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Abstract: In the dynamic landscape of healthcare, decision support systems (DSS) confront contin-
uous challenges, especially in the era of big data. Background: This study extends a Q&A-based
medical DSS framework that utilizes semantic technologies for disease inference based on a patient’s
symptoms. The framework inputs “evidential symptoms” (symptoms experienced by the patient)
and outputs a ranked list of hypotheses, comprising an ordered pair of a disease and a characteristic
symptom. Our focus is on advancing the framework by introducing ontology integration to semanti-
cally enrich its knowledgebase and refine its outcomes, offering three key advantages: Propagation,
Hierarchy, and Range Expansion of symptoms. Additionally, we assessed the performance of the fully
implemented framework in Python. During the evaluation, we inspected the framework’s ability
to infer the patient’s disease from a subset of reported symptoms and evaluated its effectiveness in
ranking it prominently among hypothesized diseases. Methods: We conducted the expansion using
dedicated algorithms. For the evaluation process, we defined various metrics and applied them
across our knowledge base, encompassing 410 patient records and 41 different diseases. Results:
We presented the outcomes of the expansion on a toy problem, highlighting the three expansion
advantages. Furthermore, the evaluation process yielded promising results: With a third of patient
symptoms as evidence, the framework successfully identified the disease in 94% of cases, achieving a
top-ranking accuracy of 73%. Conclusions: These results underscore the robust capabilities of the
framework, and the enrichment enhances the efficiency of medical experts, enabling them to provide
more precise and informed diagnostics.

Keywords: knowledge graph; semantic reasoning; medical diagnostic; decision support systems;
semantic technology

MSC: 68T35

1. Introduction

The Industry 4.0 Standard incorporates automation and data exchange technologies
across various domains, including cloud computing, big data, and database design. These
information and communication technologies are reshaping services and production, par-
ticularly in the health domain. The integration of Internet of Things, Cloud Computing,
and big data is revolutionizing eHealth, giving rise to Healthcare 4.0 [1,2]. Healthcare
4.0 addresses the significant challenges of expanding, virtualizing, and facilitating new
healthcare processes such as home care, precision medicine, and personalized/remote
pharmaceutical treatments [3]. Healthcare poses a critical social and economic challenge
globally, with administrators, clinicians, researchers, and practitioners facing increasing
pressure from rising expectations in both the public and private sectors [1]. Healthcare 4.0
reflects the trend of offering technological solutions to challenges posed by the medical
realm [4]. Specifically, we are tasked with leveraging semantic technologies grounded in
big data and advanced algorithms [5].
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In our ongoing research [6] within the medical domain, we are concentrating on
medical decision support systems (MDSS) characterized by interactions between a medical
expert and a patient. The goal is to empower the medical expert to assist the patient in
addressing specific issues she faces [7]. These interactions consist of a series of iterations,
each involving a question posed by the medical expert and an answer provided by the
patient [8,9]. Each iteration advances the medical expert closer to a decision regarding
the patient’s issue, usually, the decision will be formulated as a medical diagnosis. The
nature of these interactions tends to be limited, often in terms of time, which may impact
the ability to provide optimal diagnoses.

We utilize semantic technology to propose a framework that supports the above
process: in each iteration, it suggests a question concerning a symptom the patient is
experiencing. In the final round, it provides a list of ranked hypotheses (ordered pairs of a
disease and a symptom indicating it) according to the likelihood the disease is indeed the
patient’s diagnosis. The framework is based on a knowledge graph (KG for short), which
has gained increasing popularity as a means to represent knowledge [10]. The KG is a
natural method for depicting interconnected data [11–13], consisting of nodes categorized as
symptoms or diseases, connected by edges linking a symptom to a disease if it characterizes
it. On top of the KG, we formulated a set of interactive algorithms that employ both the
knowledge graph and initial input from the patient to propose pertinent questions.

In this paper, we detail an expansion of the framework by enhancing the KG with
semantic knowledge extracted from an ontology of symptoms (SYMP) [14] and their
relationships. Relevant elements from the ontology, especially hierarchical structures, were
integrated into the KG. The enhanced KG has expanded symptom representations and a
hierarchical structure, offering several benefits for the inference process. These include a
broader set of recommended questions for the medical expert in each iteration with the
patient and provides additional evidence of symptoms [15]. We demonstrated the extension
via toy problem and highlighted the advantages it brings.

The entire framework was implemented in Python, and we conducted various tests
to assess its output and its effectiveness. Primarily, we were interested in knowing to
what extent the framework can infer the patient’s disease, as a function of the number of
evidence symptoms (i.e., symptoms that the patient experiences). In particular, we were
interested in knowing if it succeeds in inferring where the patient’s disease is located within
the list of hypotheses. Perfect success is defined as inferring the patient’s illness as the
first hypothesis. The results were very encouraging. For example, when we provided one
third of the patient’s symptoms as evidence symptoms, in 94% of cases the framework
succeeded in including the patient’s disease, and in 73% of those it was the top-ranked
hypothesis. An additional evaluation test examined the number of iterations required
to find a high-ranking hypothesis. As expected, a small number of evidential symptoms
entails more iterations of the framework.

The rest of the paper is organized as follows: Section 2 provides background and a
literature review. In Section 3, we offer a brief overview of the framework introduced in our
previous study, and in Section 4, we detail the evaluation of the framework. Section 5 elab-
orates on KG enrichment, covering the algorithms used, their implementation, effects, and
benefits. Section 6 concludes the study with a discussion that also addresses future work.

2. Background and Prior Work

In this section, we provide a concise background on ontologies and semantic technolo-
gies (Section 2.1). We also review prior related works that share similar objectives with this
research and utilize similar tools and technologies.
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2.1. Background
2.1.1. Ontology

An ontology, as defined by T.R. Gruber, serves as an accurate and precise specification
of a conceptualization that is machine-interpretable [16]. This definition encompasses the
explicit detailing of entities or concepts, their attributes, and the relationships existing
between them within a particular domain. Essentially, ontology provides a shared vocabu-
lary for both humans and machines, facilitating seamless communication and information
exchange [17].

The development of ontologies holds paramount importance for several reasons [18].
Firstly, it plays a pivotal role in fostering a unified understanding of information structures
among individuals and software agents [19]. By establishing a standardized framework,
ontologies enable a more coherent and consistent interpretation of data across diverse
contexts. Secondly, ontologies contribute significantly to the efficient reuse of domain
knowledge [20]. By encapsulating core concepts, attributes, and relationships within a
particular field, ontologies provide a reusable foundation, streamlining the development
process and ensuring consistency and accuracy in applying domain knowledge. Lastly,
ontologies are instrumental in the analysis of domain knowledge [21]. They serve as pow-
erful tools for comprehending the intricacies of a given subject area, allowing for a deeper
exploration of relationships between entities and a more nuanced understanding of the
underlying structure. This analytical aspect aids researchers, developers, and practitioners
in making informed decisions and advancements within their respective domains.

2.1.2. Semantic Technology and Graph Reasoning

Knowledge graphs (KG) encode information by transforming data into a coded format,
specifically by organizing relationships between entities into graph structures. KGs, also
referred to as semantic graphs, capture the interest of both academic and industrial re-
searchers across a range of fields that share the common need to represent knowledge [22].
KGs possess the characteristic of delivering semantically structured information. This
attribute empowers KGs to provide innovative solutions for significant tasks, including
addressing queries [23], developing recommendation systems [24], and enhancing informa-
tion retrieval [25]. Knowledge graphs are also regarded as holding considerable potential
for advancing the capabilities of intelligent machines, representing a promising avenue for
developing more sophisticated technology.

2.2. Prior Works

A range of clinical decision support systems (CDSS) have been developed to aid
medical professionals in diagnosing diseases based on patients’ symptoms. Jiang et al. [26]
proposed a three-layer knowledge base model that improved the accuracy of disease
predictions. Silva et ai. [27] utilized a Bayesian framework to construct a web-based system
with high detection accuracy for general and complex diseases. Rahaman [28] focused on
diabetes diagnosis, creating a user-interactive system based on symptoms, signs, and risk
factors. Dong [29] et al. suggests employing a CDSS to enhance the precision of diagnosing
headache disorders, while Tandra and his colleagues [30] propose a fuzzy-neuro-based
CDSS for disease diagnosis.

In recent years, with the widespread adoption of semantic technology across various
content domains, there has been a natural demand to extend its application to the medical
field. Researchers employ semantic technologies in the realm of medicine to offer novel
solutions for diverse needs and enhance existing responses [31]. In particular, we focus on
medical diagnosis/decision support systems, whose primary goal, according to Moreira
and his colleagues [32], is “to provide relevant data to the medical experts where and when
it is needed”. There has been a rise in new diagnostic and support systems for medical
decision making, utilizing knowledge graphs and/or ontologies, or enhancing existing
systems by applying semantic web techniques such as ontologies/NLP [33].
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Riaño and his colleagues [34] developed an ontology-powered decision support tool
that provides personalized guidelines and recommendations tailored to the specific health
needs of complex chronic patients to assist doctors at the point of care. Another work [35]
utilized automated reasoning with an ontology knowledge base to generate diagnostics
insights and care recommendations that aid mental health professionals in making data-
driven clinical decisions. Santos and colleagues [36] introduced CLINPRO—a knowledge-
graph-based interpreter for clinical proteomics data. CLINPRO enables the mapping of
proteomic observations to tissue and disease contexts to derive insights that explain mecha-
nisms underlying patient disease states. According to Dissanayake and his colleagues [37],
who conducted a systematic review on the utilization of clinical reasoning ontologies to
enhance the capabilities of CDSS, the design and implementation of more sophisticated and
context-aware CDSSs contributed to advancements in healthcare informatics. The research
conducted by Shanavas et al. [38] explores the utilization of ontologies to enhance concept
graphs, providing insights into how this approach can contribute to more effective medical
document classification.

We selected eight studies (including our own) that share a similar objective to ours
(i.e., providing assistance and recommendations for patient diagnosis) and conducted a
comparative analysis (see Table 1). The table comprises 11 columns. Column 3 offers a con-
cise description of each study, while column 4 outlines the input for the system/framework.
Column 5 details the interactions between the patient and the medical expert, occasionally
involving multiple iterations. Column 6 describes the main technologies employed, column
7 specifies the output, and column 8 provides insights into the implementation methods.
Columns 9 and 10 present details about the sample size used for assessment, and column
11 covers the evaluation method along with the key results.

The optimal results were observed when the system was rule-based. However, such
systems are, by nature, narrower in the range of explored diseases, and lack the dynamism
seen in systems like ours, which dynamically respond to each interaction between the
patient and the medical expert.

To conclude, some studies leverage semantic technologies to enhance the process of
medical decision making. However, the number of works utilizing knowledge graphs in
conjunction with ontologies, and exploiting their integration, is still limited.
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Table 1. Comparative analysis studies aiming to assist medical experts to infer a patient’s disease.

REF Description Input Inter
Active?

Technologies Framework/
System Output

Implementation
Details

Sample Size Evaluation Metric (M) and
Results (R)Cases Diseases

1 [6]

Q&A-based medical decision
support framework utilizing
semantic technologies to
infer diseases

Symptoms Yes
Knowledge
graph,
Ontology

List of ordered pairs of
possible diseases with
their indicated
symptoms, sorted by
relevance

Neo4j Graph Database
(version 5), Python 410 41

M: Presence and position of the
true disease within the ranked
list of potential diseases.
R: In 94% of cases, the real
disease is on the list. In 73% it is
top ranked.

2 [26]

CDSS utilizing a three-layer
KB model
(disease-symptom-property),
to calculate diseases
probability

Symptoms,
Basic info (e.g., sex,
age)

Yes Bayesian
classifier

List of possible
diseases and their
related probabilities

C# language, SQL
Server, IIS
(versions not specified)

50 10

M: Probability ranging from 80%
to 100% of correctly identifying
the true disease.
R: Overall, 14% of the cases met
the criteria.

3 [27]

Bayesian-based system to
identify diseases based on
symptoms and medical test
results

Symptoms,
Medical lab test
results

No Bayesian
classifier

The disease with the
highest probability

Web-based
programming
(version not specified)

100 15

M: Probability of 100% of
correctly identifying the true
disease.
R: Ten general diseases:
71%–99%,
Five complex diseases: 71%–83%

4 [28] CDSS for Diabetes diagnosis
Symptoms,
Signs,
Risk factor

Yes
Rule-Based
system
(SCARB)

One of five possible
responses: “Not
Diabetic” to “Very high
chance of Diabetic”

Netbean’s GUI
(version 7.1),
MySQL server

NA 1

NA: No evaluation was
conducted, presumably because
the system implemented decision
rules in accordance with a
medical protocol

5 [29]
Guideline based CDSS for
diagnosing primary
headache disorders

Symptoms,
Clinical info (e.g.,
location, duration,
attack frequency,
severity)

No
Ontology,
Rule-based
engine

The disease with the
highest probability

SAGE 1,
Rule generator
(computer program)
(verion not specified)

543 11

M: Probability of 100% of
correctly identifying the true
disease.
R: Ranged from 60% for PTTH 2

disease to 100% for MOH 2

disease.

6 [30]
CDSS for diagnostic
decisions related to common
internal diseases

Symptoms,
Severity No

Neuro-fuzzy
technique,
Rule-based
system

Most probable diseases
and relevant lab tests
and medications

Sugeno-Takagi
inference system,
MySQL server
(verion not specified)

180 8

NA: No evaluation measures
were reported. While the authors
mentioned that the system
yielded accurate results, no
specific details were provided
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Table 1. Cont.

REF Description Input Inter
Active?

Technologies Framework/
System Output

Implementation
Details

Sample Size Evaluation Metric (M) and
Results (R)Cases Diseases

7 [34]

Ontology-based
personalization processes to
generate individualized
ontology and treatment plan
for chronically ill patients

Symptoms,
Signs,
Diagnoses

No
Ontology
Inference
Engine,

Detailed medical and
social description and
intervention plan for a
single patient

Protégé 3,
Jena 3,
SDA Lab tool 3,
K4CARE proj 3

wrapper system
(verions not specified)

23 4

M: Personalization of the
ontology to a single disease.
R: Personalized ontologies
contain 8.03%, 5.46%, 9.77%, and
10.84% of the case profile
ontology classes (for 4 diseases).

8 [35]
ontology-based system for
evidence-based inferences in
the mental health domain

Symptoms No
Ontology
Inference Eng,
RDF DB

Upon a SPARQL query,
returns data such as
prevention
recommendations

Protégé,
Jena,
SPARQL
(verions not specified)

72 1

NA: The authors presented the
outcomes of executing SPARQL
queries; however, they did not
furnish details regarding the
success ratio.

1 SAGE: standards-based sharable active guideline environment; 2 PTTH: probable tension-type headache, MOH: medication overuse headache; 3 All tools are described and referred in
the ref [34].
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3. The Framework

In this section, we provide a brief overview of the framework introduced in our
previous study [6], outlining its constituent algorithms and the interplay between them.

Recall, we aim to engage in collaborative decision making. This involves an ongoing
exchange (as limited as possible) between a domain expert and an end-user, where they
share questions and answers. The framework contributes by proposing questions for the
expert to ask the end-user. The progression of the decision making process hinges on the
responses provided by the end-user.

As we focus on the medical domain, the questions and answers should relate to
symptoms and diseases. Moreover, the ultimate objective of this process is to assist the
medical expert, in arriving at a diagnosis—delivering an explanation for a specific set of
symptoms characterizing the end-user, who is a patient in this case, through the analysis of
available data in the KG. “Does the patient display a specific symptom?” is an example
of a question that may emerge during the interaction between the medical expert and the
patient. The output of the framework is a list of ranked hypotheses, each hypothesis is an
ordered pair of a disease and a symptom indicating it. Therefore, our jargon contains the
following terms: symptoms, diseases, and hypotheses.

The framework comprises two key segments: the initial phase, known as pre-processing,
executed during the framework launch, and the subsequent phase, termed processing,
activated with each new request.

The pre-processing phase involves creating a knowledge graph (KG) from raw data
taken from Kaggle [39]. The dataset comprises patient records, where each record represents
one patient. The records include the diagnosed disease for each patient, as well as the
associated symptoms reported. In total, the dataset encompasses 41 distinct diseases
and 130 distinct symptoms. Certain symptoms appear only once, indicating that they
characterize a single disease, while other symptoms occur multiple times, suggesting
they may be characteristic of several diseases. The dataset enables the exploration of the
relationships between diseases and symptoms.

The KG nodes are the symptoms and the diseases, and the KG edges are the relations
between them (if a symptom indicates a disease, there is an edge between these two nodes).
We then use the Louvain hierarchical clustering algorithm [40] on the KG to find clusters of
diseases (named communities) that have similar symptoms (Algorithm 1 in [6]).

The processing phase is conducted whenever a new medical expert-patient interaction
starts, hence, a new patient presents a set of symptoms (named evidence symptoms or ES
for short). During the interaction, the framework executes a set of inference algorithms,
which use the communities to determine which diseases are compatible with the symptoms
reported by the patient. In particular, Algorithm 2 in [6] finds the most probable diseases
(i.e., the possible diseases that are compatible with evidence symptoms); Algorithm 3 in [6]
repeatedly, as needed, infers and suggests a question to the medical expert (i.e., a symptom)
that indicates the most probable community to include the patient’s disease; finally, the
processing phase concludes by inferring and outputting, through Algorithm 4 in [6], a list
of hypotheses (i.e., ordered pairs of a disease and a symptom indicating it) that the patient
might have, sorted by relevance.

Figure 1 illustrates the interactions within the framework among the patient, the
medical expert, and the KG, during the processing phase.
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Figure 1. The interactions within the framework among the patient, the medical expert, and the KG
during the processing phase.

4. Framework Evaluation

In this section, we review the implementation details of the framework, describe the
dataset we used to evaluate the framework’s capabilities, present the evaluation measures
that we defined, and the outcome of running these measures on the dataset. We focus
on detecting the patient’s disease, particularly on where this disease is positioned in the
ranked list of possible diseases, output by the framework. The objective is for the true
disease to be positioned as high as possible. We assess this capability across three different
data segments, as explained below.

4.1. Implementation Details

The framework implementation includes two main parts. The first one is the KG
construction, as described in Section 3. The KG was constructed using Neo4j Graph Database,
Version 5. The second part includes the framework algorithms, which were developed in
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Python. To apply the algorithms on the KG, the Neo4j Python Driver (https://neo4j.com/
developer/python/, accessed on 30 January 2024) was used.

4.2. DataSet Description

To evaluate the developed framework, we used a dataset [39] of 410 patient records.
Each record referred to one patient and includes the name of the disease the patient
was diagnosed with and the symptoms the patient was experiencing (between 3 and
17 symptoms).

4.3. Applying the Framework on the Dataset

For each patient record, we performed the following: we input a subset of the patient’s
symptoms as evidence symptoms (i.e., the set of symptoms the patient experiences and
has reported). Then, we executed the processing phase, which output a list of hypotheses.
Finally, we evaluated these hypotheses against the real disease diagnosed for the patient,
using its other symptoms for the interaction phase (as explained in Section 3, Algorithm
3 in [6]). The subset of the patient’s symptoms was determined using a threshold variable
x, which was set to be a different fraction at each run ( x = 1

3 , 1
2 , 2

3

)
. In this way, we were

able to compare the influence of the evidence symptoms group on the diagnosis detection,
and the influence on the number of iterations until reaching the right diagnostic. The next
subsection describes the evaluation results, for each one of the thresholds.

4.4. Evaluation Measures

As stated, we assess the performance of the proposed framework, focusing on its
capability to detect the patient’s disease—particularly its position in the ranked list of
potential diseases generated by the framework. The goal is to have the true disease ranked
as high as possible. We evaluate this capability in three distinct segments (i.e., 1

3 , 1
2 , 2

3

)
, as

detailed in the previous subsection.
Let H be the hypotheses output list of the framework. Recall that H is sorted by

the hypothesis’s relevance to the patient. Let dgt(p) be the disease diagnosed for the
patient p (the ground truth). Let rank(dgt(p), H) be the position of the disease dgt(p) in
H (rank(dgt(p), H) = ∞ if the disease does not exist in H). Note that small values of rank
indicate a better prediction of the framework. Informally, we are interested in the position
of the true patient’s disease in the list of hypotheses output by the framework. The optimal
scenario is when the true disease is ranked at the top of the list of hypotheses.

Consider the following example of a patient’s record, and the rank achieved by
applying the framework on a 1

3 of its symptoms. The patient’s record is: [Urinary tract
infection; burning micturition, foul smell of urine, continuous feel of urine]. The first term
(Urinary tract infection) is the disease of the patient, and the other three terms are three
symptoms the patient has experienced. For the evaluation test, with a threshold of a 1

3 ,
(i.e., 1

3 of three symptoms is one symptom), we randomly chose the burning micturition
symptom to serve as evidence. After inserting it as an input, the framework outputs
the following ranked list of six hypotheses: {(Urinary tract infection, continuous feel of
urine); (Urinary tract infection, bladder discomfort); (Drug Reaction, stomach pain); (Drug
Reaction, spotting urination); (Drug Reaction, itching), (Drug Reaction, skin rash)}. Note
that in this test case, the patient’s true disease is urinary tract infection, which is positioned
as the first hypothesis in the list, i.e., the rank is defined as 1, (the top rank), which is the
best rank.

Our assessments include several steps. First, for every patient p, we checked where
the patient’s diagnosis (dgt(p)) is located within this list of hypotheses (that is, weather
rank(dgt(p), H) ̸= ∞). Out of 410 patients, by setting x = 1

3 (that is, having only a third of
the patient symptoms as evidence symptoms) for only 23 patients, the list of hypotheses
did not include the patient’s diagnosis, i.e., in 94% of cases, the framework succeeded in
inferring and including the patient’s true disease in the output ranked list. With a softer

https://neo4j.com/developer/python/
https://neo4j.com/developer/python/


Mathematics 2024, 12, 502 10 of 21

threshold (x = 1
2 ), for only 10 patients out of 410, the list of hypotheses did not include the

patient’s diagnosis (i.e., 98% success). Then, we examined how many patients there are for
each rank (that is, a histogram of the patients’ rank). The results are presented in Figure 2.
Note that even with a 1

3 of the patient’s symptoms, the framework infers the patient’s true
disease as the top ranked hypothesis in more than 73% of the patients.
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Figure 3 presents the rank of each patient, for all three thresholds (x = 1
3 , 1

2 , 2
3 ). As

expected, when applying a smaller threshold, it is harder to detect the patient’s disease,
and the rank of the patient is smaller overall. In practice, it means that receiving the same
diagnosis will take longer.
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However, as illustrated in Figure 3, this is not the case for patients 201–211. Upon
closer examination, we discovered that these patients have Hepatitis B, while the frame-
work outputs Hepatitis E as the primary diagnosis. Upon a more in-depth analysis of
the knowledge graph (refer to Figure 4) for these two diseases, it becomes evident that
examining them is challenging due to the shared symptoms. In such cases, additional
knowledge is necessary, such as ranking the symptoms based on their level of indication, if
this information is available.
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We also examined the number of hypotheses received in each of the three thresh-
olds. The results are presented in Figure 5. Note that the number of hypotheses for each
patient is similar when applying different thresholds, and as expected there are more
hypotheses when using fewer evidence symptoms (ES) since there are more symptoms left
as unknowns.
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Finally, we examined the number of iterations required to find a high-ranking hy-
pothesis, for each threshold. As seen in Figure 6, and as expected, when inputting a small
number of evidence symptoms to the framework, achieving improved ranking results
demands more iterations.
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5. Enriching the Framework with Semantic Technology

In this section, we introduce semantic expansion, its associated algorithms, and the
additional value it offers. Specifically, Section 5.1 delves into the Enrichment Algorithms,
while Section 5.2 provide the implementation details of these algorithms. In Section 5.3,
we proceed to explore the added value of KG enrichment, leading to the creation of
the enhanced KG, and conclude with a description of a toy problem to illustrate the
points raised.

Let KG = (V, E) be a directed graph, which is defined as follows. Let V = D
⋃

S be
the set of nodes, where D is the set of diseases and S is the set of symptoms. The edges of
the graph are defined as follows: E = {(s, d) ∈ E|symptom s ∈ Sindicates diseased ∈ D},
that is, there is an edge from a symptom s to disease d if s might indicate d.

The KG was constructed based on a historical examination of relevant domain experts,
and it serves as data-driven knowledge (Figure 7A illustrates an example of such a KG). The
knowledge contained within the KG is limited in nature and lacks the classic hierarchical
structure of symptoms and diseases. Integrating ontology elements into the KG expands it
and semantically enriches the KG. This integration facilitates the inference of new symptoms
as evidence, leading to the deduction of additional relevant diseases for the domain expert.
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structured hierarchically Ontology, and (C) A illustrates an example of an enhanced KG.

5.1. Knowledge Graph Enhancement

The first step for enhancing the KG is to explore ontologies with relevant domains, and
then integrate them. The second step is to use the enhanced KG to improve the inference
in it and by that improve the framework. In this research, we chose to use the Symptoms
Ontology (SYMP) [14] since it contains terms that are relevant to the KG domain and can
naturally enrich it. The SYMP ontology is structured hierarchically, comprising nodes and
edges. Each node represents a symptom, and each edge signifies the inheritance relation
(ISA) between two symptoms (refer to Figure 7B for an example).

The SYMP ontology was integrated into the KG according to the following algorithms.
The first Algorithm 1 adds the relevant symptom nodes to the KG. The second Algorithm 2
adds ISA relations to the KG.

Algorithm 1: Add Symptom Nodes to the KG

Input: KG, SYMP
Output: KG
Algorithm:

For all edges e = (si, sj) in SYMP, such that sj ∈ KG and si /∈ KG
Add si as a symptom node to KG.

Algorithm 2: Add ISA Relations between Symptoms in the KG, according to the Ontology

Input: KG, SYMP
Output: enhanced KG
Algorithm:

For all edges e = (si, sj) in SYMP, such that sj ∈ KG and si ∈ KG
Add the edge (si, sj) to KG, labeled ISA.



Mathematics 2024, 12, 502 14 of 21

Figure 7 illustrates an example of integrating an ontology (B) into an existing KG (A),
generating a semantic technology platform (C), which we named enhanced KG. Note that
Figure 7D defines the legend for the symbols used in Figure 7A–C.

The resulting KG, that is, the enhanced KG, contains three symptom nodes:

(i) An “original” KG symptom node, named as KG symptom node: these nodes appeared
in the KG before the enhancement, and are directly connected to disease nodes, via
indicates relation (for example, see node s1 in Figure 7C).

(ii) New ontological symptom node, named ontology symptom node: these are SYMP ontol-
ogy nodes, which were added by Algorithm 1. These nodes are directly connected to
the KG symptom node via ISA relation, according to Algorithm 2 rules (for example,
see node s11 in Figure 7C).

(iii) A node that is both “original” and ontological, named a hybrid symptom node: these
nodes are directly connected to a KG disease node (via indicates relation) and to some
other hybrid node or ontology symptom node (via ISA relation). For example, see node
s2 in Figure 7C.

Similarly, the enhanced KG has two types of relations:

(i) An edge between a KG node to a disease node it indicates, named as KG edge.
(ii) An edge between the ontology symptom node or hybrid node to its parent node

(which can be an ontology symptom node or hybrid node), named an ontology edge.

Figure 7C ilustrures both types.

5.2. Implementing Algorithms 1 and 2

In this subsection, we present an overview of the stage involving the identification of
matching symptoms, a crucial step for implementing Algorithms 1 and 2 (as discussed in
the previous subsection) responsible for generating the enhanced KG.

5.2.1. Overview

A necessary step in implementing Algorithm 1 and Algorithm 2 is identifying the
symptoms, denoted as s, which exist in both the KG and SYMP (as detailed in the next
subsection). Subsequently, the sub-tree rooted by s is integrated into the KG. For instance,
the KG symptom cough also exists in SYMP (as cough). Consequently, the subtree rooted
by cough was integrated into the KG (nodes integrated by Algorithm 1, and edges by
Algorithm 2). Figure 8, which is a Neo4j screenshot, illustrates the creation of the cough
symptom node along with its symptom of edge pointing to GERD disease and with its
descendant (e.g., dry cough ontology node), which is connected via ISA edge to its parent.
Note that dry cough ontology node has a descendant as well, namely the dry hacking cough
ontology node. The associated Neo4j commands establishing these nodes and edges can be
found in Appendix A.
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5.2.2. Identifying Matching Symptoms

This step arises when natural language is involved since there is more than one way to
describe a symptom. To detect matching symptoms, we examined all 128 symptoms within
the KG, such that for each symptom, we conducted a search using different similarity
methods (substring, Levenshtein distance, exploring synonymous) in the SYMP ontology.
For some instances, the match was one-to-one, meaning that in both the KG and the
SYMP, the symptom had the same name (e.g., in the KG, the symptom was named cough
identical to the ontology symptom named cough). In other cases, the symptom names
were similar but not identical (e.g., breathlessness in the KG and shortness of breath in the
ontology). More rarely, the names were entirely different but represented synonymous
concepts, which were found by using synonymous terms for the relevant symptoms (e.g.,
disturbance of sensation of smell in the ontology, and loss_of_smell in the KG).
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Out of the 128 symptoms in the KG, 51 symptoms had no corresponding match in
the SYMP ontology. Additionally, 44 symptoms had a match, but no hierarchical tree was
rooted under them. Another 4 symptoms had a match, but it was already assigned to a
different hierarchical tree. Finally, 26 symptoms had a match with a hierarchical tree rooted
under them, and these trees were integrated into the KG. Overall, 21 new ontological nodes
were added to the KG, along with 22 ontological edges (i.e., ISA edges).

5.3. Inference in the Enhanced KG: Demonstrating via a Toy Problem

In this subsection, we highlight the advantages of this approach and demonstrate the
process of inference within the Enhanced KG using a toy problem.

The enhanced KG expands in both symptom representation and hierarchical structure,
providing several advantages for the inference process:

(i) Evidence Propagation: Evidence symptoms (ES) can propagate through the edges of
the graph, providing additional evidence, hence increasing the number of ES. This
process has the potential to discover new diseases and expand the number of possible
diseases for the patient.

(ii) Symptoms Hierarchy Impact: Incorporating the symptoms hierarchy, along with the
given ES, can indicate which community is more likely to be considered, especially in
cases where multiple communities have equal LIND (LIND (=Local-in-Degree) of a
given community c, is defined by the number of edges that point to diseases of c, by
ES) scores.

(iii) Expansion of Symptoms Range:

◦ Increasing the number of hypotheses presented to the medical expert.
◦ Facilitating a broader coverage of potential patient symptoms through the uti-

lization of natural language processing (NLP) techniques (see further details in
Section 6 where we discuss future work).

To demonstrate these capabilities, consider the following toy problem scenario exhib-
ited in Figure 9. The figure presents the enhanced KG that was previously presented in
Figure 7. The enhanced KG consists of 5 disease nodes (d1, d2, d3, d4, d5), and 14 symptom
nodes, part of which are KG symptom nodes (s1, s3, s5, s6, s7, s9, s10), ontology symptoms
nodes (s11, s11, s13, s14), and hybrid symptom nodes (s2, s4, s8). After executing the
clustering algorithm (i.e., Algorithm 1 in [6]), three communities were created: C1, C2, and
C3 as presented in the figure.

Recall, the creation of the enhanced KG and its related communities is part of the
pre-processing phase. The processing part starts each time for each patient. Let us assume
that the patient in our scenario reports on the symptoms: s4, s5, and s13. Thus, these are the
evidence symptoms (ES). In addition, due to the ISA relationship (s13 ISA s8), s8 becomes
ES as well because of evidence propagation, as mentioned in point #1. Thus, the final set of
ES includes {s4, s5, s8 and s13}. As a result, the pool of possible diseases expands to include
{d2, d3, d4, d5}, as s5 indicates d2 and d3, s4 indicates d4, and s8 indicates d5 (first part of
Algorithm 2 in [6]).

Each community is then assessed along with its LIND. Consequently, both communi-
ties C1 and C3 exhibit an identical LIND of 2, whereas the LIND of C2 is 1. This implies that
C1 and C3 are more likely to encompass the patient’s disease. At this stage, the algorithm
chooses randomly between C1 and C3. However, this random choice now changes since the
enhanced KG contains additional new information, regarding the interconnections between
symptoms. In particular, according to point #2, the hierarchy of symptoms of s4, which is
an evidence symptom, increases the possibility that one of its descendant symptoms (i.e.,
s2, s11, s12, and s14) is also an evidence symptom (ES). This knowledge must be considered;
thus, the impact of these four symptoms on both communities is examined. It appears that
community C1 is strengthened more than community C2, since these four symptoms (s2,
s11, s12, s14) point to C1, while only symptom s4 points to community C2. To conclude, C1
is the most probable community to include the patient’s disease (last part of Algorithm 2
in [6]).
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At this stage (Algorithm 3 in [6]), the framework infers and suggests to the medical
expert a question (=symptom) that will strengthen the choice of C1. The algorithm will
choose one of the three symptoms s2, s11, and s12, since, as mentioned, they point to C1
and are descendants of an evidence symptom (s4). It can be seen that enriching the KG
increased the range of symptoms that can be suggested to the medical expert.

The rest of the interaction depends on the patient’s answer: if the patient exhibits the
suggested symptom, the next step of the framework involves exploring hypotheses that
include diseases from C1, along with additional symptoms indicating them. These are
then suggested to the medical expert, ranked by relevance (Algorithm 4 in [6]). With the
integration of ontology elements, the expanded pool of symptoms allows for an increased
number of hypotheses, as we have stated in point #3. Otherwise, if the patient does not
exhibit the suggested symptom, the framework recommends the next possible symptom
within the current community (C1), or if no possible symptoms remain within C1, select
the next community to explore (C2), as demonstrated in Figure 1.

Let us recap the description of the toy problem and underscore the added value of
ontology enrichment:

When a patient meets with a medical expert and presents 3 symptoms, the framework
will increase the number of ES to 4 (compared to 3 in the framework without enrichment),
as per Evidence Propagation. Consequently, the number of possible diseases increases to 4
(as opposed to 3 without enrichment).

In the subsequent stage, the framework chooses the community with the highest
likelihood of encompassing the patient’s disease. Without enrichment, communities C1
and C3 receive identical scores. However, with enrichment (attributed to the hierarchy of
symptoms), community C1 gains precedence over community C2. Next, the framework
will present the medical expert with symptoms not previously in the KG but now integrated
into the added hierarchic structures.

Finally, the framework will furnish the specialist (according to Expansion of Symp-
toms Range) with an expanded list of hypotheses (more extensive than without enrich-
ment), encompassing diseases and their indicated symptoms, potentially specifying the
patient’s disease.
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6. Discussion and Future Work

Over the last decade, researchers have explored the utilization of big data analytics in
biomedicine and healthcare, with a focus on areas such as public health, the medical Internet
of Things, personalized medicine, medical training, and clinical decision making [41,42].
Focusing on the last, our primary objective centers on interaction-driven decision-making
processes, where dynamic interplay occurs between a medical expert and a patient. In this
process, the two parties interact with each other through a series of questions and answers
to address a disease faced by the patient. To assist the medical expert in formulating a
medical diagnosis, we proposed a framework that suggests a list of hypotheses, all inferred
from the medical–patient interaction of questions and answers. The framework utilizes a
knowledge graph (KG) and a set of algorithms to create hypotheses, where each hypothesis
comprises an ordered pair of a disease and an associated symptom.

In the current follow-up study, similar to other researchers [15], we evaluated our
framework and examined its applicability and effectiveness via several defined measures,
after we fully implemented it. As other researchers clarified [43,44], there is a challenge
in the implementation, assessment, and integration of medical frameworks utilizing AI
tools. As our framework shares a common objective with other systems (i.e., focusing on
assisting and providing recommendations for patient diagnosis), a comparison is required
(see Section 3). However, our output differs somewhat from other systems, as we do not
provide probabilities for the presence of specific diseases. Instead, our framework suggests
that the medical expert explores the ranked list of hypotheses. Still, the results of the
comparison are encouraging.

Additional contribution presented in the paper, is the enrichment of the KG, generated
by integrating ontological elements (taken from a symptoms ontology [14]) and creating
hierarchical structures within the knowledge graph. The KG enrichment strengthens
the framework on three dimensions: (1) Evidence Propagation, which expands the set
of evidence symptoms, thereby enabling the framework to suggest more hypotheses;
(2) Symptoms Hierarchy Impact integration can refine the list of communities with the
highest likelihood of containing the patient’s illness, especially in cases where there are
several communities with the same score; and (3) Expansion of Symptoms Range to increase
the number of hypotheses suggested to the medical expert.

The contribution of the current work is manifested as follows: (1) feasibility testing
of the framework presented in our previous work. We believe that our framework is
innovative because of its usage of semantic technologies along with advanced algorithms to
enable the inference of big data; (2) expanding the framework through the use of additional
semantic technologies to generate extra value for the expert and thereby the patient.

Our upcoming challenge involves integrating Natural Language Processing (NLP) into
our algorithmic toolbox, particularly for the semantic-similarity process. This integration
aims to aid medical experts in identifying additional symptoms, thereby providing further
enhancement to the framework across the three dimensions previously outlined. The
adoption of NLP in the medical field is on the rise, with researchers exploring these tech-
niques to enrich the representation of clinical information in healthcare applications [45].
In addition, we wish our framework to generate an output that includes a graph illustrat-
ing the decision-making process, aiding the medical expert in following the process. In
professional terms, we provide Explainable Artificial Intelligence (XAI), which has become
necessary when using AI technologies [46,47]. Lastly, as mentioned in our earlier paper [6],
we intend to explore the incorporation of weighted edges in the knowledge graph to signify
the cost associated with each hypothesis.
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Appendix A

Figure A1A illustrates the hierarchical structure of the cough symptom as it appears
in the SYMP ontology [14]. The hierarchical tree rooted in cough encompasses three sub-
symptoms (~children), and one sub-sub-symptom (~grandchild). Figure A1B exhibits the
Neo4j creation commands of these sub-symptoms (Algorithm 1). The subsequent step
involves creating the ISA edges in the KG (according to Algorithm 2) are displayed in
Figure A1C.
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Figure A1. An example of integrating a hierarchical tree of symptoms into the KG. (A): illustrates the
hierarchical structure of the cough symptom as it appears in the SYMP ontology, (B): exhibits the
commands for creating sub-symptoms in the KG, (C): exhibits the commands for creating the ISA
edges in the KG.
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