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Abstract: Mobile Edge Computing (MEC) is a new distributed computing method based on the mobile
communication network. It can provide cloud services and an IT service environment for application
developers and service providers at the edge of the network. Computation offloading is a crucial
technology of edge computing. However, computation offloading will consume the resources of the
edge devices, and therefore the edge devices will not offload computation unconditionally. In addition,
the service quality of edge computing applications is related to the cooperation rate of edge devices.
Therefore, it is essential to design an appropriate incentive mechanism to motivate edge devices
to execute computation offloading. However, the current existing incentive mechanisms have two
problems: Firstly, existing mechanisms do not account for probability distortions under uncertainty
in collaborator utility valuation models. Secondly, the platform ignores the risk preferences of
collaborators in multiple rounds of decision-making. To address these issues, we propose an incentive
mechanism based on risk preference, IMRP. The IMRP considers the collaborator’s probability
distortion, introduces an uncertain utility bonus scheme, and builds a probability distortion model to
influence the collaborator’s willingness to offload tasks. The IMRP also considers the collaborator’s
risk preference and builds the collaborator’s risk preference model to influence the collaborator’s
bidding decision. Simulation results show that our mechanism effectively improves the cooperation
rate of edge devices and the utility of the requester.

Keywords: edge computing; computation offloading; probability distortion; risk preference

MSC: 37M10

1. Introduction

In recent years, with the development of the Internet of Things, the application of the
Internet of Things has put forward higher requirements on transmission bandwidth, delay,
energy consumption, etc. In this case, due to the limited bandwidth, high time delay, and
high energy consumption of the centralized processing mode of cloud computing, it is
difficult to meet the high-performance requirements of users [1]. Therefore, Mobile Edge
Computing is proposed as a new computing paradigm. Mobile Edge Computing incorpo-
rates servers into the aggregation nodes of the edge network [2] , such as cellular network
base stations, Wi-Fi access points, and routers. This enables these aggregation nodes to
have enhanced network, computing, and storage functionality. Computation offloading
is a crucial technology in edge computing. It transfers computation-intensive tasks from
resource-limited mobile users to nearby edge devices [3], reducing the transmission delay
of applications. This enables users to obtain better Quality of Experience (QoE) and Quality
of Service (QoS) [4]. Mobile users act as requester of offloading services, and edge devices
serve as collaborators in delivering low-latency, high-performance computing services to
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terminal devices [5]. In recent years, various fields have adopted edge offloading technol-
ogy to increase service quality. For example, in the field of robotics, edge computing is used
for the manufacture of emotionally interactive intelligent robots [6] and the optimization of
industrial robots [7]. In the field of surveillance and detection, edge computing is used in
large video surveillance systems [8], vehicle driving behavior detection systems [9], and
behavior-based identity recognition systems PreDriveID [10]. In the field of virtual reality,
edge computing is used in Virtual Reality (VR) video processing frameworks, such as the
Multi-User Virtual Reality (MUVR) framework [11] and the Furion framework [12].

The quality of edge computing applications depends greatly on the cooperation
rate of collaborators. For a large-scale video surveillance system, greater participation
in task offloading leads to more available computing resources and ultimately enhances
the timeliness and accuracy of video surveillance services. However, during the process
of assisted offloading, there are problems to consider. Firstly, offloading consumes the
collaborator’s computing resources, power, and storage space. Secondly, edge offloading
sends task content to collaborators through the mobile communication network, resulting
in a potential leak of confidential information. These two factors lead to edge devices
not actively sharing computing resources. Therefore, it is crucial to develop appropriate
incentive mechanisms based on diverse application requirements to stimulate collaborators
to willingly offer computation offloading services.

Most of the current research on incentive mechanisms for computation offloading has
two problems. Firstly, current mechanisms are mainly designed based on the expected
utility model. Collaborators only consider the expected bonus of the current round. Current
mechanisms do not consider the probability distortion of collaborators, nor do they consider
the effect of past payoff on the collaborator’s current expectation of bonus. The current
incentive mechanisms increase payment to motivate collaborators to offload tasks, but this
will cause the incentive effect to decline as the number of offloads increases under limited
budget conditions. Secondly, most current incentive mechanisms are based on a single
round of task offloading and do not consider the continuous influence of the collaborator’s
variable risk preference on their decisions, that is, they do not consider the correlation
between successive decisions. Risk preference refers to an individual’s attitude towards
uncertainty, which can affect their expectations of uncertainty and the utility evaluation
of the actual payoff. In this paper, risk preference is expressed as the deviation between
the collaborator’s expectation of the uncertainty bonus scheme and the actual bonus. The
correlation between decisions means that collaborators’ risk preferences will change with
the payoff brought by collaborators’ previous decisions and then influence collaborators’
subsequent decisions. If the mechanism does not consider the impact of the payoff and
risk preference of the past task offload on the subsequent task offloading, it will ignore the
implicit cost of the decision sequence. Implicit cost refers to cost elements that are present
in decisions but cannot be easily observed directly. In this paper, the implicit cost refers to
the additional cost that the past benefit of the cooperator causes the requester to pay for the
subsequent task offloading. If the implicit cost is ignored, the actual incentive effect will be
lower than the theoretical incentive effect.

In order to address the above problems, we propose an incentive mechanism based on
risk preference. Specifically, our contributions are summarized as follows:

• Propose a probabilistic bonus scheme for collaborators on the platform. Collabora-
tors will be selected based on their bid and will have the opportunity to get a bonus
by lowering their bid. The past bonus of the collaborators will affect the collabora-
tors’ expectations of the bonus, thus affecting the willingness to participate and the
collaboration rate of the collaborators.

• Construct a risk preference factor model for the collaborators. The size of the bonus
pool and each round of bonus payments affect the collaborators and the risk preference
factor is dynamically updated. The collaborator’s evaluation of the expected bonus
is influenced by the risk preference factor. And this influences the collaborator’s
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evaluation of the extra bonus and the willingness to participate, thereby improving
the collaborators’ cooperation rate.

The rest of the paper is organized as follows. In Section 2, we briefly review related
work. We introduce the system model of MEC and the proposed IMRP mechanism in
Section 3. In Section 4, we perform and evaluate the effectiveness of the proposed mecha-
nism through simulation experiments. Finally, we conclude this paper in Section 5.

2. Related Work

Currently, research on incentive mechanisms for computation offloading can be di-
vided into two categories: monetary and non-monetary. Considering this classification,
this section provides a summary of the current research. Table 1 classifies and summarises
the literature on edge unloading incentive mechanisms in terms of incentive method,
mechanism name, and purpose of research.

The dominant method used for computation offloading is the currency-based incentive
mechanism that motivates collaborators to share computing and storage resources through
monetary rewards [13]. Currency-based incentives can take various forms like game, auc-
tion, and contract mechanisms [14]. To promote interactivity and evenly distribute the
workload from the centralized cloud, Ref. [15] proposes an incentive-compatible auction
mechanism. Ref. [16] put forward a multi-round auction to address the efficiency and self-
ishness concerns in task offloading in vehicle fog computing systems. Ref. [17] introduced
a double auction mechanism to examine the video caching issues in dense and diverse
networks, in order to optimize social welfare. Ref. [18] described a Vickrey–Clarke–Groves
(VCG)-based vehicle-to-vehicle (V2V) reverse auction mechanism to motivate selfish auto-
mobiles to share resources, shorten the duration of applications, and reduce the load on
vehicles. Ref. [19] puts forth a reverse auction-based approach to motivate edge nodes in
mobile social networks to offer caching services for the purpose of conserving urban energy.
Ref. [20] investigates the task offloading problem in mobile edge computing for ultra-dense
networks, utilizing game theory to reduce network delays and energy usage. In Ref. [21],
a game theory technique is presented to minimize the execution costs of social groups in
fog computing. Ref. [22] investigates data offloading within mobile edge computing and
proposes a pricing strategy rooted in alliance games to optimize the effectiveness of each
alliance. Ref. [23] proposes an incentive mechanism based on game theory, which serves to
increase the utility provided by service providers and lower the energy consumption and
task completion time of smart devices.

Table 1. Edge offloading incentive mechanism classification summary.

Incentive Method Literature Mechanism/Algorithm

Monetary rewards [12] Incentive-Compatible Auction Mechanism (ICAM)
Monetary rewards [13] Vehicular fog computing (VFC)-aware parking auction
Monetary rewards [14] Double Auction Mechanism Design for Video Caching
Monetary rewards [15] VCG-based reverse auction for computation offloading
Monetary rewards [16] Reverse auction game model with incentives for edge node
Monetary rewards [17] Software defined task offloading (SDTO) scheme
Social relationship [18] Socially aware dynamic computation offloading algorithm
Monetary rewards [19] Joint coalition-and-pricing based data offloading approach
Monetary rewards [20] Incentive-based optimal computation offloading scheme

Reputation mechanism [22] Reputation-based CSS incentive framework
Monetary rewards [23] Low-complexity heuristic algorithm
Monetary rewards [24] Virtual Bank with movement prediction (VBMP)
Mixed mechanism [25] Incentive mechanism that integrates rewards and reputation

Reputation mechanism [26] Reputation Framework for Vehicular Applications

Non-monetary mechanisms mainly include reputation and penalty mechanisms [24].
In Ref. [25], to study incentive problems in cooperative spectrum sensing (CSS) systems, a
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reputation-based indirect reciprocal game mechanism has been proposed. In Ref. [26], the
joint problem of computation offloading and resource allocation is formulated as finding
the optimal response using a mixed-integer non-linear function to maximize the offloading
benefits of the users. Ref. [27] investigates terminal-to-terminal offloading methods and
implements a virtual banking system with mobile forecasting to manage data offloading. In
Ref. [28], an incentive mechanism combining auction and reputation is proposed to increase
the offloading rate by rewarding the cooperative users and penalizing the selfish users.
Ref. [29] introduced a novel reputation framework that provides caching incentives through
an information-centric approach and routing incentives through a vehicle delay-tolerant
approach, thereby improving data accessibility for mobile vehicles.

There are already a number of current incentive mechanisms that consider the budget
constraint. According to Ref. [18], a V2V reverse auction mechanism based on VCG could
be implemented. In addition, Ref. [21] suggests the use of game theory methods for the
reduction of execution costs in edge computing. Ref. [30] proposes an iterative algorithm
that uses subgradients to distribute the load and optimize the cost, which reduces the cost
of offloading tasks and optimizes the budget constraint problem.

Currently, there are incentive mechanisms that consider the correlation between de-
cision sequences. Ref. [31] uses game theory to incentivize participants to provide data
for crowd sensing, and introduces a reputation model for participants that considers the
experience between two participants. In each round, the reputation score of participants
is dynamically updated by voting according to the participation results. The data trust of
participants is evaluated by the reputation score, and the rewards in the form of badges
are provided to participants according to the reputation score. Ref. [32] improves the
traditional auction incentive mechanism by introducing a verification link and reducing
interference from participant information on the platform. Additionally, this reference
introduces a reputation model for participants. The reputation of participants is updated
dynamically based on the quality of sensing data submitted in each round. This encourages
participants to provide higher-quality data. Ref. [33] proposed an incentive mechanism
based on reverse auction. This mechanism uses the user’s previous completion of sensing
tasks as the cumulative standard of their reputation value. The group of participants with
the highest reputation value is then selected to complete the task, under the premise that
the task publisher’s budget is limited. Participants are rewarded based on the quality of
perceptual data they submit, in order to motivate participants to submit high-quality data.

These budget-constrained incentive mechanisms only consider the perspective of a
single round of task offloading. They do not consider the correlation between different
rounds of task offloading and they do not consider the risk preferences of collaborators.
A few incentive mechanisms that consider the correlation between different rounds of
task offloading do so only through reputation, which is an exogenous factor prescribed by
the incentive mechanism for collaborators. However, these incentive mechanisms do not
consider the endogenous factor of collaborators, that is, the risk preference of collaborators.
At the same time, some incentive mechanisms that consider relevance do not consider the
budget constraint of the requester. Therefore, the actual incentive effect will be lower than
the theoretical incentive effect.

In contrast to previous research, we jointly consider budget constraints and decision
correlations and propose an Incentive Mechanism based on Risk Preferences, the IMRP.

3. Design and Analysis of the IMRP

Section 3.1 introduces the system model of the IMRP, including the physical model
and logical model. Section 3.2 details the design and principle of the IMRP.

3.1. System Model

This section will further illustrate the physical model of the IMRP based on the physical
background and construct the logical model of the IMRP.



Mathematics 2024, 12, 496 5 of 22

3.1.1. Physical Model

As depicted in Figure 1, the Mobile Edge Computing (MEC) network consists of edge
servers, mobile users, and a base station (BS). The edge server set is represented by I, the
mobile user set by J, and the winner set by Iv. The edge server acts as a collaborator to assist
in offloading tasks. Mobile users, acting as requesters, can offload tasks to collaborators.
And the base station as a platform ensures the normal operation of task offloading. The
following steps detail the process of offloading tasks: (1) The requester submits their
offloading task request to the BS. (2) The BS broadcasts the requested information to the
collaborator. (3) The collaborator provides a bid based on the bonus scheme and their own
costs. (4) The BS determines the appropriate collaborator for the requester based on the
quotation received, and the collaborator offloads the task, completes it, and returns the
results. (5) The requester then pays the collaborator for their services.

Figure 1. Physical model.

In computation offloading, mobile users offload tasks to the edge server for execution.
At this juncture, the computation offloading delay is the total of the time taken to transmit
the task and the time required for task execution at the edge server. The computation
offloading delay can be expressed as Formula (1).

To f f
i,j =

cτj

fi
+

dj

Ri,j
(1)

where cτj represents the clock cycle necessary for task offloading. It is calculated through
the formula cτj = k j× dj, where dj represents the size of the task that the jth requester needs
to offload and k j is the coefficient for CPU cycles. fi represents the ith collaborator’s clock
frequency for task offloading. Ri,j represents the transmission rate and can be expressed as
Formula (2):

Ri,j = Bi,j log

(
1 +

pi,jh2
i,j

σ2

)
(2)

where Bi,j represents the transmission bandwidth, and pi,j represents the mobile user’s
transmit power. hi,j represents the channel gain between the jth mobile user and the ith
edge server. σ2 represents background noise power. The task is offloaded from the mobile
user to the edge server for execution. The energy consumption of the edge server can be
expressed as Formula (3).

Ei,j = cτj × ζPR
i f 2

i (3)
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where ζPR
i is the energy consumption factor of the collaborator. The cost of offloading tasks

from collaborators can be expressed as Formula (4):

Ci,j = cτj × ζPR
i f 2

i ce (4)

where ce denotes the economic cost per unit of energy consumption.
The specific physical process of the IMRP is as follows:

(1) The platform designs a bonus scheme which is published to the requester and collabo-
rator. The requester submits offloading requirements to the platform, including task
size and maximum delay.

(2) The platform collects the requester’s task set T = {t1, t2, . . . , tn} and broadcasts the
requester’s offloading requirement information.

(3) Collaborators decide whether to participate in task offloading based on their own
willingness to participate. The collaborator submits a bid set Bi = {bi,1, bi,2, . . . , bi,n}
for the task to the platform based on its own offloading costs minus the expected
bonus, otherwise, it will not be included in the range of candidates.

(4) The platform selects a collaborator based on the collaborator’s bid bi,j and the delay
of the offloaded task, and determines the selection factor Mt

i,j ∈ {0, 1} based on the
selection results. Mt

i,j = 1 means that the task of the jth requester is offloaded to the
ith collaborator for execution, Mt

i,j = 0 means that the ith collaborator is not selected
to offload the task.

(5) After the collaborator has completed the task and returned the result to the requester,
the platform pays the collaborator a given payment bi,j and determines an extra bonus
Rwi,j for the collaborator according to the bonus scheme.

3.1.2. Logical Model

The logical model of the IMRP is shown in Figure 2.

Figure 2. Design of logical framework for the IMRP.

After the platform publishes the bonus scheme, the collaborator calculates the ex-
pected bonus Ert

i , and evaluates the willingness to participate in the offloading task. If they
are willing to offload the task, they provide the platform with a bid bt

i,j. The collaborator’s
expected bonus induces the collaborator to lower their bid to offload the task. If a collab-
orator’s expected bonus Ert

i is greater than the reference price plot, the collaborator’s bid
is adjusted and a collaborator is selected to offload the task. The reference price is given
by the platform to avoid excessive reduction of the bid when the collaborator has a high
expected bonus. After the collaborator completes the task, in addition to the given bid
payment, the collaborator has the probability of receiving an extra bonus Rwt

i,j. The extra
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bonus will increase the collaborator’s risk preference, thus improving the collaborator’s
utility assessment for the probabilistic bonus. Meanwhile, the total bonus Θt is provided
by the task requester, who has to pay an additional γR plot per round as a maintenance
fund. In this way, collaborators have a higher expectation of the bonus, so they are more
willing to assist in task offloading. For collaborators who have performed task offloading
multiple times without receiving extra bonus, the platform will directly issue compensatory
payment Rws to maintain the collaborators’ willingness to continue task offloading.

3.2. Incentives Mechanism Based on Risk Preference
3.2.1. Bids Based on Risk Preference

Collaborators will evaluate the expected bonus before making a decision to offload
the task. Based on the current bonus scheme, bonus pool size, and bonus from the previous
round, collaborators will evaluate the expected bonus in three main scenarios: (1) first-time
task offloading or no extra bonus in the previous round and no one received first prize.
(2) A small bonus was awarded in the previous round and no one received first prize.
(3) A collaborator received first prize in the previous round. Next, we build models of
collaborators’ evaluation of expected bonuses in the three situations.

(1) First-time task offload or no extra bonus from the previous round.
In this case, the collaborators have not received any extra bonus, so the expected bonus

is only related to the bonus scheme announced by the platform. Meanwhile, to reflect
the heterogeneity of the collaborator’s risk preference, each collaborator’s initial degree
of risk preference for extra bonus is different, a risk preference factor is introduced into
the expected bonus, and the expected bonus evaluation model is expressed as Formula (5).
Formula (5) is derived from Ref. [34]

Ert
i =

k

∑
ξ=1

(
ψt

ξ

)δt
i
ϖ
(

pξ

)
(5)

where ψξ is the bonus size of each prize. And δt
i is the collaborator’s risk preference factor

during the tth round of offloading, and each collaborator will have an initial risk preference
factor. The risk preference factor δt

i denotes the degree of deviation between the expected
bonus and the actual bonus, and it will affect the utility of the collaborators. The risk
preference factor will change dynamically with the size of the bonus pool, cumulative
costs, and historical winnings. The details of setting the risk preference factor will be
discussed in the next section. ϖ

(
pξ

)
is the collaborator’s probability distortion function

of the probability of the collaborator winning each bonus. Because the collaborator’s
judgment of the objective probability is probabilistically distorted, we use it to reflect the
collaborator’s judgment of the winning probability. ϖ

(
pξ

)
is modeled as Formula (6).

Formula (6) is derived from Ref. [34]

π(pξ) =
(pξ)

γ[
(pξ)γ + (1− (pξ))1−γ

] 1
γ

. (6)

(2) A small bonus was awarded in the previous round and nobody was awarded
first prize.

In the IMRP, the platform will broadcast to the collaborators who win the first prize.
Collaborators have a self-interested bias towards other people winning the first prize. That
is, other collaborators winning the first prize will increase the collaborators’ expectation
of the expected bonus. The utility evaluation therefore requires a discussion of whether
someone in the group of collaborators has won the first prize.
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Therefore, if no one in the group of collaborators received the first prize and the
collaborators received the second or third prize in the previous round, the evaluation
model of the expected bonus is established as Formula (7):

Ert
i = τ

k

∑
ξ=1

(
ψt

ξ

)δt
i
ϖ
(

pξ

)
+ (1− τ)

∑i∈Iv Rwt−1
i,j

∑ Mt−1
i,j

(7)

where ∑i∈Iv Rwt−1
i,j is the ith collaborator’s total bonus amount in the (t− 1)th round, and

∑ Mt−1
i,j is the total number of tasks offloaded by the ith collaborator in the (t− 1)th round.
(3) First prize awarded in the (t− 1)th round.
If a first prize was awarded in the previous round, the first prize bonus in the previ-

ous round will affect the collaborator’s estimate of the expected bonus, causing them to
overestimate the expected bonus in this round. Therefore, in the IMRP mechanism, the
expected bonus modeling in this case is as shown in Formula (8):

Ert
i =

(
ψt−1

1

)δt
i
+

k

∑
ξ=2

(
ψt

ξ

)δt
i
ϖ
(

pξ

)
. (8)

After evaluating the expected bonus, the collaborator calculates the willingness value
to offload and compares it with the willingness threshold to decide whether or not to
offload. In the IMRP mechanism, the model for willingness to participate in offloading
tasks is shown in Formula (9).

Pwt
i = τp ∑t−1

r ∑i∈Iv Rwr
i,j

∑t−1
r ∑i∈Iv plot

+ (1− τp)
Ert

i
plot

(9)

where ∑t−1
r ∑i∈Iv Rwr

i,j denotes the sum of extra bonus received by the ith collaborator

in the previous (t− 1) rounds of offloading tasks. And ∑t−1
r ∑i∈Iv plot denotes the total

cost paid by the ith collaborator to obtain extra bonus in the previous (t− 1) rounds of
offloading tasks, τp is constant, 0 < τp < 1. The collaborator will participate in task
offloading in the tth round and bid on the task when the willingness to participate in
offloading task Pwt

i is greater than or equal to the willingness threshold Pwt
th. Ert

i refers to
the expected benefit of the extra bonus for the ith collaborator in the tth round.

In the IMRP, the willingness to participate is denoted by Pwt
i . In the incentive mecha-

nism without considering the reference price and probability distortion, the willingness
to participate is denoted by Pwt

i . The relationship between Pwt
i and Pwt

i is illustrated by
Theorem 1.

Theorem 1. For the ith collaborator, if ψt
3 ≥ ∑k

ξ=1

(
ψt

ξ

)δt
i pξ , we can get Pwt

i > Pwt
i .

Proof of Theorem 1. In a payment scheme designed without a reference price and prob-

ability distortion, the ith collaborator’s willingness to participate Pwt
i = τ

∑t−1
r ∑i∈Iv Rwr

i,j

∑t−1
r ∑i∈Iv plot

+

(1− τ)
Ert

i
plot

. The expected bonus of the ith collaborator in the tth round Ert
i can be expressed

as Ert
i = ∑k

ξ=1

(
ψt

ξ

)δt
i pξ .

(1) In the IMRP, when ∑i∈Iv Rwt−1
i,j < ψt

3,Ert
i = ∑k

ξ=1

(
ψt

ξ

)δt
i
ϖ
(

pξ

)
, because ϖ

(
pξ

)
>

pξ , we can get Ert
i > Ert

i , and it means that Pwt
i > Pwt

i .

(2) When ∑i∈Iv Rwt−1
i,j ≥ ψt

3 and
∣∣Wt

1

∣∣ = 0, Ert
i − Ert

i = τ ∑k
ξ=1

(
ψt

ξ

)δt
i
ϖ
(

pξ

)
+ (1−

τ)
∑i∈Iv Rwt−1

i,j

∑ Mt−1
i,j

− ∑k
ξ=1

(
ψt

ξ

)δt
i pξ . Therefore, Ert

i − Ert
i ≥ τ ∑k

ξ=1

(
ψt

ξ

)δt
i
ϖ
(

pξ

)
+ (1− τ)ψt

3 −
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∑k
ξ=1

(
ψt

ξ

)δt
i pξ . When ψt

3 > ∑k
ξ=1

(
ψt

ξ

)δt
i
ϖ
(

pξ

)
, there is τ ∑k

ξ=1

(
ψt

ξ

)t
ϖ
(

pξ

)
+ (1− τ)ψt

3 >

∑k
ξ=1

(
ψt

ξ

)δt
i
ϖ
(

pξ

)
, ∑k

ξ=1

(
ψt

ξ

)δt
i
ϖ
(

pξ

)
> ∑k

ξ=1

(
ψt

ξ

)δt
i pξ , then, τ ∑k

ξ=1

(
ψt

ξ

)δt
i
ϖ
(

pξ

)
+ (1−

τ)ψt
3 −∑k

ξ=1

(
ψt

ξ

)δt
i pξ > 0, Ert

i − Ert
i > 0. Therefore, Pwt

i > Pwt
i can be obtained.

When ψt
3 ≤ ∑k

ξ=1

(
ψt

ξ

)δt
i
ϖ
(

pξ

)
, there is Ert

i − Ert
i ≥ τψt

3 + (1− τ)ψt
3 −∑k

ξ=1

(
ψt

ξ

)δt
i pξ

= ψt
3 −∑k

ξ=1

(
ψt

ξ

)δt
i pξ . Therefore, if ψt

3 ≥ ∑k
ξ=1

(
ψt

ξ

)δt
i pξ , we obtain that Ert

i > Ert
i , Pwt

i >

Pwt
i .

(3) When
∣∣Wt

1

∣∣ > 0, the total bonus will be drastically reduced. Therefore, ψt−1
1 ≫ ψt

1.
We can get Ert

i > Ert
i

In summary, when ψt
3 ≥ ∑k

ξ=1

(
ψt

ξ

)δt
i pξ , Pwt

i > Pwt
i . Theorem 1 is proved.

In the IMRP, if the willingness to participate value Pwt
i is equal to or higher than the

willingness threshold Pwth, the ith collaborator bids on the task τj of the jth requester on
the basis of the expected bonus Ert

i , the reference price plot and the cost Ct
i,j of offloading

the task in the tth round. The ith collaborator’s bid increases as the cost of offloading the
task increases and decreases as the expected bonus increases. Formula (10) represents the
bid of the ith collaborator for the jth requester’s task τj.

bt
i,j =


φbCt

i,j −
(

αb plot + βErt
i

)
Ert

i > plot, Pwt
i ≥ Γpw

φbCt
i,j − Ert

i Ert
i ≤ plot, Pwt

i ≥ Γpw

0 else

(10)

To ensure that the collaborator’s expected utility is positive, the value range for
parameters φb and αb in the bids must be determined. Therefore, Theorem 2 is given.

Theorem 2. To ensure a collaborator’s expected utility is positive, the collaborator’s bid parameters

should satisfy
(φb−1)Ct

i,j

plot−Ert
i

< αb < 1 when Ert
i > plot. And φb > 1 when Ert

i < plot.

Proof of Theorem 2. (1) When Ert
i > plot, the collaborator’s bid is influenced by the

reference price, that is, bt
i,j = φbCt

i,j −
(

αb plot + βErt
i

)
. To ensure that the collabora-

tor’s expected utility EUCt
i,j = bt

i,j + Ert
i − Ct

i,j > 0, substitute into bt
i,j, we can obtain(

φb − 1
)

Ct
i,j − αb plot + (1 − β)Ert

i > 0. And α + β = 1, we can obtain
(

φb − 1
)

Ct
i,j −

αb(plot − Ert
i
)
> 0. Because Ert

i > plot, we can obtain αb >
(φb−1)Ct

i,j

plot−Ert
i

. In summary, we can

obtain
(φb−1)Ct

i,j

plot−Ert
i

< αb < 1.

(2) When Ert
i ≤ plot , bt

i,j = φbCt
i,j − Ert

i . To ensure that the collaborator’s expected

utility EUCt
i,j = bt

i,j + Ert
i − Ct

i,j > 0, we substitute bt
i,j = φbCt

i,j − Ert
i into EUCt

i,j. We can

obtain φb > 1. Theorem 2 is proved.

3.2.2. Utility Analysis of Collaborators

When the ith collaborator offloads the task of the jth requester, pt
i,j is the definite

payment paid by the jth requester to the ith collaborator. In the IMRP, the utility of the ith
collaborator in offloading the task τj of the jth requester can be expressed as Formula (11):

UCt
i,j =

 Mt
i,j ×

(
pt

i,j + Rwt
i,j − Ct

i,j

)δt
i i ∈ Iv

0 i /∈ Iv
, (11)
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where Mt
i,j ∈ {0, 1} represents the selection factor between collaborator and requester.

In the tth round, the ith collaborator’s total utility for the offloading task is expressed
as Formula (12):

UCt
i = ∑

j∈J
Mt

i,j ×
(

pt
i,j + Rwt

i,j − Ct
i,j

)δt
i , (12)

where δt
i represents the risk preference factor of the ith collaborator in the tth round.

Collaborators are categorized into three groups based on risk preference types, where Irisk
is the risk-seeking group, Ineutral is the risk-neutral group, and Iaversion is the risk-aversion
group. Theorem 3 is applied to stipulate the value range of the risk preference factor for
collaborators with diverse risk preference.

Theorem 3. The risk preference factor δt
i of the ith collaborator who is risk-seeking, satisfies δt

i > 1.
δt

i of the ith collaborator who is risk-aversion, satisfies 0 < δt
i < 1. And δt

i of the ith collaborator
who is risk-neutral, satisfies δt

i = 1.

Proof of Theorem 3. Calculate the first derivative of the collaborator’s utility UCt
i,j with

respect to payoff
(

pt
i,j + Rwt

i,j

)
and we obtain

∂UCt
i,j

∂
(

pt
i,j+Rwt

i,j

) = δt
i

(
pt

i,j + Rwt
i,j

)(δt
i−1)

. Sim-

ilarly, the second derivative of UCt
i,j with respect to

(
pt

i,j + Rwt
i,j

)
gives

∂2UCt
i,j

∂
(

pt
i,j+Rwt

i,j

)2 =

δt
i
(
δt

i − 1
)(

pt
i,j + Rwt

i,j

)(δt
i−2)

. For i ∈ Irisk , UCt
i,j satisfies the condition

∂UCt
i,j

∂
(

pt
i,j+Rwt

i,j

) > 0

and
∂2UCt

i,j

∂
(

pt
i,j+Rwt

i,j

)2 > 0; For i ∈ Iaversion , UCt
i,j satisfies the condition

∂UCt
i,j

∂
(

pt
i,j+Rwt

i,j

) > 0

and
∂2UCt

i,j

∂
(

pt
i,j+Rwt

i,j

)2 < 0; For i ∈ Ineutral , UCt
i,j satisfies the condition

∂UCt
i,j

∂
(

pt
i,j+Rwt

i,j

) > 0 and

∂2UCt
i,j

∂
(

pt
i,j+Rwt

i,j

)2 = 0. That is, for collaborator i ∈ Irisk , risk preference factor satisfies δt
i > 1.

For collaborator i ∈ Iaversion, risk preference factor satisfies 0 < δt
i < 1. For collaborator

i ∈ Ineutral, risk preference factor satisfies δt
i = 1; Theorem 3 is proved.

The collaborator’s risk preference factor in the IMRP is related to the probability of
winning, the size of the bonus pool, the current wealth value, and the winning situation in
the previous round. When faced with a small probability of large bonuses, collaborators
are risk-seeking. The previous bonus may increase the degree of the risk preference. And
the previous loss will decrease the degree of the risk preference. That is, when the bonus
pool is small, the collaborator is risk-averse; when the bonus pool is large, the collaborator
is risk-seeking. Hence, if the bonus pool Θt is greater than the ith collaborator’s preference
transition threshold Γt

i , then the ith collaborator is risk-seeking. If the bonus pool is less
than or equal to the ith collaborator’s preference transition threshold, then the collaborator
is risk-averse. If the bonus value in the previous round surpasses the reference price, the
risk preference of the ith collaborator will rise and the value of δt

i will increase. When the
bonus is lower than the reference price, the collaborator’s risk preference will decrease
and the δt

i value will go down. Because the risk preference is influenced by initial risk
preference, historical gains, and bonus pool. In the IMRP, the risk preference factor is
updated according to Formula (13).

δt+1
i = e

Θt−Γt
i

Γt
i
×

δt
i+

∑j∈JRwt
i,j+RwS

∑j∈Jplot


(13)

where δt+1
i is the risk preference factor of the ith collaborator in the (t + 1)th round. Finally,

Rwt
i,j denotes the actual bonus received.
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The risk preference transition threshold is related to the current risk preference degree
of the collaborator. The risk preference transition threshold decreases as the collaborator’s
risk preference increases. The relationship between risk preference transition threshold Γt

i
and the ith collaborator’s preference factor δt

i is expressed by Formula (14).

Γt
i =

plot

∑2
ξ=1 ϖ

(
pξ

)
γξ

δt
i

(δt
i )
−1

(14)

3.2.3. The Selection of Winner

In the IMRP, the requester must provide the payment pt
i,j + γR plot to the platform after

the collaborator has completed the task. The utility of the jth requester is expressed by
Formula (15).

URt
i,j = Vt

j −
(

pt
i,j + γR plot

)
(15)

where Vt
j denotes the value of the requester’s task. The total cost of the task to the jth

requester is represented by pt
i,j + γR plot. The definite payment received by the collaborator

for offloading the task is represented by pt
i,j, pt

i,j = bt
i,j, and γR plot is added to the bonus

pool by platform as extra bonus in the next round.
The utility of the ith collaborator’s offloading task is expressed as Formula (16):

UCt
i,j = pt

i,j + Rwt
i,j − Ct

i,j (16)

Social welfare is defined as the total utilities of all requesters and collaborators. Ac-
cording to Formulas (15) and (16), social welfare can be expressed as ∑i∈Iv ∑j∈J Mt

i,j ×(
Rwt

i,j − Ct
i,j + Vt

j − γR plot

)
. To guarantee positive gain for the collaborator and utility for

the requester, Theorem 4 is used to establish the parameter γR values range.

Theorem 4. In the IMRP, to guarantee a positive utility URt
i,j for the requester, γR has to satisfy

γR <
Vt

j −Ct
i,j+Ert

i
plot

.

Proof of Theorem 4. (1) When Ert
i ≤ plot, the bid of the collaborator bt

i,j = φbCt
i,j− Ert

i . For

the collaborator who offloads the task, platform gives a definite payoff pt
i,j = bt

i,j = φbCt
i,j −

Ert
i . Substitute pt

i,j into Formula (15) and we can obtain Vt
j − γR plot − φbCt

i,j + Ert
i > 0, that

is γR <
Vt

j −φbCt
i,j+Ert

i
plot

.

(2) When Ert
i > plot, the ith collaborator’s bid is bt

i,j = φbCt
i,j −

(
αb plot + βErt

i

)
. Sub-

stitute pt
i,j = bt

i,j into URt
i,j = Vt

j −
(

pt
i,j + γR plot

)
and we can obtain Vt

j − γR plot − φbCt
i,j +(

αb plot + βErt
i

)
> 0. Therefore, γR should satisfy γR <

Vt
j −φbCt

i,j+(αb plot+βErt
i)

plot
. Since Ert

i is

smaller than
(

αb plot + βErt
i

)
, we can conclude that

Vt
j −φbCt

i,j+Ert
i

plot
−

Vt
j −φbCt

i,j+(αb plot+βErt
i)

plot
<

0. Therefore γR <
Vt

j −φbCt
i,j+Ert

i
plot

. Theorem 4 is proved.

Theorem 4 proves that in the IMRP, if the value of γR is less than
Vt

j −φbCt
i,j+Ert

i
plot

, the
requester’s utility can be guaranteed to be positive.

In the IMRP, for the requester’s task, Bj is the collaborators’ bid set for the task τj.
When

∣∣Bj
∣∣ = 1, the requester’s utility is positive and the delay of offloading the task is

less than the maximum delay. That is, when bt
i,j < Vt

j − γR plot, the jth requester selects the
ith collaborator as the winner. When

∣∣Bj
∣∣ > 1, the requester selects a collaborator as the

winner. Select a collaborator based on the bid and delay, that is, under the condition that



Mathematics 2024, 12, 496 12 of 22

the maximum delay is met, the requester selects the collaborator with the lowest bid to
offload the task.

When multiple requesters select the same collaborator simultaneously, the collaborator
can only offload one task at a time. Therefore, the collaborator will select the task to offload
first based on the task offer, task size, and expected bonus. Here, the payoff of the unit
task is used to represent the priority Ωt

i,j of the task chosen by the collaborator, who then
selects the task with the highest task priority. Collaborators consider the compensation,
extra bonus, and task size. Thus, the priority of the task is expressed by Formula (17):

Ωt
i,j =

δΩ pt
i,j +

(
1− δΩ)Ert

i

dt
j

(17)

where dt
j denotes the size of the task of the jth requester.

In the IMRP, although the requester has to submit the total payment bt
i,j + γR plot to the

platform, the utility of the requester is still improved compared to the mechanism without
extra bonus. We define URt

i,j as the utility of the jth requester in the IMRP, and URt
i,j as

the utility of the requester when there is no extra bonus. To support this conclusion, we
provide Theorem 5.

Theorem 5. In the same application scenario, when Ert
i > plot, URt

i,j > URt
i,j. When Ert

i ≤ plot,

there is URt
i,j > URt

i,j only if γR satisfies γR <
Ert

i
plot

.

Proof of Theorem 5. (1) When no extra bonus is present, the collaborator has a bid of
bt

i,j = φbCt
i,j and the requester’s utility is URt

i,j = Vt
j − φbCt

i,j.

(2) In the IMRP, when Ert
i ≤ plot, the collaborator’s bid is bt

i,j = φbCt
i,j − Ert

i and

the requester’s utility is URt
i,j = Vt

j − φbCt
i,j + Ert

i − γR plot. Because URt
i,j −URt

i,j = Vt
j −

φbCt
i,j +Ert

i −
(

Vt
j − φbCt

i,j

)
−γR plot = Ert

i −γR plot, we can obtain URt
i,j > URt

i,j only if γR

satisfies γR <
Ert

i
plot

. When Ert
i > plot, bt

i,j = φbCt
i,j −

(
αb plot + βErt

i

)
. Because pt

i,j = bt
i,j, the

utility of the requester is URt
i,j = Vt

j − φbCt
i,j +

(
αb plot + βErt

i

)
− γR plot. Since Ert

i > plot,

αb + β = 1, we can obtain
(

αb plot + βErt
i

)
> plot. Furthermore, 0 < γR < 1, we can obtain

γR plot < plot. Therefore, URt
i,j −URt

i,j =
(

αb plot + βErt
i

)
− γR plot > 0. In summary, we

can obtain URt
i,j > URt

i,j. Theorem 5 is proved.

Based on the selection of collaborator and requester above, we propose Algorithm 1 to
specifically describe the winner selection process.

Algorithm 1 firstly selects the collaborator that maximizes the utility of the requester
(lines 1–8). If multiple requesters selected the same collaborator to offload the task, the
collaborator selects the requester’s task with the highest task priority Ωt

i,j (lines 9–21).
After completing the task, the collaborator returns the result to the requester, and

platform calculates the collaborator’s pay and bonus according to Algorithm 2.
We use Algorithm 2 to determine the payment and bonuses of the collaborators. For

the collaborator who offloads the task, line 4 of the algorithm calculates the pay based on
the collaborator’s bid. Lines 5 to 13 of the algorithm calculate the extra bonus based on the
collaborator’s task number and the winning task number. Lines 16 of the algorithm indicate
collaborators that have not offloaded tasks, their pay and bonus values are both zero. Line 19
of the algorithm is the calculation method for the total bonus in (t + 1)th round.



Mathematics 2024, 12, 496 13 of 22

Algorithm 1 Winner Selection Algorithm.

Input: Requester set J, Collaborator set I, Bid set Bj
Output: Selection factor Mt

i,j;
1: for j = 1 TO |J| do
2: if

∣∣∣Bj

∣∣∣ == 1 and bi,j < Vt
j − γR plot then

3: Mt
i,j = 1

4: else if
∣∣∣Bj

∣∣∣ > 1 then

5: URt
j ← URt

i,j = Vt
j −

(
bt

i,j + γR plot

)
6: Select the collaborator that maximizes the utility of the requester, Mt

i,j = 1
7: end if
8: end for
9: for j = 1 TO |J| do

10: for i = 1 TO |I| do
11: if ∑

|J|
j=1 Mt

i,j > 1 then

12: Ωt
i,j =

δΩ pt
i,j+(1−δΩ)Ert

i

dt
j

13: Select the task with the highest priority Ωt
i,j.

14: The remaining requesters Mt
i,j = 0

15: else if ∑
|J|
j=1 Mt

i,j == 1 then

16: if URt
i,j < 0 then

17: Mt
i,j = 0

18: end if
19: end if
20: end for
21: end for

Algorithm 2 Bonus payment algorithm.

Input: Collaborator set I, Winning task number Wtt
w

Output: Payment pt
i,j, Bonus Rwt

i,j
1: for i = 1 TO |I| do
2: Get the task number of the task offloaded by the collaborator Tnt

i,j
3: if Mt

i,j == 1 then

4: pt
i,j = bt

i,j
5: Caculate the count of same number SNi,j between Tnt

i,j and Wtt
w

6: if SNi,j==M− 2 then
7: Rwt

i,j = ψ3,ψ3 is a constant, Wt
3 ← the ith collaborator

8: else if SNi,j==M− 1 then

9: Rwt
i,j = ψt

2 =
γ2(Θt−|Wt

3|ψ3)
|Wt

2|
,Wt

2 ← the ith collaborator
10: else if SNi,j==M then

11: Rwt
i,j = ψt

1 =
γ1(Θt−|Wt

3|ψ3)
|Wt

1|
,Wt

1 ← the ith collaborator
12: else
13: Rwt

i,j = 0
14: end if
15: else
16: pt

i,j = 0,Rwt
i,j = 0

17: end if
18: end for
19: Θt+1 = Θt −∑k

ξ=1

∣∣∣Wt
ξ

∣∣∣ψt
ξ + ∑i∈Iv ∑j∈J γR plot Mt

i,j;
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4. Simulations and Evaluations

In this section, we verify the IMRP through simulation experiments, and compare
it with the Online Incentive Mechanism (OIM) [35] and the Profit Maximization Multi-
Round Auction (PMMRA) mechanism [36] in terms of collaborator’s bid, collaborator’s
cooperation rate, requester’s utility, and social welfare. The OIM proposed in Ref. [35]
is an online incentive mechanism for offloading Mobile Edge Computing tasks. This
mechanism sets a low resource price at the beginning of the auction and gradually increases
the resource price as resources are consumed, to motivate more collaborators to offload
tasks and optimize resource allocation. The PMMRA mechanism considers a trusted third
party as an auctioneer to host a sealed-bid auction and employs a performance–price
ratio to determine the winner during the auction. The PMMRA mechanism is effective
in ensuring the profits of resource providers and the benefits of mobile users. Since the
incentive objectives are similar and they are newer research results, this paper uses OIM
and PMMRA mechanisms as comparative papers.

This section is divided into two subsections. Section 4.1 presents the experimental
parameters used. Sections 4.2 and 4.3 will analyze the results of the simulation experiment.

4.1. Experimental Environment Settings

First, in order to ensure the fairness of mechanism evaluation, we set the same experi-
mental environment and parameter values for the IMRP, OIM, and PMMRA mechanisms.
And since the experimental result data has a certain degree of randomness, we will repeat
each experiment 500 times and take the average of the 500 experimental results as the data
result. Table 2 lists the parameters used in the simulation and their settings.

Table 2. Experimental parameter settings.

Symbol and Description Value

Bandwidth 40 MHZ
Transmission power 1.5 W

Background noise −60 dBm
Task size 10–30 MB

Energy factor 10−26

Unit Energy consumption 0.1
Mission value 0.1–10

Maximum task delay 5–15 s
Collaborator computing resources 2 GHZ

Collaborator risk preference 0.5–1.5

4.2. Mechanism Discussion

First, we discuss the impact of the bid coefficient, the reference coefficient and the
bonus pool coefficient on the bids of collaborators.

According to Theorem 3, in order to guarantee a positive utility for the collaborator, φb

should satisfy φb > 1 when Ert
i ≤ plot. According to Theorem 4, to ensure the requester’s

utility is positive, γR should satisfy γR <
Vt

j −Ct
i,j+Ert

i
plot

. Therefore, in this section, the discus-

sion range for αb is set to [0.2, 0.8], the discussion range for φb is set to [1.4, 2.0], and the
discussion range for γR is set to [0.2, 0.5].

Figure 3 shows the change in the average bid of the collaborators with the reference
coefficient αb, and the bid coefficient φb in the IMRP. It can be seen from Figure 3 that the
average bid increases as the bid coefficient φb increases. As the reference coefficient αb

increases, the average bid also increases. In accordance with Formula (10), when Ert
i > plot,

as αb increases, the proportion of plot in the bid increases, resulting in an increase in the
average bid.
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Figure 3. The change in the average bid of the collaborators with αb and φb.

Figure 4 shows the impact of the bonus pool coefficient γR and the bid coefficient
φb on the bid of the collaborator. As the prize pool coefficient increases, the average bid
decreases. As the bonus pool coefficient increases, the bonus pool accumulates faster. The
increase in the bonus pool increases the collaborator’s expected value of the random bonus,
causing the collaborator’s bid for the task to decrease. However, as the bid coefficient
increases, the average bid increases. And as both the bonus pool coefficient and the bid
coefficient increase, the average bid tends to increase.

Figure 4. The change in the average bid of the collaborators with γR and φb.

Figure 5 shows the average bid of collaborators with different risk preferences in the
IMRP as the rounds change. It is observed that brisk

i,j < bneutral
i,j < baversion

i,j . The bid of the
risk-seeking collaborator is lower than that of the risk-neutral collaborator, and the bid of
the risk-neutral collaborator is lower than that of the risk-averse collaborator.
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Figure 5. The average bid of collaborators with different risk preferences.

Figure 6 shows the willingness to participate of collaborators with different risk
preferences. The diagram shows that the participation willingness values of the risk-averse
collaborators are mostly lower than the participation willingness values of the risk-neutral
collaborators, and the participation willingness values of the risk-neutral collaborators are
lower than the participation willingness values of the risk-seeking collaborators. When a
collaborator is risk-seeking, the bid for the task is lower than that of the risk-neutral and
risk-averse collaborators, and the risk-seeking collaborator is more likely to sacrifice the
established payoff in exchange for the opportunity to receive extra random bonuses.

Figure 6. The willingness to participate of collaborators with different risk preferences.

4.3. Compare Results

This section compares the IMRP with the OIM and PMMRA mechanisms based on
the parameter settings discussed previously.

Figure 7 shows the changes in the requesters’ total utility under the three mechanisms
as the number of requesters changes, when the number of collaborators is 30. It can be seen
from Figure 7 that the total utility of the requesters under the three mechanisms increases
as the number of requesters increases. And the total requester utility of the IMRP proposed
in this paper is higher than that of the PMMRA and the OIM. Since the IMRP proposed in
this paper has a random additional small probability large amount bonus, the collaborators
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lower their bids in exchange for the chance of winning, so the utility of the requester will
be higher than the PMMRA mechanism and the OIM. On the other hand, as the number
of requesters increases, so does the number of tasks, with a corresponding increase in the
reward pool. An increase in the reward pool affects the expected reward for collaborators
who offload tasks, allowing collaborators to offload tasks at a lower price.

Figure 7. The changes in the requesters’ total utility under the three mechanisms as the number of
requesters changes.

Figure 8 shows the changes in the collaborators’ total utility under the three mech-
anisms as the number of requesters changes, when the number of collaborators is 30.
Figure 8 shows that as the number of requesters increases, the total utility of collaborators
under the three mechanisms increases, and the utility of collaborators under the IMRP
is always higher than that of collaborators under the OIM and the PMMRA mechanism.
The average utility of collaborators offloading tasks decreases as the number of requesters
increases in the IMRP due to the increase in requesters, the increase in the bonus pool,
and the lower bid of collaborators for tasks. The OIM incentivizes collaborators to offload
tasks through resource pricing, but the utility of collaborators is lower than that of the
IMRP because resource pricing is low at the beginning. The PMMRA mechanism aims to
increase the utility of the requester, which may result in lower utility for the collaborator.
The IMRP uses random bonuses to motivate collaborators to offload tasks at a lower price.
The random bonus improves the utility of the requester while also ensuring the utility of
the collaborator.

Figure 8. The changes in the collaborators’ total utility under the three mechanisms as the number of
requesters changes.

Figure 9 shows the changes in social welfare under the three mechanisms as the
number of requesters changes, when the number of collaborators is 30. It is clear that
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social welfare increases with the number of requesters, because as the number of requesters
increases, the number of tasks offloaded by the collaborators gradually increases, thereby
increasing social welfare. The IMRP has better social welfare than the OIM and the PMMRA
mechanism. The OIM reduces the rewards of collaborators through resource pricing, which
improves the utility of the requester but lowers the social welfare. PMMRA mechanism
aims to balance maximizing requester utility and minimizing delay, resulting in lower
social welfare compared to the IMRP and OIM.

Figure 9. The changes in social welfare under the three mechanisms as the number of requesters changes.

Figure 10 shows the changes in social welfare under the three mechanisms as the
number of collaborators increases, when the number of requesters is 75. Total social welfare
increases as the number of collaborators increases and gradually stabilizes. When the
number of collaborators is insufficient, some of the requester’s tasks are not offloaded
to collaborators. However, as the number of collaborators increases, the number of task
offloads gradually increases, and social welfare also increases. When there are too many
collaborators, the tasks of the requester are limited. The tasks of the requester are always
offloaded by the most efficient collaborator, and social welfare tends to be stable. Thus,
beyond a certain point, an increase in the number of collaborators does not lead to a
corresponding increase in social welfare. Figure 6 shows that the social welfare under the
IMRP is better than that under the OIM and PMMRA mechanisms.

Figure 10. The changes in social welfare under the three mechanisms as the number of collaborators
increases.

Figure 11 shows the changes in the total utility of requesters under the three mecha-
nisms when the number of requesters is 75 and the number of collaborators changes. As
shown in Figure 11, the total utility for the requester increases as the number of collab-
orators increases until the number of collaborators is so large that the requester’s utility
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no longer increases. When the number of collaborators is too large, the requester’s tasks
become limited and are always offloaded by the most effective collaborator, so increasing
the number of collaborators has no effect on the offloading task. Therefore, after the number
of collaborators reaches saturation, increasing the number of collaborators will not affect
the total utility of the requester.

Figure 11. The changes in the total utility of requesters under the three mechanisms as the number of
collaborators increases.

Figure 12 shows that the total utility of collaborators increases as the number of
collaborators increases, up to a point where it stops increasing. Similar to Figure 11,
once the number of collaborators reaches saturation, the requester consistently selects the
most efficient collaborator to offload the task, so increasing the number of collaborators
has no impact on the total utility of the collaborators. As the PMMRA mechanism has
a low average collaborator utility, increasing the number of collaborators increases the
collaborator utility less.

Figure 12. The changes in the total utility of collaborators under the three mechanisms as the number
of collaborators increases.

Figure 13 shows the change in the number of task offloading as the number of collabo-
rators increases, when the number of requesters is 75. When the number of collaborators is
small, due to the small number of winners in each round of offloading tasks, the willingness
of collaborators to participate is gradually decreased, so the number of offloaded tasks
is small. However, the platform will issue compensatory payments to collaborators who
have offloaded many times but without getting a bonus. Therefore, the number of tasks
offloaded by the IMRP is higher than that of the OIM and PMMRA mechanisms. As the
number of collaborators increases, the number of collaborators who receive bonuses and
their willingness to participate increases, resulting in increased offloading. However, when
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the number of collaborators is large, the number of task offloadings no longer increases
due to the limited tasks of the requester.

Figure 13. The change in the number of task offloading under the three mechanisms as the number of
collaborators increases.

Figure 14 is a comparison diagram of the cooperation rate under different mechanisms.
The diagram shows that the cooperation rate under the IMRP is lower than the OIM
and PMMRA mechanism at the beginning, but significantly higher than the OIM and
PMMRA mechanism. This is due to the small bonus pool at the beginning, which results in
low attraction to collaborators. As task offloading progresses, the bonus pool gradually
accumulates and becomes larger, which can effectively attract collaborators to offload the
task. Therefore, the cooperation rate of the IMRP will be higher than that of the OIM and
PMMRA mechanisms.

Figure 14. The cooperation rate under three different mechanisms.
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5. Conclusions

Aiming at the problem of the low cooperation rate of collaborators in the MEC system,
this paper designs the IMRP to improve the cooperation rate of collaborators under budget
constraints. In the selection of the bonus scheme, the IMRP considers the probability
distortion of collaborators. By introducing a probability distortion function into the collab-
orator utility evaluation model and a reference price into the bidding scheme, collaborators
are induced to reduce the bid for task offloading. Meanwhile, the IMRP considers the
risk preferences of the collaborators and the correlation of multi-round decisions. The
risk preference factor is introduced to influence the collaborators’ expectation of extra
bonuses. In this way, the willingness of collaborators to participate in task offloading is
improved, thereby increasing the collaboration rate of collaborators. Experimental results
show that the IMRP can effectively improve the cooperation rate of collaborators under
budget constraints.
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