressing missing stock returns using the assumed missing at random (MAR)
mechanism. This ensures that the analysis is not biased by the absence of certain data
points. Financial indicators and stock returns are standardized to achieve uniformity in
their scales, making them directly comparable and easing the modeling process. Choosing
an appropriate kernel function and bandwidth is crucial for the local linear estimator’s
performance. These choices impact the smoothing and accuracy of the hazard function
estimation. The study estimates the single functional index Θ, which encapsulates the com-
mon factor affecting stock prices across companies. This index is central to the dependence
modeling process. Utilizing the Local Linear Estimator: The local linear estimator, denoted
as λ̂X

Y (x, Θ, y), is implemented to calculate the estimated conditional hazard function. This
is done for various financial scenarios, allowing for a nuanced understanding of how differ-
ent combinations of financial indicators and Θ influence the likelihood of significant stock
movements. Interpreting the Hazard Function: The estimated hazard function λ̂X

Y (x, Θ, y)
is interpreted to gain insights into the impact of financial indicators on the likelihood of
significant stock price movements. Researchers and analysts can identify patterns and
trends in the data and make informed inferences about the factors driving stock price
changes. Ensuring Reliability: Validation is a critical step to ensure the reliability and con-
sistency of the estimated hazard function. The study validates the asymptotic properties
of the estimator, confirming that it converges to the true conditional hazard function as
sample size increases. This validation reassures stakeholders that the model can be trusted
for decision making in the financial domain. In conclusion, this example showcases how
statistical methods can be applied in finance to model the dependence structure between
stock prices, estimate the conditional hazard function, and handle missing data. The results
of such analyses can provide valuable insights for risk management, investment strategies,
and understanding the dynamics of financial markets. This multidisciplinary approach
illustrates the power of statistical modeling in making sense of complex financial data and
facilitating informed decision making in the world of finance.

5. Numerical Study

In this section, we demonstrate our proposed methodology’s practical application
in finance. We conduct a numerical study focused on estimating the conditional hazard
function. We employ the local linear method for this purpose, utilizing financial time series
data as the basis for our analysis.

5.1. Data Generation and Preprocessing
Data

To initiate our analysis, we embark on the generation of synthetic financial datasets
that mimic the behavior of stock returns for an extensive portfolio of 100 companies. These
datasets span a comprehensive timeframe encompassing 200 trading days. We create these
datasets under the assumption of a normal distribution, adhering to statistical principles
commonly observed in financial markets. This synthetic data generation process enables us
to create realistic and diverse financial scenarios, laying the foundation for our subsequent
analytical investigations.

5.2. Plotting Data

For a comprehensive visual understanding of the stock return dynamics in our dataset,
we employ a graphical representation Figure 1. This entails the creation of line plots,
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with the x-axis representing the trading days and the y-axis depicting the stock returns. Each
line plot corresponds to a specific company within our portfolio of 100 entities, effectively
providing a visual snapshot of their individual return patterns over the 200-day period.
This graphical representation enables us to discern trends, fluctuations, and potential
anomalies in the stock returns, facilitating a quick and intuitive overview of the dataset’s
behavior. By visualizing the data in this manner, we gain essential insights into the diverse
performance trajectories of the companies under consideration, setting the stage for more
in-depth analysis and interpretation.

Figure 1. Stock return data.

5.2.1. Introducing Missing Values

In our pursuit of realism and to mirror the intricacies of real-world financial data,
we intentionally introduce missing values into our synthetic dataset. To emulate the un-
predictability of data collection processes, we randomly designate approximately 20% of
the dataset as missing values. This stochastic introduction of missing data aligns with
the Missing at Random (MAR) assumption, suggesting that the likelihood of data being
missing is dependent on other observable variables within the dataset rather than being
systematically determined. By incorporating this missing data mechanism, we aim to
ensure that our analysis remains robust and relevant to the complexities often encountered
in financial datasets. This simulated scenario allows us to assess the methodology’s ef-
fectiveness in handling and analyzing data with missing values, a common challenge in
practical financial analysis.

5.2.2. Single Index

In our analytical framework, we adopt a straightforward yet powerful approach by
assuming a single index model (SIM). In this model, we express the interdependence
between various financial indicators and stock returns through a linear relationship, suc-
cinctly represented by the vector Θ. This single index (see Figure 2) acts as a composite
factor, capturing the common underlying driver that influences stock prices across the
multiple companies in our dataset. While its simplicity may seem unassuming, the SIM
has proven to be a valuable tool for modeling complex financial relationships, as it offers
an elegant means of summarizing diverse indicators into a single, interpretable index. This
assumption serves as the cornerstone of our study, enabling us to efficiently examine the
impact of these financial indicators on the likelihood of significant stock movements.
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Figure 2. Single index structure αs, βs.

5.3. Estimation of Conditional Hazard Function

To quantify the likelihood of significant stock movements within our dataset, we
employ the estimation of the conditional hazard function, a pivotal aspect of our analysis.
Our chosen methodology for this estimation task involves the utilization of the local linear
approach. Specifically, we harness the “KDEMultivariateConditional” function, readily
available within the versatile “statsmodels” library. This function equips us with the
necessary tools to perform efficient, data-driven estimations of the conditional hazard
function, considering both the financial indicators and stock returns. By applying the local
linear method and this dedicated function, we leverage the framework of kernel density
estimation to produce robust hazard function estimates. This estimation process aids us in
uncovering valuable insights into the likelihood of significant stock movements and their
dependency on the financial indicators, thus contributing to informed decision making in
financial analysis.

5.4. Mean Square Error Evaluation

In our quest for reliable estimations of the conditional hazard function, it is essential
to gauge the accuracy and performance of our estimator. To achieve this, we employ
a quantitative metric known as the Mean Square Error (MSE). This evaluation process
involves a thorough comparison between the hazard values estimated through our model
and the ground truth values, which we assume for the purposes of simulation. The MSE
serves as a pivotal yardstick, quantifying the extent to which our model aligns with the
true hazard values. This numerical assessment provides a clear and objective measure of
the goodness of fit for our model. By calculating the MSE, we gain valuable insights into
the efficacy of our estimation approach, helping us to fine-tune and enhance our model’s
performance and, subsequently, our ability to make informed financial decisions based on
these estimations.

5.5. Discussion

The obtained results, including the line plot of stock returns in Figure 3, the estimated
hazard function, and the MSE, provide valuable insights into the effectiveness of the
proposed methodology in modeling conditional hazards for financial time series data.
These findings pave the way for further applications in risk management and decision-
making processes within the finance domain. This section provides a detailed overview of
each step in the numerical study, allowing readers to understand the process and interpret
the results in the context of financial applications.
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Figure 3. Censored and uncensored hazard function estimate.

6. Conclusions

In summary, this study effectively demonstrates the use of a local linear method within
a single index model for estimating conditional hazard functions, especially in contexts
involving missing at random (MAR) data. This approach, grounded in the fundamentals
of functional statistics, has shown its efficacy, particularly when evaluated through mean
square error analysis. The results highlight the method’s capability in handling incomplete
datasets, a common challenge in practical data analysis. Future research should focus
on broadening the scope of this approach to diverse datasets, which would enhance the
understanding of its applicability and generalizability. Investigating the method’s robust-
ness across different missing data mechanisms, including MCAR (missing completely at
random) and NMAR (not missing at random) scenarios, is also essential. Furthermore, ex-
amining the impact of varying sample sizes and the dimensionality of functional predictors
is crucial for a deeper understanding of the method’s performance. The inclusion of time-
varying covariates in future models could provide a more dynamic representation of data,
addressing the evolving nature of many real-world scenarios. Exploring complex index
structures and integrating machine learning techniques with traditional statistical models
could lead to more robust and adaptive analytical tools. As data volumes continue to grow,
enhancing computational efficiency remains a priority, necessitating the development of
more sophisticated algorithms. These advancements are not just methodological enhance-
ments but steps towards making functional data analysis more relevant and impactful in
practical applications.
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Appendix A

The following definitions of quantities will be given for any x ∈ F and constant
C > 0. Furthermore, we indicate that ∀i, j = 1, . . . , nKi = K(λ−1

K γΘ(Xi, x)), TΘ,ij =

Tij(Θ, x), Hj = H(λ−1
H (y − Yj)) and H′

j = H′
j(λ

−1
H (y − Yj)).

Proof of Theorem 2. We will compute the variance and the bias independently of one
another:

E
[

f̂XY (x, Θ, y)− fXY (x, Θ, y)
]2

=
[
E
[

f̂XY (x, Θ, y)
]
− fXY (x, Θ, y)

]2
+ Var

[
f̂XY (x, Θ, y)

]
. (A1)

We used the traditional computation of the estimator’s variance and bias terms to
support this theorem.The bias term is first determined for all z ̸= 0 and p ∈ N∗. Then,

using this final expansion, we get z =
f̂ x
Θ,D

E[ f̂ x
Θ,D ]

, and when p = 1, we get

E
[

f̂XY (x, Θ, y)
]
− fXY (x, Θ, y) =

[E f̂N(x, Θ, y)
E[ f̂D(Θ, x)]

− E[ fN(x, Θ, y)( f̂D(Θ, x)−E[ f̂D(Θ, x)])]
E[ f̂D(Θ, x)]2

+
E[( f̂D(Θ, x)−E[ f̂D(Θ, x)])2 f̂XY (x, Θ, y)]

E[ f̂D(Θ, x)]2

]
− fXY (x, Θ, y)

=
[E f̂N(x, Θ, y)
E[ f̂D(Θ, x)]

− A1

E[ f̂D(Θ, x)]2
+

A2

E[ f̂D(Θ, x)]2

]
− fXY (x, Θ, y)

f̂ x(y) constrained to a constant C > 0 (H′ is bounded), where f̂XY (x, Θ, y) ≤ C/λH .

A1 = E[ fN(x, Θ, y)( f̂D(Θ, x)−E[ f̂D(Θ, x)])] = Cov
(

f̂N(x, Θ, y), f̂D(Θ, x)
)

A2 = E[( f̂D(Θ, x)−E[ f̂D(Θ, x)])2 f̂XY (x, Θ, y)] = Var
[

f̂D(Θ, x)
]
O(λ−1

H ).

B̂n,1(Θ, x) =
E f̂N(x, Θ, y)
E f̂D(Θ, x)

− fXY (x, Θ, y)

Proof of Lemma 1.

B̂n,1(Θ, x) =
E f̂N(x, Θ, y)−E[ f̂D(Θ, x)] fXY (x, Θ, y)

E f̂D(Θ, x)
.

Later,

B̂n,1(Θ, x) =
E[TΘ,12(λ

−1
H H′

2 − fXY (x, Θ, y))]
E[TΘ,12]

Due to (Xi, ∆i, Yi) have all identically distributed, we get
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B̂n,1(Θ, x) =
E[TΘ,12(λ

−1
H E[H′

2|⟨Θ,X2⟩]− fXY (x, Θ, y))]
E[TΘ,12]

.

To assess E[H′
2|⟨Θ,X2⟩] as a conditional expectation, we employ the standard variable

change t = y−z
λH

:

λ−1
H E[H′

2|⟨Θ,X2⟩] =
∫
R

H′(t) fX2
Θ (y − λHt)dt

Assuming (H4) and applying a Taylor’s development, we derive

E[H′
2|X2] = fX2Y(x, Θ, y) +

λ2
H
2

(∫
t2H′(t)dt

)
∂2 fX2Y(x, Θ, y)

∂y2 + o(λ2
H).

We can rewrite the second one as

E[H′
2|X2] = ψ0(X2, Θ, y) +

λ2
H
2

(∫
t2H′(t)dt

)
ψ2(X2, Θ, y) + o(λ2

H).

Consequently, from (A4), we get

B̂n,1(Θ, x) =
1

E[TΘ,12]

(λ2
H
2

( ∫
t2H′(t)dt

)
E
[

TΘ,12ψ2(X2, Θ, y)
]
+ o(λ2

H)
)
−E[TΘ,12 f x

Θ(y))]

In accordance with [12] for the regression estimation, we prove that

E[T12ψ2(X2, Θ, y)] = ψ2(x, (X2, Θ, y), y)E[TΘ,12] +E[TΘ,12(ψ2(X2, (X2, Θ, y)− ψ2(X2, Θ, y))]

= ψ2(X2, Θ, y)E[TΘ,12] +E[TΘ,12E[ψ2(X2, Θ, y)− ψ2(X2, Θ, y)|βΘ(X2, x)]]

= ψ2(X2, Θ, y)E[TΘ,12] +E[TΘ,12Ψ2(βΘ(X2, x))]

ΨΘ,l(0) = 0 and E[βΘ(X2, x)TΘ,12] = 0, we have:
Having noted that ΨΘ,l(0) = 0, and E[βΘ(X2, x)TΘ,12] = 0, we possess

E[TΘ,12ψ2(X2, Θ, y)] =
1
2

Ψ′′
Θ,l(0)E

[
β2

Θ(X2, x)TΘ,12

]
+ ψ2(X2, Θ, y)E[TΘ,12]

+ o(E
[

β2
Θ(X2, x)TΘ,12

]
).

Thus,

B̂n,1(Θ, x) = fXY (x, Θ, y) +
λ2

H
2

∂2 fXY (x, Θ, y)
∂y2

∫
t2H′(t)dt + o

(
λ2

H
E
[
β2

Θ(X2, x)TΘ,12
]

E[TΘ,12]

)
+Ψ′

Θ,0(0)
E
[
β2(X2, x)TΘ,12

]
2E[TΘ,12]

.

Given that the distribution of (Xi, ∆i, Yi) is identical, we can say

E
[
β(x,X2)

2T12
]

= E
[
β(x,X2)

2(∆1β2
Θ(X1, x)K1(Θ, x)∆2K2(Θ, x)

− ∆1βΘ(X1, x)K1(Θ, x)∆2βΘ(X2, x)K2(Θ, x))
]

= E
[
E
(

β(x,X2)
2∆1β2

Θ(X1, x)K1(Θ, x)∆2K2(Θ, x)

− ∆1βΘ(X1, x)K1(Θ, x)∆2βΘ(X2, x)K2(Θ, x)| < Θ,X2 >
)
]

That is, we have

P(∆2 = 1|⟨Θ,X2⟩) = P(X2) and P(∆1 = 1|⟨Θ,X1⟩) = P(X1).

Subsequently,
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E
[

β(x,X2)
2T12

]
=

(
P(X1) + o(1)

)(
P(X2) + o(1)

)
︸ ︷︷ ︸

C′

(
(E[KΘ,1β2

Θ,1])
2 −E[KΘ,1βΘ,1]E[KΘ,1β3

Θ,1]
)

, (A2)

and we get that, assuming (H4): ∀a > 0

E[Ka
Θ,1βΘ,1] ≤ C

∫
B(x,λK)

βΘ(u, x)dPX(u)

Applying the final part of the assumption (H3), we thus obtain:

λKE[Ka
Θ,1βΘ,1] = o

(∫
B(x,λK)

β2
Θ(u, x)dPX(u)

)
= o(λ2

KϕΘ,x(λK)).

Thus, it is evident that

E[Ka
Θ,1βΘ,1] = o(λKϕΘ,x(λK)). (A3)

Furthermore, for every b > 1, we are able to write

E[Ka
Θ,1βb

Θ,1] = E[Ka
Θ,1γb

Θ(x, X)] +E[Ka
Θ,1βb

Θ(x, X)− γb
Θ(x, X)],

The expressions in [30,31] give us the correct way for compute the terms of the
right member.

So,

E
[

f̂N(x, Θ, y)
]

= fXY (x, Θ, y) +
λ2

H
2

∂2 fXY (x, Θ, y)
∂y2

∫
t2H′(t)dt + o(λ2

H)

+
λ2

K
2

Ψ′′
Θ,0(0)

(
K(1)−

∫ 1
−1(u

2K(u))′χΘ,x(u)du
)

(
KΘ(1)−

∫ 1
−1 K′(u)χΘ,x(u)du

) + o(λ2
K).

Proof of Lemma 2. We have

Var
(

f̂N(x, Θ, y)
)

=
1

(n(n − 1)λHE[TΘ,12])2 Var

(
∑

1≤i ̸=j≤n
TΘ,ijH′

j

)

=
1(

n(n − 1)λH(E[TΘ,12])
)2

[
n(n − 1)E[T2

Θ,12(H′
2)

2]

+ n(n − 1)E[TΘ,12T21H′
2H′

1]

+ n(n − 1)(n − 2)E[TΘ,12TΘ,13H′
2H′

3]

+ n(n − 1)(n − 2)E[TΘ,12TΘ,23H′
2H′

3]

+ n(n − 1)(n − 2)E[TΘ,12TΘ,31H′
2H′

1]

+ n(n − 1)(n − 2)E[TΘ,12TΘ,32(H′
2)

2]

− n(n − 1)(4n − 6)E[TΘ,12H′
2]

2
]
. (A4)

We own

E[T2
Θ,12(H′

2)
2] = E

[(
∆1β2

Θ(X1, x)K1(Θ, x)∆2K2(Θ, x)

− ∆1βΘ(X1, x)K1(Θ, x)∆2βΘ(X2, x)K2(Θ, x)
)2

H′
2

]
.

From (A2), we can derive
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E[T2
Θ,12H′

2] = E
[(

∆1β2
Θ,1KΘ,1∆2KΘ,2 − ∆1βΘ,1KΘ,1∆2βΘ,2KΘ,2

)2
EH′

2

]
=

(
E
[
∆1β2

Θ,1KΘ,1∆2KΘ,2H′
2

]2
+
[
∆1βΘ,1KΘ,1∆2βΘ,2KΘ,2H′

2
]2 − [2β3

Θ,1K2
Θ,1∆1∆2βΘ,2K2

Θ,2H′
2

])
= (P(X) + o(1))

(
E
[

β2
Θ,1KΘ,1KΘ,2H′

2

]2
+E

[
βΘ,1KΘ,1βΘ,2KΘ,2H′

2
]2 −E

[
2β3

Θ,1K2
Θ,1βΘ,2K2

Θ,2H′
2

])
Assume that (H2)–(H5) holds, we get

E
[

β2
Θ,1KΘ,1KΘ,2H′

2

]2
= E

[
β4

Θ,1K2
Θ,1K2

Θ,2E(H′2
2 | < Θ, x >)

]
= CλH

(
E[β4

Θ,1K2
Θ,1]E[K

2
Θ,2]
)

≤ CλHλ4
Kϕ2

Θ,x(λK) = O(λ4
KλHϕ2

Θ,x(λK))

E[T2
Θ,12H′

2] = O(λ4
KλHϕ2

x(λK))

After performing the identical computations for E[T2
Θ,12H′

2], we compute the remain-
ing terms of the right side of the Equation (A4).

E[T2
Θ,12H′

2] = O(λ4
KλHϕ2

Θ,x(λK)), E[TΘ,12TΘ,21H′
2H′

1] = O(λ4
Kλ2

Hϕ2
Θ,x(λK)),

E[TΘ,12TΘ,13H′
2H′

3] = E[TΘ,12TΘ,31H′
2H′

1] = E[TΘ,12TΘ,23H′
2H′

3] = O(λ4
Kλ2

Hϕ3
Θ,x(λK)),

E[TΘ,12TΘ,32(H′
2)

2] = E2[β2
Θ,1KΘ,1]E[K2

Θ,1(H′
1)

2] + o(λ4
KλHϕ3

Θ,x(λK)).

The principal term in the final cases is the latter, and it can be computed in (A4) in the
manner described below:

Var
(

f̂N(x, Θ, y)
)
=

n(n − 1)(n − 2)
(n(n − 1)λHE[TΘ,12])2E

2E[K2
Θ,1(H′

1)
2][β2

Θ,1KΘ,1]

Following the procedures outlined in the preceding Lemma, it is enough to write

Var
(

f̂N(x, Θ, y)
)
=

E[K2
Θ,1(H′

1)
2]

n(λHE[KΘ,1])2 + o

(
1

nλHϕΘ,x(λK)

)
. (A5)

So

E[K2
Θ,1(H′

1)
2] = E[K2

Θ,1E((H′
1)

2| < Θ,X1 >)]

= E
[

K2
Θ,1

∫
(H′)2

(
y − z

λk

)
fX1
Θ (z)dz

]

E((H′
1)

2| < Θ,X1 >) = λH

∫
(H′)2(t) fX1

Θ (y − λHt)dt

Next, we obtain the following by applying Taylor’s expansion of order 1 to fX1
Θ (·)

fX1(y − λHt) = fX1
Y (x, Θ, y) + O(λH) = fX1

Y (x, Θ, y)(y) + o(1).

Consequently, (A5) implies that

E[K2
Θ,1(H′

1)
2] = λH

∫
(H′)2(t)dtE

[
K2

Θ,1 fXΘ (y)
]
+ o(λHE[K2

Θ,1]).

Using the same procedures as in Lemma 1’s proof, we once more obtain

E
[
K2

Θ,1 fX1
Θ (y)

]
= f x

Θ(y)E[K
2
Θ,1] + o(E[K2

Θ,1])
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That means

E[K2
Θ,1(H′

1)
2] = λH f x

Θ(y)E[K
2
Θ,1]

(∫
(H′)2(t)dt + o(λHE[K2

Θ,1])

)
. (A6)

Thus, from (A4)–(A6), we have the following

Var
(

f̂N(x, Θ, y)
)
=

fXY (x, Θ, y)
nλHϕΘ,x(λK)

(∫
H′(t)2dt

)
(

K2(1)−
∫ 1
−1(K

2
Θ(u))

′χΘ,x(u)du
)

(
K(1)−

∫ 1
−1(K(u))

′χΘ,x(u)du
)2


+o
(

1
nλHϕΘ,x(λK)

)
.

Proof of Lemma 3. A basic computation yields

Cov
(

f̂N(x, Θ, y), f̂Θ,D(x)
)

=
1

(n(n − 1)λH(E[TΘ,12]))
2 Cov

(
∑

1≤i ̸=j≤n
TΘ,ijH′

j , ∑
1≤i′ ̸=j′≤n

TΘ,i′ j′
)

=
1

(n(n − 1)λH(E[TΘ,12]))
2

[
n(n − 1)E[T2

Θ,12H′
1] + n(n − 1)E[TΘ,12TΘ,21H′

2]

+n(n − 1)(n − 2)E[TΘ,12TΘ,13H′
2] + n(n − 1)(n − 2)E[TΘ,12TΘ,23H′

2]
+n(n − 1)(n − 2)E[TΘ,12TΘ,31H′

2] + n(n − 1)(n − 2)E[TΘ,12TΘ,32H′
2]

−n(n − 1)(4n − 6)(E[TΘ,12H′
2]E[TΘ,12]

]
.

Through an adjustment, we obtain
E[T2

Θ,12H′
2] = E[TΘ,12TΘ,21H′

2] = O(λ4
KλHϕ2

Θ,x(λK)),
E[TΘ,12TΘ,13H′

2] = E[TΘ,12TΘ,31H′
2] = O(λ4

KλHϕ3
Θ,x(λK)),

E[TΘ,12TΘ,23H′
2] = E[TΘ,12TΘ,32H′

2] = O(λ4
KλHϕ3

Θ,x(λK)).

Given that E[TΘ,12] = O(λ2
Kϕ2

Θ,x(λK)), we get

Cov
(

f̂ x
Θ,N(y), f̂D(Θ, x)

)
= O

(
1

nϕΘ,x(λK)

)
.

Proof of Lemma 4. We prove this result by iteratively replacing H′ with 1 in the previous
lemma’s proof. Consequently,

Var( f̂ x
Θ,D) =

1
(n(n − 1)E[TΘ,12])2 Var

(
∑

1≤i ̸=j≤n
TΘ,ij

)
=

1

(n(n − 1)E[TΘ,12]))
2

(
n(n − 1)E[T2

Θ,12] + n(n − 1)E[TΘ,12TΘ,21]

+n(n − 1)(n − 2)E[TΘ,12TΘ,13] + n(n − 1)(n − 2)E[TΘ,12TΘ,23]
+n(n − 1)(n − 2)E[TΘ,12TΘ,31] + n(n − 1)(n − 2)E[TΘ,12T,32]

−n(n − 1)(4n − 6)(E[TΘ,12])
2
)

.

With a simple adjustment, we obtain
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
E[T2

Θ,12] = E[TΘ,12TΘ,21] = O(λ4
Kϕ2

Θ,x(λK)),
E[TΘ,12TΘ,13] = E[TΘ,12TΘ,31] = O(λ4

Kϕ3
Θ,x(λK)),

E[TΘ,12TΘ,23] = E[TΘ,12TΘ,32] = O(λ4
Kϕ3

Θ,x(λK)).

Thus, we possess that

Var
(

f̂ x
Θ,D

)
= O

(
1

nϕΘ,x(λK)

)
.

Proof of Theorem 3. The steps used to prove Theorem 2 are also used to prove this Theorem.

E
[

F̂X
Y (x, Θ, y)− FX

Y (x, Θ, y)
]2

=
[
E
[

F̂X
Y (x, Θ, y)

]
− FX

Y (x, Θ, y)
]2

+ Var
[

F̂X
Y (x, Θ, y)

]
.

Using the results in [12], we simplify the variance and bias of the last term in the right
equation to obtain

E
[

F̂X
Y (x, Θ, y)

]
− FX

Y (x, Θ, y) =

[
EF̂N(x, Θ, y)
E[ f̂D(Θ, x)]

− E[FN(x, Θ, y)( f̂D(Θ, x)−E[ f̂D(Θ, x)])]
E[ f̂D(Θ, x)]2

+
E[( f̂D(Θ, x)−E[ f̂D(Θ, x)])2 F̂X

Y (x, Θ, y)]

E[ f̂D(Θ, x)]2

]
− FX

Y (x, Θ, y)

=

[
EF̂N(x, Θ, y)
E[ f̂D(Θ, x)]

− A1

E[ f̂D(Θ, x)]2
+

A2

E[ f̂D(Θ, x)]2

]
− FX

Y (x, Θ, y)

The boundedness of the kernel H′ allows F̂x(y) to be bounded by a constant C > 0,
such that F̂X

Y (x, Θ, y) ≤ C/λH . Consequently,

A1 = E[FN(x, Θ, y)( f̂D(Θ, x)−E[ f̂D(Θ, x)])] = Cov
(

F̂N(x, Θ, y), f̂D(Θ, x)
)

A2 = E[( f̂D(Θ, x)−E[ f̂D(Θ, x)])2 F̂X
Y (x, Θ, y)] = Var

[
f̂D(Θ, x)

]
O(λ−1

H ).

B̂n,2(Θ, x) = EF̂N(x,Θ,y)
E f̂D(Θ,x)

− FX
Y (x, Θ, y)

Proof of Lemma 5. Getting

B̂n,2(Θ, x) =
E[TΘ,12(H2 − Fx

Θ(y))]
E[TΘ,12]

Because (Xi, Θi, Yi) have the same distribution, we have

B̂n,2(Θ, x) =
E[TΘ,12(E[H2|⟨Θ,X2⟩]− Fx

Θ(y))]
E[TΘ,12]

.

An integration by parts, conduct us to write

E[H2|⟨Θ,X2⟩] =
∫
R

H(t)FX2
Θ (y − λHt)dt

Then we repeat the steps in studying B̂n,1(Θ, x) to demonstrate that

B̂n,2(Θ, x) =
λ2

H
2

∂2Fx
Θ(y)

∂y2

∫
t2H2(t)dt + o(λ2

H)

+
λ2

K
2 Ψ

′′
0,0(0)

(
K(1)−

∫ 1
−1(u

2KΘ(u))(1)χΘ,x(u)du
)

(
K(1)−

∫ 1
−1 K(1)(u)χΘ,x(u)du

) + o(λ2
K).



Mathematics 2024, 12, 495 19 of 20

Proof of Lemma 6. It is obvious that

Var[F̂N(x, Θ, y)] =
1

(n(n − 1)λH(E[TΘ,12]))
2

[
n(n − 1)E[T2

Θ,12(H2)
2] + n(n − 1)E[TΘ,12TΘ,21H2H1]

+n(n − 1)(n − 2)E[TΘ,12TΘ,13H2H3] + n(n − 1)(n − 2)E[TΘ,12TΘ,23H2H3]

+n(n − 1)(n − 2)E[TΘ,12TΘ,31H2H1] + n(n − 1)(n − 2)E[TΘ,12TΘ,32(H2)
2]

−n(n − 1)(4n − 6)E[TΘ,12H2]
2
]
.

(A7)

Using the same procedures as in Lemma 1, we get for these terms

E[T2
Θ,12H2

2 ] = O(λ4
Kϕ2

Θ,x(λK)),E[TΘ,12TΘ,21H1H2] = O(λ4
Kϕ2

Θ,x(λK)),
E[TΘ,12TΘ,13H2H3] = (Fx

Θ(y))
2E[β4

Θ,1K2
Θ,1]E

2[KΘ,1] + o(λ4
Kϕ3

Θ,x(λK)),
E[TΘ,12TΘ,23H2H3] = (Fx

Θ(y))
2E[β2

Θ,1KΘ,1]E[β2
Θ,1K2

Θ,1]E[KΘ,1] + o(λ4
Kϕ3

Θ,x(λK)),
E[T12T31H2H1] = (Fx(y))2E[β2

1K1]E[β2
1K2

1]E[K1] + o(λ4
Kϕ3

x(λK)),
E[TΘ,12TΘ,32H2

2 ] = Fx
Θ(y)E

2[β2
Θ,1KΘ,1]E[K2

Θ,1] + o(λ4
Kϕ3

Θ,x(λK)),
E[TΘ,12H1] = O(λ2

Kϕ2
Θ,x(λK)).

(A8)
As a result, (A7) and (A8) imply that

Var[F̂N(x, Θ, y)] =
FX

Y (x, Θ, y)(1 − FX
Y (x, Θ, y))

E[K2
Θ,1]

(E[KΘ,1])
2 + o

(
1

nϕΘ,x(λK)

)
.

Furthermore,

Var[F̂N(x, Θ, y)] =
FX

Y (x, Θ, y)(1 − FX
Y (x, Θ, y)

nϕΘ,x(λK)


(

K2(1)−
∫ 1
−1(K

2
Θ(u))

(1)χΘ,x(u)du
)

(
K(1)−

∫ 1
−1(K(u)Θ)(1)χΘ,x(u)du

)2


+ o

(
1

nϕΘ,x(λK)

)
.
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