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Abstract: This research introduces the Multi-Depot Waste Collection Vehicle Routing Problem with
Time Windows and Self-Delivery Option (MDWCVRPTW-SDO). The problem comes from the waste
bank operation implemented in Yogyakarta City, Indonesia. A set of vehicles is dispatched from the
waste banks to pick up waste from residents’ locations within the time windows specified by the
residents. Residents may be compensated for delivering their waste to a waste bank by themselves.
The objective of MDWCVRPTW-SDO is minimizing the sum of investment costs, routing costs,
and total compensation paid to the residents. We model this problem as a mixed integer linear
programming model and propose Simulated Annealing (SA) as an effective solution approach.
Extensive computational experiments confirm that SA is effective to solve MDWCVRPTW-SDO.
Moreover, the number of waste banks, compensation paid to residents, and the distribution of
residents of each type are crucial for the success of the implementation.

Keywords: waste collection; vehicle routing problem; self-delivery option; simulated annealing

MSC: 90B06; 90C11; 90C59

1. Introduction

Waste has become a harmful yet unavoidable part of human life. Poor practices such
as illegal disposal, waste burning in open spaces, and low waste collection rates still occur
in many cities of developing countries [1]. These improper waste disposal practices may
lead to environmental, health, and aesthetic harms [1–4]. In developing countries, the
increasing number of wastes produced and ineffective waste management have become
common problems encountered by the local authorities and governments [2,3,5]. Thus,
developing an appropriate waste management is a high priority. Effective and sustainable
waste management could protect the health of the population, encourage environmental
quality, develop sustainability, and support economic productivity [5].

Many developing cities in Asia are overwhelmed by increasing waste due to their
growing population [2,6,7], as in the case of Yogyakarta City, Indonesia, where population
growth positively correlates to the volume of waste produced there [1]. According to the
Central Bureau of Statistics of Yogyakarta Special Region, the total population of Yogyakarta
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City is growing by 1.2% every year and it hit 435,936 in 2020. Moreover, among all cities
that send their wastes to the same waste processing center, Yogyakarta City is recorded
as the largest waste producer as it contributes 44% of total waste [8]. Considering the
aforementioned fact, the local authorities of Yogyakarta City are in need of developing an
innovative waste management program to cope with the growth of waste volume.

Waste collection commonly involves a set of vehicles serving a set of collection points
to pick up solid/recyclable waste and deliver the waste to a disposal facility; e.g. a recycling
plant, an energy recovery facility, or a landfill [9]. Thus, this problem is considered as a
reverse logistic problem where the vehicle has to visit many locations for pick-ups and
finally deliver the collected goods to one delivery point [9–12]. Due to the activities involved
in waste collection, the resulting problem belongs to a group of well-known combinatorial
problems, i.e., the vehicle routing problem (VRP). With the resultant complexity, efficiently
dispatching vehicles becomes a critical factor in waste management among other things
like environmental, economic, logistical, technical, and political factors [13].

Considering the fact that a significant impact may be incurred due to improper waste
management, local authorities have put forth efforts to develop innovative solutions for
the waste collection process [2]. Here, in this research, we consider the implementation of
a particular waste collection facility called waste bank, which is an initiation of the local
authority of Yogyakarta City to deal with recyclable waste. A waste bank aims to reduce
the amount of recyclable waste from households by collecting and sorting inorganic waste
that still can be reused and recycled. The idea of this facility is that a resident will reach
a waste bank to deliver his/her recyclable waste. However, waste banks in Yogyakarta
City are currently underutilized [3,14]. Several alternatives for increasing the utilization
of waste banks have been proposed, such as providing incentives [14] and an additional
option, like a pick-up service [15].

This research addresses an optimization problem taking the form of a waste collection
problem arising from the implementation of waste banks in Yogyakarta City, Indonesia.
The setting of this problem involves a set of waste banks and residents. In particular, due
to the existence of waste banks and the pick-up service, a resident may (1) request a home
pick-up at his/her location, (2) deliver his/her waste to a waste bank, and (3) be flexible
depending on the assignment of the waste collection centralized system. A fleet of vehicles
is available at each waste bank to pick up recyclable waste from residents who request
pick-up service or are selected by the system to be served by said service. Moreover, a
customer who delivers his/her waste to a waste bank receives an amount of compensation
in exchange for the effort he/she put forth. The centralized system aims to serve these
residents at a minimized cost. Considering the described characteristics, the problem is
called the Multi-Depot Waste Collection Vehicle Routing Problem with Time Windows
and Self-Delivery Option (MDWCVRPTW-SDO). To the best of our knowledge, there is
no previous work in the waste collection literature that addresses the same features as we
consider herein. Further reviews are provided in the Section 2. Finally, the contributions of
this work are summarized as follows.

1. Propose a new variant of waste collection routing problem, called the Multi-Depot Waste
Collection Vehicle Routing Problem with Time Windows and Self-Delivery Option.

2. Develop a mixed integer linear programming model for the formulation of the problem.
3. Propose a simulated algorithm metaheuristic to solve instances of various sizes of

the problem.
4. Provide sensitivity analysis that can offer managerial insights based on a real-world

situation obtained from Yogyakarta City, Indonesia.

The remainder of the paper is organized as follows. Section 2 reviews relevant lit-
erature. Section 3 describes the problem and the mathematical model for the problem.
Section 4 discusses methodology for this problem. Section 5 presents experimental results.
Section 6 provides conclusions and points out potential directions for future studies.
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2. Literature Review

We present a non-exhaustive literature review on the application of VRPs in residential
waste management and various solution approaches developed to tackle the resulting
problem. Tung and Pinnoi [16] pioneer the research on tackling a real-world street solid
waste collection system in the inner city by VRP. A fleet of specialized trucks departs from
the depot and visits a set of locations called gather sites to pick up waste collected from
households or industrial units. If a truck is fully loaded, then the truck will visit a landfill.
Another trip is performed if the total operational time of the truck has not reached the
maximum working time of the given planning period. Thus, a truck possibly visits the
landfill more than once before returning to the depot.

Another interesting characteristic of the problem is that each gather site may be
visited more than once with a minimum inter-arrival time applied to consecutive visits
due to the time required to fill up the gather site. Consequently, each gather site may
have multiple time windows. Kim et al. [17] formalize the application of VRP to waste
management by naming the problem waste collection vehicle routing problem with time
windows and investigate a similar problem in [16] with two notable differences: considering
multiple landfills to reduce the operational cost and explicitly handling the break time of
drivers. Since then, waste collection routing problems have gained momentum and many
applications have been developed [18].

An ongoing development of the research in this area is integrating unique problem
characteristics either to achieve a more effective solution, in terms of operational costs, or
to address real-world cases. Reed et al. [19] and Abdulkader et al. [20] consider a fleet
of multi-compartment vehicles, such as vehicles equipped with multiple compartments
containing different types of waste, with the aim of improving the quantity or quality
of the recyclable material produced. Exposito-Marquez et al. [21] tackle the recyclable
waste collection system by considering the fill rate of each bin spread over the considered
area. The purpose is to maximize the collected recyclable waste over the given planning
period. Wei et al. [22] propose an approach called Midway Disposal Pattern by relaxing the
assumption in [16,17]; i.e., a truck will go to the landfill only if it is fully loaded. In other
words, the proposed approach allows trucks to dump their current loads even though they
are partially loaded. This approach is proposed to reduce the carbon emission produced
by utilized trucks as the amount of carbon emission depends on the total loads carried.
Due to a stricter regulation forcing new landfills to be located further from the residential
areas, Ghiani et al. [23] propose a two-echelon waste collection system in which smaller
vehicles operate to collect waste from the collection points where waste is generated and
transfer the waste to the waste transfer stations before vehicles of a larger capacity pick up
the waste at transfer stations. Similarly, Yu et al. [24] study a two-echelon waste collection
system with a distinctive feature, i.e., considering different types of costs that lead to a
multi-objective optimization problem.

The scope of waste collection routing problems commonly deals with the operational
level, i.e., route planning for a relatively short planning period such as days or weeks.
However, integrating strategic-level decisions into waste collection routing problems may
arguably result in more efficient operations for waste management in the long term. Hem-
melmayr et al. [25] propose a model for the integrated problem, simultaneously addressing
the strategic-level and operational-level decisions. The strategic-level decision involves the
number and configuration of bins at collection points, which leads to the determination
of investment costs. The analysis emphasizes the trade-off between the investment costs
resulting from the bins and the operational costs obtained from the solutions collected
from solving the waste collection routing problem. Shang et al. [26] deal with another
integrated problem: deciding the number and the locations of waste collection facilities
with waste collection route planning. They are the first to explicitly deal with the queue-
ing time occurring at the waste collection facilities. Consequently, the resulting problem
leads to a more complex trade-off among investment costs, operational costs, and total
penalty costs resulting from the queueing time of vehicles at waste collection facilities.
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Tirkolaee et al. [27] develop a novel mixed-integer linear programming (MILP) model
for the sustainable periodic capacitated arc routing problem (PCARP) in municipal solid
waste management. The model aims to minimize total cost, environmental emissions, and
workload deviation while maximizing citizen satisfaction.

The development of information and technology has unlocked various innovative
improvements made for waste management. The first is the improvement that focuses
on the vehicles. Erdem [28] and Erdinç et al. [29] investigate route planning for waste
collection with a fleet of electric vehicles, aiming to support a sustainable waste collection
mechanism. The second improvement is the integration of a real-time technology, like
the Internet of Things, to detect the condition of bins at collection sites [30–33]. The main
purpose is to minimize the operational cost while maximizing the collected waste from the
visited collection points [34–37]. The growing trend of machine learning has influenced
research in this area. Vu et al. [38] integrate a machine learning technique called Artificial
Neural Network to predict the demand in collection points, which provides better input
for the route planning of waste collection.

We briefly discuss the connection of various route plans for waste collection to the
well-established variants in the VRP. The landfills described in [16,17,22] are locations
visited by vehicles to dump collected waste, and the vehicles are allowed to visit other
collection points as long as this respects the other operational constraints. In other words,
the landfills act as intermediate stops.

The utilization of electric vehicles for waste collection such as by Erdem [28] and
Erdinç et al. [29] can also be seen as another variant of problems that utilize intermediate
stops; e.g., electric vehicles may need to stop for a certain period of time at recharging
stations to increase their battery states. Schiffer et al. [39] provide a unifying literature
review of a class of VRP that considers intermediate stops (VRPIS). The multi-compartment
vehicles considered in [19,20] are commonly used in other logistics activities for specific
products, such as temperature-sensitive groceries and petrol, called the Multi-Compartment
Vehicle Routing Problem (MCVRP) [40].

Ghiani et al. [23] and Yu et al. [24] both investigate the waste collection system under
a two-echelon structure. This structure is a well-known distribution system invented
as a result of the policy for limiting the movement of large vehicles in several cities.
Sluijk et al. [41] propose the most recent review on various two-echelon vehicle routing
problems (2E-VRPs) investigated in the body of literature. Hemmelmayr et al. [25] and
Shang et al. [26] consider two integrated problems in which both strategic and operational-
level decisions are involved. This integrated problem has been addressed and named the
Location-Routing Problem (LRP) [42].

In this research, we consider route planning for waste collection, which is derived from
a different variant of VRP previously mentioned. MDWCVRPTW-SDO is a generalization
of the multi-depot vehicle routing problem with time windows (MDVRPTW) in which
several depots and a set of vehicles are available to serve customers within predetermined
time windows. So far, to the authors’ knowledge, this problem inspired by a real-world
case study in Indonesia has never been investigated and hence contributes to the body of
literature related to the adoption of a VRP variant in handling route planning for waste
collection. We summarize the relevant literature in Table 1. It can be seen that case studies
for the waste collection vehicle routing problem are rare.

Table 1. Summarized relevant literature on waste collection vehicle routing problem.

Publication Variant of VRP Objective Solution Method Case Study Location

Tung and Pinnoi [16] Vehicle routing and scheduling
problem (VRSP)

Minimize total operating
cost

Heuristic (construction
phase and improvement

phase)
N/A

Kim et al. [17] Vehicle routing problem with
time windows (VRPTW)

Minimize number of
vehicles and total travel

time

Capacitated
clustering-based heuristic

Waste Management,
Inc. in North America
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Table 1. Cont.

Publication Variant of VRP Objective Solution Method Case Study Location

Reed et al. [19] MCVRP
Minimize the cost of

multi-compartment waste
collection

Ant colony system (ACS) N/A

Abdulkader et al. [20] MCVRP Minimize total travel
distance

Hybridized local search
and ant colony

optimization (ACO)
N/A

Exposito-Marquez et al.
[21]

Eco-efficient vehicle routing
problem (Ee-VRP)

Maximize fill level of the
collected containers

Greedy randomized
adaptive search procedure

(GRASP)

Island of La Palma
(Canary Islands,

Spain)

Wei et al. [22]
Waste collection problem with

midway disposal pattern
collection problem (WCP-MDP)

Minimize total carbon
emission costs Artificial bee colony (ABC) N/A

Ghiani et al. [23] Two echelon waste collection Minimize number of
collection vehicles used Two-phase heuristic N/A

Yu et al. [24]
Two-echelon multi-objective

location routing problem
(2E-MOLRP)

Minimize total cost
including vehicle-related

costs, facility-related costs,
and routing-related costs

Improved non-dominated
sorting genetic algorithm
with directed local search

(INSGA-dLS)

N/A

Hemmelmayr et al. [25] Waste bin allocation and routing
problem (WBARP)

Minimize purchase,
removal, and
transfer costs.

Variable neighborhood
search (VNS) N/A

Shang et al. [26]
Capacitated location routing
problem with queuing time

(CLRPQT)

Minimize total cost
including transportation

cost, operating cost of
facilities, collection cost,

and penalty cost
of waiting

Simulated
annealing-based
hyper-heuristic

Simulated data for
Shanghai, China

Erdem [28] Electric waste collection problem
(EWCP) Minimize total travel cost

Adaptive variable
neighborhood search

(AVNS)
N/A

Erdinç et al. [29] Waste collection vehicle routing
problem (WCVRP)

Minimize total energy
consumption of all electric

garbage trucks
MILP Bakirkoy Municipality,

Istanbul, Turkey

Roy et al. [34] IoT-based vehicle routing
problem

Minimize the sum of bin
allocation cost, routing
cost, driver wages, and

penalty cost

Hybridized VNS and ACO South Korea

Ramos et al. [35] Smart waste collection routing
problem (SWCRP)

Minimize transportation
cost and maximize total

profit
MILP

Valorsul company in
Western Waste

Treatment Centre.

Hannan et al. [36] Capacitated Vehicle Routing
Problem (CVRP)

Minimize distance or
total cost

Particle swarm
optimization (PSO) N/A

Vu et al. [38] CVRP Minimize total travel
distance and emissions

Artificial neural network
(ANN) N/A

Campos and Arroyo [43]
Waste collection vehicle routing

problem with time windows
(WCVRPTW)

Minimize total travel cost

Hybridized iterated local
search (ILS) and variable

neighborhood descent
(VND)

N/A

Wu et al. [44] Priority considered green vehicle
routing problem (PCGVRP)

Minimize total distance
and total emissions costs

Local search hybrid
algorithm (LSHA) N/A

Mohammadi et al. [32] Dynamic vehicle routing
problem (DVRP)

Minimize overall
transportation cost and

the associated penalty for
CO2 emissions

Hybridized genetic
algorithm (GA) and PSO N/A

Rahmanifar et al. [33] Green CVRP

Minimize transportation
cost, CO2 emissions, and
the cost of transferring

waste to recycling centers

Hybridized SA and
hybridized social

engineering optimizer
(SEO) with nine heuristics

N/A
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Table 1. Cont.

Publication Variant of VRP Objective Solution Method Case Study Location

Bouleft and Elhilali
Alaoui [30]

Dynamic multi-compartment
vehicle routing problem

(DM-CVRP)

Minimize total cost
including transportation

cost and penalty cost
Hybridized GA N/A

Tirkolaee et al. [27] Periodic capacitated arc routing
problem (PCARP)

Minimize total cost,
minimize total emissions,

maximize citizen
satisfaction, and minimize

workload deviation

Hybridized
multi-objective SA and
multi-objective invasive

weed optimization
algorithm

(MOSA-MOIWOA)

N/A

Hashemi-Amiri et al.
[31]

Heterogeneous fleet VRP with
hard time windows

(HVRPHTW)

Maximize the probabilistic
profit, and minimize total

travel time and
transportation costs

Goal programming (GP)
and four multi-objective

metaheuristics
N/A

3. Problem Description and Mathematical Model

The aim of this research is to address a new variant of a waste collection vehicle
routing problem arising from recyclable household waste collection in Yogyakarta City,
Indonesia, called the Multi-Depot Waste Collection Vehicle Routing Problem with Time
Window and Self-Delivery Option. A set of waste banks serves as a collection point for
all recyclable household waste. Each waste bank provides two service options for each
resident: picking up waste at a resident’s location or providing a self-delivery option for
residents to willingly drop off their waste. Consequently, residents are categorized into the
following three types.

(1) Type 1 resident: Home pick-up resident. The resident requires his/her waste to be
picked up by a waste bank at his/her home.

(2) Type 2 resident: Self-delivery resident. The resident willingly drops off the waste
him/herself to a waste bank assigned by the system.

(3) Type 3 resident: Flexible resident. The resident is flexible in terms of waste collection
methods. This resident can hence be assigned to be a home pick-up resident or a
self-delivery resident, determined by the waste collection system.

The assumptions for this problem are as follows:

(1) The total waste of each resident is known and deterministic.
(2) Each resident must be served based on their category.
(3) The waste amount of each resident is determined by taking an average of the total

household waste volume in historical data.
(4) Each vehicle has a limited capacity.
(5) The number and locations of the waste banks are predetermined.
(6) The average speed of all vehicles is the same.
(7) Each waste bank has the same operational hour/time window.
(8) Each waste bank has the same number of available vehicles.
(9) Each vehicle returns to the waste bank from which the vehicle starts.

Figure 1 illustrates a solution for MDWCVRPTW-SDO with four waste banks and
15 residents consisting of 5 home pick-up residents, 6 self-delivery residents, and 4 flexible
residents. Among the four existing waste banks, only three waste banks are utilized: WB1
and WB4 both serve home pick-up and self-delivery residents, while WB2 only serves
self-delivery resident R6 without any home pick-up resident being served. Each resident
who is served at his/her location is visited with respect to the time windows defined by
the resident. Each resident performing the self-delivery option visits a waste bank that
is reachable by the resident. From the illustration, some flexible customers, like R3 and
R13, are served at their locations while the remaining flexible customers, R7 and R9, are
assigned as self-delivery residents.
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Figure 1. An illustration of MDWCVRPTW-SDO.

The parameters and decision variables used in the MILP are as follows.
Parameters:

i, j Index of resident or waste banks.
k Index of vehicle.
f The fixed cost of the vehicle.
v The variable cost of the vehicle per unit distance.
K Set of vehicles.
n Number of residents.
m Number of vehicles for each waste bank.
θ Maximal covering range for self-delivery resident.
Q The loading capacity of vehicles.
NSS Set of home pick-up residents (Type 1 residents).
NPS Set of home self-delivery residents (Type 2 residents).
NSPS Set of home flexible residents (Type 3 residents).
NC Set of residents (NC = NSS ∪ NPS ∪ NPS ).
ND Set of waste banks.
N Node set (N = ND ∪ NC).
qi Waste amount of the resident i.
si Service time of the resident i.
ei The earliest arrival time of the type 1 or type 3 resident i.
li The latest arrival time of the type 1 or type 3 resident i.
Wj The maximum capacity of wastes that can be collected for waste bank j.
rij Traveling cost from node i to j.
tij Traveling time from node i to j.

pij
The total compensation cost paid for residents i who send the his/her waste to waste bank j by
self-delivery (either type 2 resident or type 3 resident assigned to as self-delivery resident).

M A sufficiently large number.
Decision Variables:

Xijk Binary variable. 1 if vehicle k travels from node i to j and 0 otherwise.
Yik Binary variable. 1 if waste bank i is and vehicle k is used and 0 otherwise.
Hi Binary variable. 1 if resident i is served with pick-up service and 0 otherwise.
Di Binary variable. 1 if resident i is served with self-delivery and 0 otherwise.
Bij Binary variable. 1 if resident i sends the waste to waste bank j by self-delivery and 0 otherwise.
Sik The time vehicle k starts the service at resident.
Ajk The time vehicle k departs from waste bank j.
Rjk The time vehicle k returns to waste bank j.
ui Auxiliary variables used to avoid sub-tours.
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Objective Function:

minZ = f ∑
i∈ND

∑
k∈K

Yik + v ∑
i∈N,i ̸=j

∑
j∈N,j ̸=i

∑
k∈K

xijkrij + ∑
i∈NC

∑
j∈ND

pijBij (1)

Constraints:
∑
i∈N
i ̸=j

xijk − ∑
i∈N
j ̸=i

xjik = 0, ∀j ∈ N, ∀k ∈ K (2)

∑
kϵK

∑
jϵN

xijk = Hi, ∀i ∈ NSS ∪ NPS ∪ NSPS (3)

∑
iϵND

∑
jϵND

xijk = 0, ∀k ∈ K (4)

∑
iϵN

∑
jϵNC
i ̸=j

qjxijk ≤ Q, ∀k ∈ K (5)

Sik + si + tij − Sjk ≤ M
(

1 − xijk

)
, ∀i ∈ ND ∪ NPS ∪ NSPS, ∀j ∈ NPS ∪ NSPS, ∀k ∈ K (6)

Sik + si + tij ≤ lj + M
(

1 − xijk

)
, ∀i ∈ ND ∪ NPS ∪ NSPS, ∀j ∈ ND, ∀k ∈ K (7)

Sik ≤ M∑
jϵN

xjik, ∀i ∈ NC, ∀k ∈ K (8)

ei+(Hi − 1)M ≤ ∑
kϵK

Sik ≤ li + (1 − Hi)M, ∀i ∈ NPS ∪ NSPS (9)

Ajk + tji − Sik ≤ M
(

1 − xjik

)
, ∀i ∈ NPS ∪ NSPS, ∀j ∈ ND, ∀k ∈ K (10)

Sik + si − tij − Rjk ≤ M
(

1 − xijk

)
, ∀i ∈ NPS ∪ NSPS, ∀j ∈ ND, ∀k ∈ K (11)

Rjk − Ajk ≤ T, ∀j ∈ ND, ∀k ∈ K (12)

Hi + Di = 1, ∀i ∈ NC (13)

Hi = 1, ∀i ∈ NPS (14)

Di = 1, ∀i ∈ NSS (15)

∑
jϵND

Bij = Di, ∀i ∈ NC (16)

∑
iϵNC

Bijqi + ∑
iϵNC

∑
kϵK
j ̸=i

xijkqi ≤Wj, ∀j ∈ ND (17)

∑
jϵND

Yjk ≤ 1, ∀k ∈ K (18)

Yjk ≥ ∑
iϵNC

xjik, ∀j ∈ ND, ∀k ∈ K (19)

∑
iϵNC

∑
jϵND

xijk = ∑
jϵND

Yjk, ∀k ∈ K (20)

Bijrij ≤ θDi, ∀j ∈ ND, ∀i ∈ NC (21)

∑
k∈K

Yjk ≤ m, ∀j ∈ ND (22)

ui − uj + n xijk ≤ n − 1, ∀i ∈ N, ∀j ∈ NC, ∀k ∈ K (23)

The objective function (1) of MDWCVRPTW-SDO is to minimize the fixed cost of the
vehicles used, the total cost of routing, and compensation paid to self-delivery residents.
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Constraint (2) guarantees the flow conservation. Constraint (3) ensures a home pickup
operation is conducted at a resident’s location if the resident is served as a home delivery
resident. Constraint (4) prohibits a vehicle to travel between waste banks. Constraint
(5) guarantees that the total amount of waste carried by each vehicle does not exceed
the vehicle capacity. Constraints (6)–(9) relate to the time window in this model. In
order to track the arrival time for both residents and waste banks, Constraints (6)–(7)
are used. Constraint (9) ensures that if a resident is served at his/her home, then s/he
must be visited within predefined time windows. The vehicle start time and end time
will be determined by Constraints (10) and (11). Constraint (12) guarantees the vehicle
traveling time does not exceed the maximum routing time. Constraints (13)–(15) ensure
that each resident is served by either home pick-up or drop-off. Constraint (16) ensures
that each self-delivery resident will drop-off the waste to a waste bank. Constraint (17)
guarantees that total waste collected at each waste bank (from home pick-up and drop-off
residents) does not exceed the waste bank capacity. Constraint (18) ensures that one vehicle
can only be assigned to one waste bank while Constraint (19) guarantees that a vehicle
can depart from a waste bank if the vehicle is assigned to the waste bank. Constraint
(20) ensures that there should be a route generated by a vehicle if the vehicle is utilized.
Constraint (21) guarantees that only a self-service resident within the covering range can
be served by a waste bank for a drop-off service. Constraint (22) guarantees that each
waste bank can only dispatch a limited number of vehicles. Finally, Constraint (23) is the
well-known Miller–Tucker–Zemlin sub-tour elimination constraints.

4. Methodology

Due to the complexity of MDWCVRPTW-SDO, heuristics become promising alter-
natives for solving problems with real-life size. A simulated annealing (SA) algorithm is
thus developed in this paper. SA has been widely used and has proven its excellent perfor-
mances in various VRPs such as Capacitated Vehicle Routing Problem [43,45], two-echelon
joint delivery location routing problem [46], disaster relief on destructive transportation
networks [47], capacitated location-multi allocation-routing problem [48], vehicle routing
problem with pick-up and delivery [49], green vehicle routing problem [44], hybrid vehicle
routing problem [50], share-a-ride problems [51,52], and a multi-depot two-echelon vehicle
routing problem with delivery options [53].

4.1. Solution Representation

The solution representation consists of two parts. The first part σ1 = {σ1(1), . . . , σ1 (|σ1|)}
is the permutation of type 1 residents and type 3 residents, waste banks, and dummy zeros.
In other words, the value of |σ1| is |NSS|+ |NSPS|+ |ND|+ |N0|. The first element of σ1, i.e.,
σ1(1), is a waste bank. The second part of solution representation σ2 = {1, 2, . . . , |NC|} is used
to determine the selected service for each associated resident; i.e., the resident is either served
by the vehicle or needs to visit a waste bank to drop off the waste. Let µW

i be the number of
accessible waste banks by resident i, ∀i ∈ NPS ∪ NSPS. If resident i ∈ NSS, then the value of
σ2(i) is permanently 1. If resident i ∈ NPS, then the value of σ2(i) ranges from 1 to µW

i . Lastly,
if resident i ∈ NSPS, then the value of σ2(i) ranges from 1 to µW

i + 1, i.e., 1 for being a home
pick-up resident and the remaining values for being a self-delivery resident.

Figures 2 and 3 consecutively illustrate σ1 and σ2. There are 15 residents denoted by 1
to 15 and four waste banks denoted by 16 to 19. There are four type 3 residents, i.e., 3, 7, 9,
and 13. Figure 2 shows the permutation of type 1 residents, type 3 residents, waste banks
(shaded entries), and dummy zeros. Based on Figure 3, the values of σ2(3) and σ2(13)
are both 1, stating that both are served as type 1 residents, while the values of σ2(7) and
σ2(9) are greater than 1 as residents 7 and 9 are assigned as self-delivery residents (shaded
entries). The visual illustration of this solution example is shown in Figure 1. It can be seen
that resident 7 has two accessible waste banks. If σ2(7) = 1, resident 7 will be served by
a vehicle. If σ2(7) = 2, resident 7 will go to waste bank 1 (WB1) to drop off the waste. If
σ2(7) = 3, resident 7 will go to waste bank 2 (WB2) to drop off the waste.
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4.2. Evaluation of the Objective Value

We need both σ1 and σ2 to calculate the objective value. The procedure starts with
σ1. The first node in σ1 is a waste bank that becomes the origin location of the currently
evaluated vehicle’s route. The next nodes, type 1 residents or type 3 residents, who are
served by the home pick-up operation are then added to the current route one by one.
The currently evaluated route is terminated when the next node in σ1 is a dummy zero
or a waste bank. Whenever the currently evaluated route is terminated, a new route is
initiated. The routine is performed until it reaches the last node of σ1. If the termination
occurs because of a waste bank, then the waste bank becomes the origin of the new route;
otherwise, the new route has the same waste bank as the terminated route.

If there is any violation in the time window or load carried by a vehicle when adding a
resident node to the currently evaluated route, the route is also terminated by going back to
its associated waste bank, and a new route originating from the same waste bank is created,
and this resident becomes the first resident served. Vehicles must arrive to residents who
are served at their locations within the specified time windows. A vehicle must wait until
the earliest time to serve a resident if it arrives earlier. By following this method, it can be
verified that this solution representation always gives a solution without violating time
windows, the time limit of tours, and the capacity of vehicles. From σ2, we obtain the
total compensations paid to type 2 residents and type 3 residents who are assigned as
self-delivery residents. Finally, there are two remaining constraints that are not guaranteed
by the abovementioned solution representation: the number of utilized vehicles and the
total load assigned to each waste bank. Therefore, the original objective value obtained

from the aforementioned procedure f (σ) is modified into
∼
f (σ) by utilizing equation (23) to

take into account such violations. In Equation (24), vioveh and viocap consecutively represent
the number of extra vehicles and the total extra load assigned to all waste banks.

∼
f (σ) = f (σ) + ρ ×

(
vioveh + viocap

)
(24)

4.3. Initial Solution

The procedure for generating an initial solution is described below.

Step 1: For each type 2 resident who can be served by only one waste bank, assign the
resident to the associated waste bank.
Step 2: For each remaining type 2 resident, assign the resident to the nearest reachable
waste bank that still has enough capacity and update the remaining capacity of the waste
bank. If there are still any remaining type 2 residents, then assign the resident to the
nearest waste bank with the highest remaining available capacity. The waste bank is not
necessarily reachable and the solution produced is infeasible. However, note that we allow
the infeasible solution by utilizing the penalty mechanism introduced in Section 4.2.
Step 3: For each type 3 resident, choose the nearest available waste bank with enough
remaining capacity that can be visited by the resident. If no waste bank can handle the
demand of the resident, then the resident will remain unassigned and will be served as a
home pick-up resident in Step 4.
Step 4: For each waste bank w ∈ NW
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Step 4.1: Find the resident who can be served in the earliest time and is feasible with
respect to the vehicle’s capacity, waste bank’s capacity, and time windows; serve this
resident using the currently evaluated vehicle and update the related information of
the vehicle. Repeat Step 4.1 until all unserved residents are evaluated.
Step 4.2: If all unserved residents are evaluated, then the current vehicle returns to
waste bank w.
Step 4.3: If there are no remaining type 1 and type 3 residents, go to Step 5.
Step 4.4: If there is an unused vehicle existing in waste bank w, then a new vehicle
will be assigned from waste bank w; go to Step 4.1.
Step 4.5: If all vehicles in waste bank w are utilized, then we move to the next waste
bank and employ a new vehicle; go to Step 4.1.

Step 5: If there are still unused vehicles, then add 0 in the solution representation for each
unused vehicle.

4.4. Neighborhood Moves

Four neighborhood moves in the proposed SA are defined as (1) swap, (2) insertion,
(3) reversion, and (4) reassign. While the first three operators are widely found in the
literature, the last operator is tailored to deal with type 3 residents. The first three operators
deal with σ1, while the last operator specifically deals with σ2. The swap operator illustrated
in Figure 4 operates by randomly selecting two nodes in σ1 (shaded entries) and exchanging
the positions of them. The insertion operator shown in Figure 5 operates by selecting a
node randomly from σ1 and inserting it into a new position (shaded entries). The reversion
operator depicted in Figure 6 is performed by selecting a substring of σ1 and reversing
its order (shaded entries). The reassign operator randomly selects a resident from the set
of type 2 and type 3 residents and randomly changes the resident’s value in σ2. For a
type 2 resident, the change results in a change in the waste bank to which the resident is
assigned to perform the self-delivery option. For a type 3 resident, the change may result
in two scenarios. The first scenario is changing the operation assigned to the resident, i.e.,
from home pick-up to the self-delivery option and vice versa. The second one is similar
to the case of type 2 residents and only happens to type 3 residents who are assigned as
self-delivery residents.
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4.5. SA Parameters

The parameters used in this proposed SA heuristic are Iiter, T0, Nnon−improving, α, and ρ.
Iiter refers to the number of iterations of neighborhood search at a particular temperature. T0
denotes the initial temperature. Nnon−improving represents the maximum allowable number
of temperature reductions without improvement in the objective value. α is a coefficient
used to control the speed of the cooling process. Lastly, ρ is the amount of the unit penalty.

4.6. SA Procedure

Figure 7 shows the pseudocode for the proposed SA algorithm. The input of SA is an
MDWCVRPTW-SDO instance and the required parameters. The output is the best-found
solution σ∗. Before SA is executed, we initialize a solution by using a procedure described
in Section 4.3 and store the result in σc. We then set the probability of each neighbourhood
move by using SetProbability(π), where π is a vector consisting of the selection probability
of each neighborhood move defined in Section 4.4. SetProbability(π) is an equal selection
probability for each neighbourhood move. Initially, we set the current temperature T as T0
and σ∗ as σc.
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SA consists of outer and inner loops. The inner loop is the phase in which new
solutions are created by means of neighborhood moves and the acceptance mechanism
of these newly generated solutions. A new type of solution σw is defined as a temporary
solution for the implementation of neighborhood moves. In the beginning of the inner
loop, SA copies σc to σw. One neighbourhood move is then selected using the function
NeighborhoodMove(σw, π) and is implemented to σw, as described in Line 10. The selection
is based on the principle of a roulette wheel with the given selection probability π. Line
12 states that σw is copied to σc if the modified objective value of σw is lower than that of
σc. Furthermore, Line 14 states the condition for updating σ∗. Lines 16 to 18 define the
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simulated annealing acceptance criterion. The outer loop aims to reduce the temperature T
and update the total non-improving iterations µnon−improving. Finally, SA terminates when
µnon−improving reaches Nnon−improving.

5. Computational Result

The proposed SA metaheuristic was implemented in C programming language in
Microsoft Visual Studio C++ 2019 and run on a computer with Intel® Xeon® CPU E3-1245
v6 at 3.70 GHz, 16 GB of RAM, and using a 64-bit operating system (Windows 10). In order
to verify its performance, SA was tested on well-known instances of MDVRPTW, proposed
by Cordeau et al. [54]. In this section, we present the mechanism of generating a set of
instances for MDWCVRPTW-SDO, parameter setting, the performance evaluation of our
proposed SA, and the result of solving a real-world instance obtained from Yogyakarta
City, Indonesia.

5.1. Benchmark Instances

Three sets of MDWCVRPTW-SDO instances are generated for our computational
study and one instance generated from real life conditions in Yogyakarta City is generated
for sensitivity analysis. The first two sets are mentioned as small and medium instances
where each one consists of five instances. The information is directly adopted from the real
locations of waste banks in Yogyakarta City, while the locations of residents are randomly
generated from the region of Yogyakarta City. The number of waste banks for the small
dataset and medium dataset is four and six, respectively. The number of residents for small
and medium instances are 15 and 25, respectively. For the last set, we adopt 20 instances of
MDVRPTW originally proposed by Cordeau et al. [54]. Each resident will be assigned as
either a home delivery, a self-delivery, or a flexible resident randomly. The compensation
given to a resident who performs self-delivery is calculated based on the distance traveled
and the weight of waste carried. If resident i, ∀i ∈ NPS ∪ NSPS, is assigned to waste bank
j, then pij = γdij + βqi, where γ and β are multipliers for the distance traveled and waste
carried, respectively. Finally, we add the information related to vehicle fixed cost f and
variable cost v as well as the coverage area of a waste bank θ to each instance.

A real-life instance is generated based on Yogyakarta City, Indonesia. First, the
locations of 55 waste banks are extracted from the city. Next, 201 locations of residents
are generated randomly while considering the rationality of each location, i.e., avoiding
locations that could not possibly be the residents’ locations. The remaining information is
generated based on the aforementioned description. Note that the first and second sets and
the real-life instance of MDWCVRPTW-SDO use Manhattan distance, while the third set of
MDWCVRPTW-SDO employs Euclidean distance due to the original rule in [54].

5.2. Parameter Selection

The parameter values for our SA need to be fine-tuned in order to obtain good results.
Four instances were randomly selected from the MDVRPTW benchmark instances for
preliminary testing. The combinations of parameter values tested are shown in the second
column of Table 2. The best performing parameter values found via the preliminary testing
are given in the third column of Table 2. The same parameter-tuning process is conducted
for MDWCVRPTW-SDO, and the best performing parameter values are given in the last
column of Table 2.

Table 2. Parameter values tested and selected.

Parameter Teste Values Final Value for
MDVRPTW

Final Value for
MDWCVRPTW-SDO

T0 5, 10, 15, 20, 50, 75, 100, 125, 150, 175, 200 10 100
α 0.90, 0.93, 0.95, 0.97, 0.99, 0.995 0.97 0.97

Nnon−improving 5, 10, 20, 30, 40, 50, 60 50 50
Iiter 2000, 3000, 4000, 5000, 6000, 7000 6000 6000
ρ 500, 1000, 1500, 2000, 2500, and 3000 1000 1000
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5.3. Performance of SA in Solving MDVRPTW Instances

Since MDWCVRPTW-SDO is a new problem, there are no published results for direct
comparison. Therefore, we assess the performance of our SA using the published results for
MDVRPTW, which is closely related to MDWCVRPTW-SDO. Table 3 presents the results
obtained via SA for solving the MDVRPTW benchmark instances. The first four columns
in Table 3 present the characteristics of each instance. BKS shows the best-known solutions
obtained from Vidal et al. [55]. Three measurement metrics are utilized to evaluate the
performance of SA: the best solution Best, the average solution Average, and the computa-
tional time Time expressed in seconds (s). Gap(%) shows the comparison between BKS and
the best solution obtained by SA. Based on the presented results, the worst gap obtained by
SA is 6.98% with an average gap of 1.45% over all instances. Our proposed SA successfully
improves two new BKSs, pr04 and pr06. The average computational time of SA for solving
an instance is 1312.9 s. In conclusion, the results produced by SA are fairly good with a
reasonable amount of computational time for solving MDVRPTW benchmark instances.

Table 3. Computational results for the MDVRPTW benchmark instances.

Instance n d v BKS
Proposed SA Algorithm Gap (%)

Best * Average ** Time (s)

pr01 48 4 2 1074.12 1074.121 1077.921 54.2 0.00
pr02 96 4 2 1762.21 1774.545 1790.948 260.0 0.70
pr03 144 4 2 2373.65 2396.484 2418.043 646.0 0.96
pr04 192 4 2 2815.11 2790.743 2852.746 1274.7 −0.87
pr05 240 4 2 2962.25 2996.322 3066.076 2059.2 1.15
pr06 288 4 2 3588.78 3560.857 3625.274 3058.2 −0.78
pr07 72 6 2 1418.22 1418.22 1434.091 134.9 0.00
pr08 144 6 2 2096.73 2119.179 2160.61 626.9 1.07
pr09 216 6 2 2712.56 2785.559 2835.66 1358.3 2.69
pr10 288 6 2 3464.65 3578.008 3618.99 2281.6 3.27
pr11 48 4 2 1005.73 1005.729 1015.633 66.1 0.00
pr12 96 4 2 1464.50 1466.202 1499.001 307.0 0.12
pr13 144 4 2 2001.81 2003.778 2066.783 798.8 0.10
pr14 192 4 2 2195.33 2245.461 2283.462 1544.8 2.28
pr15 240 4 2 2433.15 2477.739 2525.207 2477.3 1.83
pr16 288 4 2 2836.67 3034.587 3063.857 3468.3 6.98
pr17 72 6 2 1236.24 1240.022 1247.445 137.6 0.31
pr18 144 6 2 1788.18 1827.068 1861.81 793.0 2.17
pr19 216 6 2 2257.13 2309.472 2342.562 1681.6 2.32
pr20 288 6 2 2984.01 3126.751 3171.569 3230.1 4.78

Average 1312.9 1.45

* Best solution reported from 5 runs of SA. ** Average solution obtained from 5 runs of SA. n: number of customers.
d: number of depots. v: number of vehicles available at every depot. Gap(%): (BestSA − BKS) ∗ 100%/BKS. Bold
value means that SA obtains a new BKS.

5.4. Performance of SA in Solving MDWCVRPTW-SDO Instances

Table 4 shows the results obtained by SA for solving MDWCVRPTW-SDO small and
medium instances. As MDWCVRPTW-SDO is a new problem, we utilize Gurobi to solve
the proposed mathematical model in Section 3, and the results obtained by Gurobi are
used to evaluate the performance of SA. For each optimal solution provided by Gurobi,
SA can also successfully obtain the optimal solution. The quality of the average solution
obtained by SA for each instance is nearly optimal, showing that SA is robust for solving
these MDWCVRPTW-SDO instances. In terms of computational time, SA performs 85.34%
faster compared to Gurobi. We conclude that SA provides high-quality solutions with a
low computational time compared to Gurobi for solving the MDWCVRPTW-SDO small
and medium instances.
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Table 4. Computational results for MDWCVPRTW-SDO small and medium instances.

Ins n d v
Gurobi SA Gap (%)

Obj Time (s) Best Average Time (s) Best Average Time

s1 15 4 2 129,326 47 129,326 129,326 5.2 0.00 0.00 −91.70
s2 15 4 2 68,372 22 68,372 68,372 4.4 0.00 0.00 −83.18
s3 15 4 2 67,362 12 67,362 67,362 4.2 0.00 0.00 −70.00
s4 15 4 2 128,932 17 128,932 128,932 4.9 0.00 0.00 −74.80
s5 15 4 2 128,780 92 128,780 128,780 6.8 0.00 0.00 −93.15
m1 25 6 2 71,378 12 71,378 71,378 16.9 0.00 0.00 12.50
m2 25 6 2 71,193 22 71,193 71,193 17 0.00 0.00 −30.00
m3 25 6 2 72,937 12 72,937 72,937 12.9 0.00 0.00 19.17
m4 25 6 2 71,060 433 71,060 71,060 17.4 0.00 0.00 −96.12
m5 25 6 2 71,800 18 71,800 71,800 11 0.00 0.00 −40.00

Average 0.00 0.00 −54.73

n: number of residents. d: number of waste banks. v: number of vehicles available at each waste bank. Best Gap (%):
(SA_Best − Gurobi_Objective)× 100%/Gurobi_objective. Average Gap (%): (SA_Average − Gurobi_Objective)×
100%/Gurobi_objective. Time Gap (%): (SA_Time − Gurobi_Time)× 100%/Gurobi_Time.

Table 5 presents the performance of SA for solving the last set of MDWCVRPTW-SDO
instances, which are generated from MDVRPTW benchmark instances. Gurobi is not utilized
for solving the last set since our preliminary results indicate that Gurobi requires a significant
computational time compared to SA. The first observation is that our SA significantly improves
the quality of the initial solution, i.e., it improves the average quality of initial solutions from
650,295.99 to 397,018.94. The second observation is that the average quality of solutions
provided by SA is reasonably robust. In particular, the average for all best solutions is
397,018.94, while the overall average of all solutions is 410,572.23. In other words, the average
deviation is only 3.41%. In terms of computational time, SA averagely requires 631.52 s to
solve a big instance of MDWCVRPTW-SDO. Based on these observations and the comparative
results with Gurobi, we conclude that our SA provides high-quality solutions with reasonable
computational times for solving MDWCVRPTW-SDO instances.

Table 5. Computational results for large MDWCVPRTW-SDO instances.

Instance n d v
SA

Initial Best Average Time (s)

MDWCVRPTW_SDO_pr01 48 4 2 331,194.83 199,720.08 199,736.68 24.3
MDWCVRPTW_SDO_pr02 96 4 2 471,721.37 332,469.27 332,696.90 74.3
MDWCVRPTW_SDO_pr03 144 4 2 870,308.97 467,736.97 503,103.02 329.2
MDWCVRPTW_SDO_pr04 192 4 2 803,108.55 464,286.97 477,992.41 521.6
MDWCVRPTW_SDO_pr05 240 4 2 864,176.29 591,671.89 593,879.61 1192.6
MDWCVRPTW_SDO_pr06 288 4 2 682,477.53 598,975.58 643,524.65 1544.0
MDWCVRPTW_SDO_pr07 72 6 2 332,900.67 198,784.77 234,381.55 99.0
MDWCVRPTW_SDO_pr08 144 6 2 603,460.83 334,233.80 346,211.91 190.8
MDWCVRPTW_SDO_pr09 216 6 2 938,021.71 591,889.55 605,912.83 725.6
MDWCVRPTW_SDO_pr10 288 6 2 1,061,157.9 600,976.26 645,443.37 1489.3
MDWCVRPTW_SDO_pr11 48 4 2 198,322.01 133,398.76 133,426.96 42.4
MDWCVRPTW_SDO_pr12 96 4 2 464,293.91 265,079.12 265,224.42 190.8
MDWCVRPTW_SDO_pr13 144 4 2 538,058.51 331,927.92 332,424.75 376.6
MDWCVRPTW_SDO_pr14 192 4 2 599,682.84 396,890.35 397,530.05 240.8
MDWCVRPTW_SDO_pr15 240 4 2 66,1254.9 457,090.62 457,703.39 1419
MDWCVRPTW_SDO_pr16 288 4 2 1,124,544.3 588,035.03 590,577.36 1411.6
MDWCVRPTW_SDO_pr17 72 6 2 332,705.98 199,380.98 199,483.78 114.4
MDWCVRPTW_SDO_pr18 144 6 2 466,992.51 263,392.2 264,462.25 227.2
MDWCVRPTW_SDO_pr19 216 6 2 668,678.8 397,814.56 411,585.50 745.3
MDWCVRPTW_SDO_pr20 288 6 2 992,857.46 526,624.08 576,143.29 1671.6

Average 650,295.99 397,018.94 410,572.23 631.5



Mathematics 2024, 12, 501 16 of 20

5.5. Case Study: Waste Banks in Yogyakarta City, Indonesia

This section provides insights by (1) evaluating the change in parameters in MDWCVRPTW-
SDO and (2) analyzing the impact of the self-delivery option in the system, which provides
managerial insights for decision makers. Sensitivity analysis is performed by using the real-life
instance generated on the map of Yogyakarta City, Indonesia. Three parameters are involved
and each parameter has two values (scenarios), i.e., high and low. The parameters are (1) number
of waste banks (75 and 44), (2) multiplier for the distance traveled by a resident to a waste bank
(0.5 and 0.3), and (3) multiplier for the load carried by a resident to a waste bank (0.5 and 0.3).
In total, there are six scenarios. Table 6 contains the results obtained by changing the parameter
values of MDWCVRPTW-SDO. Then, to analyze the impact of the self-delivery option, we
generated another five scenarios from the real-life instances, RC-1 to RC-5, as shown in Table 7,
each with a different distribution of resident types. SA is used to solve all scenarios, and the
reported objective values are based on the best solutions obtained by SA.

Table 6. Results for changing the parameters of MDWCVRPTW-SDO real-life instances.

Scenario Routing Cost Compensation Objective Gap NFHP NFSD

Original 385,290 55,164 440,454 0.00 8 55
1 385,050 55,490 440,540 0.02 1 62
2 385,080 55,481 440,561 0.02 9 54
3 385,380 55,881 441,261 0.18 4 59
4 385,200 55,188 440,388 −0.01 1 62
5 386,130 68,962 455,092 3.32 5 58
6 384,810 41,931 426,741 −3.11 7 56

NFHP: Number of flexible residents assigned as home pick-up residents. NFSD : Number of flexible residents
assigned as self-delivery residents.

Table 7. Five different distributions of residents of each type for the MDWCVRPTW-SDO real-life instance.

Scenario
Resident Total

Objective
Routing Cost Compensation Utilized

VehiclesType 1 Type 2 Type 3

RC-1 201 0 0 1,326,195 26,191 0 21
RC-2 67 67 67 677,570 14,400 50,377 7
RC-3 101 50 50 498,112 19,680 38,840 10
RC-4 50 101 50 382,678 14,280 58,873 5
RC-5 50 50 101 379,641 11,610 58,506 5

For the number of waste banks (Scenarios 1 and 2), there is no significant change in the
objective value, as shown in Table 6. However, from the practical point of view, the higher
the number of waste banks, the higher the operational cost incurred inside the facility. Thus,
the local authority needs to reconsider the appropriate number of waste banks opened in
the city. In addition, when the number of waste banks is low (Scenario 3), the number of
type 3 residents who perform the self-delivery option is lower compared to the original
scenario. This implies that the self-delivery option is less beneficial when the number of
waste banks is low. For the multipliers that determine the compensation for residents
who perform the self-delivery option (Scenarios 5 and 6), the higher the multipliers are,
the higher the objective values are. This phenomenon shows that the decision makers
should carefully determine the compensation policy, because it will significantly affect the
operational cost of MDWCVRPTW-SDO.

We are also interested in the potential benefits of introducing the self-delivery op-
tion. We suspect that the number of residents of different types will result in different
magnitudes of benefits. Thus, we attempt to present potential benefits by modifying the
real case instance. Table 7 shows the information related to the residents of each type
for each scenario and three measurement metrics: routing cost collected from all routes,
compensations collected from all residents who deliver their waste to waste banks, and
number of utilized vehicles to serve the remaining residents.
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Before introducing the self-delivery option, all residents must be visited within their
predetermined time windows, as shown in the information of RC-1. The routing cost is the
highest one among all scenarios, and the number of utilized vehicles is significantly higher
compared to vehicles utilized in other scenarios. This means that, without the self-delivery
option, a significantly high investment in vehicles by the local authority would be made.
When the self-delivery option is introduced and four other scenarios are generated, RC-2
to RC-5, the number of utilized vehicles drops significantly. The highest number of utilized
vehicles among these scenarios is 10 from RC-3. The implication shown here is that the
higher the number of type 1 residents, the higher the number of vehicles required. Thus,
the local authority needs to gain the interest of residents to shift from selecting the home-
delivery option to either the self-delivery option or flexible delivery. We also analyze the
distribution of residents of each type. Based on RC-3 to RC-5, the higher the number of
type 3 residents is, the lower the total objective is. This phenomenon occurs because the
flexibility of a type 3 resident is higher compared to residents of other types, resulting in
a wider solution space for the system. Consequently, chances of obtaining a lower total
objective are higher.

6. Conclusion and Future Research

This research introduces MDWCVRPTW-SDO as a new variant of the waste collec-
tion vehicle routing problem. A mixed integer linear programming model is formulated,
and SA is developed to solve the problem. A set of newly generated instances and a
real-life instance based on Yogyakarta City, Indonesia, are proposed for investigating
MDWCVRPTW-SDO. The performance of SA is evaluated by solving MDVRPTW, which is
a special case of MDWCVRPTW-SDO. For the MDVRPTW benchmark instances proposed
by Cordeau et al. [54], the average gap between the best solutions obtained by SA and the
best-known solutions is 1.45% with two new best-known solutions found. When solving
the newly generated MDWCVRPTW-SDO instances, SA can obtain optimal solutions for
all small and medium instances with significantly lower computational time compared
to Gurobi. Moreover, SA also shows its robustness in terms of solution quality in solving
the MDWCVRPTW-SDO instances. Finally, a case study obtained from Yogyakarta City,
Indonesia, is provided, and we derive several insightful results for the local authorities;
i.e., (1) the number of available waste banks and (2) the compensation paid to residents
who select or are assigned to the self-delivery option are critical to ensure the success of
the implementation. Moreover, the amount of benefits, like cost savings, obtained from
implementing the self-delivery option significantly depends on the distribution of residents
of each type. Thus, the challenge for the local authorities to successfully obtain benefits
from the system based on MDWCVRPTW-SDO is to shift the interest of home pick-up
(type 1) residents into self-delivery (type 2) or even flexible (type 3) residents.

Future research may consider heterogenous vehicles existing at every waste bank.
Another interesting avenue is considering the strategic aspect of this problem, leading
to a network design optimization, which may be beneficial when other regions or other
countries plan to adopt a waste management system such as that defined in MDWCVRPTW-
SDO. A multi-period extension can be another topic worth investigating where each
resident is visited under a unique frequency and pattern. Finally, additional objectives
related to social benefits or environmental concerns may be considered in future research.
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