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Abstract

:

Here, we study Frobenius bimodules associated with a pair of automorphisms of an algebra and discuss their basic properties. In particular, some equivalent conditions for a finite-dimensional bimodule are proved to be Frobenius and some isomorphisms between Ext-groups and Tor-groups of Frobenius modules over finite dimensional algebras are established.
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1. Introduction


The study of Frobenius algebras and Frobenius extensions has a long history. It has long been well known that Frobenius algebras and extensions receive extensive applications; for instance, they are related to Hopf algebras [1,2], topological quantum field theory [3], Yang–Baxter equations [4], representation and homology theory [5,6,7,8,9], Lie theory [10,11], etc. Recently, Frobenius extensions have found applications in matrix theory and invariant theory [12,13,14].



Let R and S be rings and let    M S   R     be a bimodule. Assume that M is projective both as a left R-module and as a right S-module. If M satisfies certain self-dual properties (Definition 2.1 in [15]), then it is call a Frobenius bimodule. Now, assume R is a ring and that S is a subring of R. It was proved in [15] that the ring extension   R / S   is a Frobenius extension if and only if R, viewed as an R-S-bimodule, is a Frobenius module. Many other properties of ring extensions may be determined by Frobenius bimodules; for example, separable Frobenius extensions are determined by Frobenius bimodules, and two rings are separable equivalent if and only if they are linked by a Frobenius biseparable bimodule [16]. More properties and applications of Frobenius bimodules may be found in [14,15,16,17]. Note that Frobenius bimodules are assumed to be projective as both left modules and right modules; however, many examples show that if we drop the assumption of the projectiveness in the definition of a Frobenius bimodule and keep the self-dual property, the resulting bimodules continue to possess many properties similar to those of Frobenius bimodules.



In this paper, we provide a modified definition of Frobenius bimodules over a single algebra. Let A be an algebra and let    M A   A     be a finite-dimensional bimodule. If M admits a nondegenerate bilinear form which is balanced associated to a pair of automorphisms of A, then we say that M is a Frobenius module (more precisely, see Definition 2). Note that we drop the assumption that M is projective as a left or right A-module. Such Frobenius modules exist extensively; indeed, as is shown in Theorem 3, every finite-dimensional A-bimodule is a direct summand of a Frobenius module. Because a Frobenius module is not necessary projective, it has many nontrivial homological properties.



The rest of this paper is organized as follows.



In Section 2, we provide a precise definition of Frobenius modules associated with a pair of automorphisms of a given algebra, then discuss the basic properties of Frobenius modules. In particular, we provide a criterion condition for a bimodule to be Frobenius (Theorem 4) and prove that the Nakayama automorphism of a Frobenius module is a bimodule homomorphism (Proposition 4 and Corollary 3).



In Section 3, we focus on the homological properties of Frobenius modules over finite-dimensional algebras. The main results of this paper are as follows.



Theorem 1

(=Corollary 4). Let A be a finite dimensional algebra and let   ( ς , σ )   be a pair of automorphisms of A. Assume that M is a   ( ς , σ )  -Frobenius module; then, we have isomorphisms


   Ext A n   ( M , M )  ≅  Ext   A ∘   n   ( M , M )   








for all   n ≥ 0  , where    Ext A n   ( M , M )    is the Ext-group of the left A-module    M    A     and    Ext   A ∘   n   ( M , M )    is the Ext-group of the right A-module   M A  .





The above theorem shows that the Ext-group of a Frobenius module is left–right symmetric, which is a consequence of a more general result (Theorem 5).



Theorem 2

(=Theorems 6 and 8). Let A and M be the same as in Theorem A and let    X    A     and   Y A   be finitely generated A-modules; then, we have the following isomorphisms:




	(i)

	
   Tor n A    ( X , M )  *  ≅  Ext   A ∘   n   ( X ,  M σ  )    for   n ≥ 0  ;




	(ii)

	
    Hom ̲  A   ( Y , M )  ≅  Tor 1 A   ( T r  ( Y )  , M )   .











In the above theorem,     Hom ̲  A   ( Y , M )    is the stable Hom-set and   T r ( Y )   is the Auslander–Retein translation of   Y A   (see the main text above Theorem 6). Isomorphism (ii) in the above theorem may be viewed as a new explanation of Auslander–Reiten duality for Frobenius modules.



Throughout this paper,  k  is a field with characteristic zero and all algebras and modules considered are over the field  k . Letting V be a vector space, we write    V *  =  Hom k   ( V , k )   .




2. Frobenius Modules Associated with Algebra Automorphisms


Let A be an algebra and let   M A   be a right A-module. For   σ ∈ Aut ( A )  , we write   M σ   for the A-module whose right A-action is twisted by  σ . Below, to avoid possible confusion, we use ⋄ to denote the right A-action twisted by  σ , that is,


  x ⋄ a = x σ ( a )  








for   x ∈ M   and   a ∈ A  . Similarly, if    N    A     is a left A-module, then    N     σ    denotes the left A-module obtained from    N    A     with the left A-action twisted by the automorphism  σ .



Definition 1.

Let σ be an automorphism of A and let    M A   A     be an A-bimodule.




	(i)

	
A bilinear form   〈 − , − 〉 : M × M ⟶ k   is said to be σ-inner-balanced if it satisfies the following condition: for all   a ∈ A  ,   x , y ∈ M  ,


   〈 x a , y 〉 = 〈 x , σ ( a ) y 〉 .   












	(ii)

	
A bilinear form   〈 − , − 〉 : M × M ⟶ k   is said to be σ-outer-balanced if it satisfies the following condition: for all   a ∈ A  ,   x , y ∈ M  ,


   〈 a x , y 〉 = 〈 x , y σ ( a ) 〉 .   












	(iii)

	
A bilinear form   〈 − , − 〉 : M × M ⟶ k   is nondegenerate if   〈 x , y 〉 = 0   for all   y ∈ M   implies that   x = 0  .











A bimodule with a nondegerate balanced bilinear form has nice dual properties.



Proposition 1.

Let A be an algebra and let    M A   A     be a finite-dimensional A-bimodule. The following are equivalent:




	(i)

	
There is a nondegerate σ-inner-balanced bilinear form   〈 − , − 〉 : M × M ⟶ k  ;




	(ii)

	
There is an isomorphism of right A-modules   f :  M  σ  − 1    ⟶  M *   ;




	(iii)

	
There is an isomorphism of left A-modules   g :  M     σ  ⟶  M *   .











Proof. 

(i) ⟹ (ii). We define a linear map   f : M ⟶  M *    by setting   f ( x ) = 〈 x , − 〉   for all   x ∈ M  . For   a ∈ A   and   y ∈ M  , we have


  f ( x a ) ( y ) = 〈 x a , y 〉 = 〈 x , σ ( a ) y 〉 = f ( x ) ( σ ( a ) y ) = ( f ( x ) · σ ( a ) ) ( y ) ,  








where   f ( x ) · σ ( a )   is the right A-module action on   M *  ; therefore,


  f  ( x  σ  − 1    ( a )  )  = f  ( x )  · σ  (  σ  − 1    ( a )  )  = f  ( x )  · a .  








Hence   f :  M  σ  − 1    ⟶  M *    is a right A-module homomorphism. As the bilinear form is nondegenerate, it follows that f is injective. Because M is finite-dimensional, we have   dim  ( M )  = dim  (  M *  )   ; hence, f is indeed an isomorphism.



(ii) ⟹ (i). Define a bilinear map   〈 − , − 〉 : M × M ⟶ k   by setting   〈 x , y 〉 = f ( x ) ( y )  . Because   f :  M  σ  − 1    ⟶  M *    is a right A-module homomorphism, we have


     〈 x a , y 〉 = f ( x a ) ( y ) = f ( x ⋄ σ ( a ) ) ( y ) = ( f ( x ) · σ ( a ) ) ( y )       = f ( x ) ( σ ( a ) y ) = 〈 x , σ ( a ) y 〉 .     








The injectivity of f implies that   〈 − , − 〉   is non-degenerated.



(ii) ⟹ (iii). Taking the vector space dual of the right A-module isomorphism f, we obtain an isomorphism of left A-modules    f *  :   (  M *  )  *  ⟶   (  M  σ  − 1    )  *   . Note that     (  M  σ  − 1    )  *  =   (  M *  )        σ  − 1      . Let   τ : M ⟶   (  M *  )  *    be the valuation map, that is,   τ ( x ) ( α ) = α ( x )   for all   x ∈ M   and   α ∈  M *   . Now, for   a ∈ A   we have   τ ( a x ) ( α ) = α ( a x ) = ( α · a ) ( x ) = τ ( x ) ( α · a ) = ( a · τ ( x ) ) ( α )  . Therefore,  τ  is an isomorphism of left A-module isomorphism. Setting   g =  f *  ∘ τ  , g is indeed an isomorphism of left A-modules from    M     σ    to   M *  .



(iii) ⟹ (ii). This case is similar to the previous case. □





The proof of the above proposition shows that the nondegeneracy of the bilinear form defined in Definition 1(iii) is symmetric.



Corollary 1.

If   〈 − , − 〉   is a nondegenerate σ-inner balanced bilinear form defined on M, then   〈 x , y 〉 = 0   for all   x ∈ M   implies that   y = 0  .





Proof. 

From the proof of Proposition 1,   f =  〈 x , − 〉  :  M  σ  − 1    ⟶  M *    is an isomorphism of right A-modules and   g =  f *  ∘ τ :  M     σ  ⟶  M *    is an isomorphism of left A-modules. For   y ∈ M  , we have   g  ( y )  =  f *   ( τ  ( y )  )  =  〈 x , y 〉   . If   〈 x , y 〉 = 0   for all   x ∈ M  , then   g ( y ) = 0  . Because g is an isomorphism, it follows that   y = 0  . □





Similar to the above proposition, we have the following results for outer-balanced bilinear forms.



Proposition 2.

Let A be an algebra and let    M A   A     be a finite-dimensional A-bimodule. The following are equivalent:




	(i)

	
There is a nondegerate σ-outer-balanced bilinear form   〈 − , − 〉 : M × M ⟶ k  ;




	(ii)

	
There is an isomorphism of right A-modules   f :  M σ  ⟶  M *   ;




	(iii)

	
There is an isomorphism of left A-modules   g :  M       σ  − 1     ⟶  M *   .











Proof. 

We only show the following two directions, as the others are similar to the proof of Proposition 1.



(i) ⟹ (iii). Similar to the proof of Proposition 1, set   g ( x ) = 〈 x , − 〉   for all   x ∈ M  . To avoid possible confusion, we use ⋄ to denote the left A-action on    M       σ  − 1      , that is,   a ⋄ x =  σ  − 1    ( a )  x   for   a ∈ A   and   x ∈ M  . We have   g  ( a ⋄ x )   ( y )  =  〈  σ  − 1    ( a )  x , y 〉  =  〈 x , y a 〉  =  ( a · g  ( x )  )   ( y )    for   y ∈ M  ; therefore, g is a left A-module homomorphism. The injectivity follows from similar arguments as those in Proposition 1.



(iii) ⟹ (ii). Note that     (  M       σ  − 1     )  *  ≅   (  M *  )   σ  − 1     . Taking the vector dual of the map g, we obtain    g *  :   (  M *  )  *  ⟶   (  M       σ  − 1     )  *  ≅   (  M *  )   σ  − 1     . As in the proof of the Proposition 1, the valuation map   τ : M ⟶   (  M *  )  *    is a right A-module isomorphism. We obtain an isomorphism   f : =  g *  ∘ τ : M ⟶   (  M *  )   σ  − 1     . Note that f is indeed an isomorphism    M σ  ⟶  M *   . □





In view of the propositions above, we make the following definition of Frobenius modules.



Definition 2.

Let A be an algebra and let    M A   A     be a finite-dimensional A-bimodule. Assume that   ( ς , σ )   is a pair of automorphisms of A.




	(i)

	
If there is a nondegenerate bilinear form


   〈 − , − 〉 : M × M ⟶ k   











which is both ς-inner-balanced and σ-outer-balanced, then we call M a   ( ς , σ )  -Frobenius module, or simply, a Frobenius module.



If the automorphisms   ς = σ = i d  , then we call M a balanced Frobenius module.




	(ii)

	
If there is an   i d  -inner-balanced nondegenerate bilinear form


   〈 − , − 〉 : M × M ⟶ k   











such that   〈 x , y 〉 = 〈 y , x 〉   for all   x , y ∈ M  , then we call M a symmetric module.











Remark 1.

In [15], Kadison introduced the notion of a Frobenius bimodule    M S   R     over rings R and S, where M is assumed to be projective both as a left R-module and as a right S-module (see Definition 2.1 in [15]). We drop these assumptions so that the homological properties of a Frobenius module are not trivial.





Next, we provide an example of a Frobenius module.



Example 1.

Let   A = k 〈 x , y 〉 / ( x y + y x )   be a skew polynomial algebra, define an automorphism σ on A by setting   σ ( x ) = − x   and   σ ( y ) = − y  , and let   M = A / (  x 2  A +  y 2  A )  . Then, M is an A-bimodule. Note that M has a basis   { 1 , x , y , x y }  . Defining a bilinear form   〈 − , − 〉 : M × M → k   by


    〈  k 0  +  k 1  x +  k 2  y +  k 3  x y ,  l 0  +  l 1  x +  l 2  y +  l 3  x y 〉  =  k 0   l 3  +  k 3   l 0  +  k 1   l 2  +  k 2   l 1  ,   








where    k 0  , … ,  k 3  ,  l 0  , … ,  l 3  ∈ k  , it is easy to check that M is an   ( i d , σ )  -Frobenius A-module.





Condition (ii) in Definition 2 is stronger than the condition of balanced Frobenius algebras. Indeed, we have the following proposition.



Proposition 3.

If    M A   A     is a symmetric module, then it is a balanced Frobenius module.





Proof. 

For any   a ∈ A  ,   x , y ∈ M  , we have   〈 a x , y 〉 = 〈 y , a x 〉 = 〈 y a , x 〉 = 〈 x , y a 〉  . Hence, M is a balanced Frobenius module. □





Remark 2.

If A is a Frobenius algebra, then it is a Frobenius module when viewed as an A-bimodule. Indeed, from the definition of a Frobenius algebra, there is a nondegenerate bilinear form   〈 − , − 〉 : A × A ⟶ k   which is   i d  -inner-balanced. Assume σ is the Nakayama automorphism of A; then, for all   a , b , c ∈ A   we have   〈 a b , c 〉 = 〈 a , b c 〉 = 〈 b c , σ ( a ) 〉 = 〈 b , c σ ( a ) 〉  . Hence, the bilinear form is σ-outer-balanced and    A A   A     is a   ( i d , σ )  -Frobenius module.





The next result shows that Frobenius modules exist extensively. Indeed, every finite dimensional bimodule can be viewed as a direct summand of a Frobenius module.



Theorem 3.

Let A be an algebra and let    M A   A     be a finite dimensional A-bimodule. Let σ be an automorphism of A and set    T σ   ( M )  : =  M    σ  − 1      σ  ⊕  M *   . Then,    T σ   ( M )    is a   (  σ  − 1   , σ )  -Frobenius module.



In particular,   T  ( M )  : = M ⊕  M *    is a symmetric module.





Proof. 

We define a bilinear map    〈 − , − 〉  :  T σ   ( M )  ×  T σ   ( M )  ⟶ k   by setting


  〈 ( x , α ) , ( y , β ) 〉 = α ( y ) + β ( x )  








for all   x , y ∈ M , α , β ∈  M *   . Now, for   a ∈ A   we have


     〈 ( x , α ) · a , ( y , β ) 〉    =    〈 ( x ⋄ a , α · a ) , ( y , β ) 〉       =     ( α · a )   ( y )  + β ( x  σ  − 1    ( a )  )       =    α  ( a y )  + (  σ  − 1    ( a )  · β )  ( x )        =    〈  ( x , α )  ,  (  σ  − 1    ( a )  ⋄ y ,  σ  − 1    ( a )  · β )  〉       =    〈  ( x , α )  ,  σ  − 1    ( a )  ·  ( y , β )  〉 ,     








and similarly, we have


  〈 a · ( x , α ) , ( y , β ) 〉 = 〈 ( x , α ) , ( y , β ) · σ ( a ) 〉 .  








The nondegeneracy of the bilinear form is easy to see. Hence,    T σ   ( M )    is a   (  σ  − 1   , σ )  -Frobenius module. □





Propositions 1 and 2 imply the following criteria in order for a bimodule to be Frobenius.



Theorem 4.

Let A be an algebra and let    M A   A     be a finite-dimensional A-bimodule. Suppose that   ( ς , σ )   is a pair of automorphisms of A. Then, the following are equivalent:




	(i)

	
M is a   ( ς , σ )  -Frobenius;




	(ii)

	
There is an A-bimodule isomorphism    M    ς  − 1        σ  − 1     ≅  M *   ;




	(iii)

	
There is an A-bimodule isomorphism    M  σ   ς  ≅  M *   .











Proof. 

(i) ⟹ (ii). As was shown in Proposition 1, the map   f :  M  ς  − 1    ⟶  M *    is an isomorphism of right A-modules where   f ( x ) = 〈 x , − 〉  . Proposition 2 shows that f is indeed an isomorphism of left A-modules   f :  M       σ  − 1     ⟶  M *   . Hence, f is an A-bimodule isomorphism.



(ii) ⟹ (i). This is similar to the proof of Proposition 1.



(ii) ⟺ (iii). This is obtained by taking the vector space dual. □





The following is an immediate consequence of the above theorem.



Corollary 2.

If    M A   A     is a   ( ς , σ )  -Frobenius module, then   M *   is a   ( σ , ς )  -Frobenius module.





Let    M A   A     be a   ( ς , σ )  -Frobenius module. Similar to Frobenius algebras, there is a Nakayama automorphism of M. Indeed, from Corollary 1, for an element   x ∈ M   there is a unique element    x ′  ∈ M   such that    〈 x , − 〉  =  〈 − ,  x ′  〉    in   M *  , which induces a linear map   n : M → M   such that


  〈 x , y 〉 = 〈 y , n ( x ) 〉  








for all   x , y ∈ M  . Indeed, from Proposition 1 we have   n =  g  − 1   ∘ f  , where f and g are isomorphisms in Proposition 1; hence,  n  is a linear automorphism. We call  n  the Nakayama automorphism of M.



It is clear that    M A   A     is a symmetric module if and only if the Nakayama automorphism of M is the identity map.



Proposition 4.

Let    M A   A     be a   ( ς , σ )  -Frobenius module. The Nakayama automorphism  n  is an A-bimodule isomorphism


   n :  M   σ ς     ς σ   ⟶ M .   













Proof. 

For   x , y ∈ M   and   a ∈ A  , we have


  〈 y , n ( x a ) 〉 = 〈 x a , y 〉 = 〈 x , ς ( a ) y 〉 = 〈 ς ( a ) y , n ( x ) 〉 = 〈 y , n ( x ) σ ( ς ( a ) ) 〉 ;  








therefore,


  n ( x a ) = n ( x ) σ ς ( a ) .  








Similarly,


  〈 y , n ( a x ) 〉 = 〈 a x , y 〉 = 〈 x , y σ ( a ) 〉 = 〈 y σ ( a ) , n ( x ) 〉 = 〈 y , ς σ ( a ) n ( x ) 〉 ;  








therefore,


  n ( a x ) = ς σ ( a ) n ( x ) .  








Hence, the result follows. □





The above proposition implies the following result.



Corollary 3.

Let σ be an automorphism of A. If    M A   A     is a   ( σ ,  σ  − 1   )  -Frobenius module, then the Nakayama automorphism is an A-bimodule automorphism of    M A   A    .






3. Homological Properties of Frobenius Modules over Finite-Dimensional Algebras


In this section, we always assume that A is a finite-dimensional algebra. We write   A ∘   for the opposite algebra of A. Then, a right A-module can be viewed as a left   A ∘  -module. If X and Z are left A-modules, then we write    Hom A   ( X , Z )    and    Ext A n   ( X , Z )    for the Hom-set and extension groups of X and Z, respectively, while if X and Z are right A-modules, then we write    Hom  A ∘    ( X , Z )    and    Ext   A ∘   n   ( X , Z )    for the Hom-set and extension groups of X and Z.



Let   ( ς , σ )   be a pair of automorphisms of A and let    M A   A     be a   ( ς , σ )  -Frobenius module. Then, take a projective resolution of the left A-module    M    A    :


  ⋯ ⟶  P n  ⟶ ⋯ ⟶  P 1  ⟶  P 0  ⟶ M ⟶ 0 ,  



(1)




where   P n   is a finitely generated projective left A-module for all   n ≥ 0  . Twisting the left A-actions on the modules in the above sequence, we obtain a projective resolution of    M     σ   :


  ⋯ ⟶  P n    σ  ⟶ ⋯ ⟶  P 1    σ  ⟶  P 0    σ  ⟶  M     σ  ⟶ 0 .  



(2)







Taking the vector space dual of sequence (1), we obtain the following exact sequence:


  0 ⟶  M *  ⟶  P 0 *  ⟶  P 1 *  ⟶ ⋯ ⟶  P n *  ⟶ ⋯ .  



(3)




Because   P n   is a projective left A-module for every   n ≥ 0  , it follows that   P n *   is an injective right A-module for every   n ≥ 0  . Therefore, the exact sequence (3) is an injective resolution of the right module   M *  . From Theorem 4, we have the A-bimodule isomorphism    M  σ   ς  ≅  M *   . Hence, the exact sequence (3) is an injective resolution of the right A-module   M σ  . Then, we have the following injective resolution of the right A-module M:


  0 ⟶ M ⟶   (  P 0 *  )   σ  − 1    ⟶   (  P 1 *  )   σ  − 1    ⟶ ⋯ ⟶   (  P n *  )   σ  − 1    ⟶ ⋯ ,  



(4)




or equivalently,


  0 ⟶ M ⟶   (  P 0      σ  − 1     )  *  ⟶   (  P 1      σ  − 1     )  *  ⟶ ⋯ ⟶   (  P n      σ  − 1     )  *  ⟶ ⋯ .  



(5)







Now, let    Y    A     be a finite-dimensional left A-module and consider the right A-module    (  Y       σ  − 1     )  *  . Applying the functor    Hom  A ∘    (   (  Y       σ  − 1     )  *  , − )    to the injective resolution (5), we obtain the following complex:


  0 ⟶  Hom  A ∘    (   (  Y       σ  − 1     )  *  ,   (  P 0      σ  − 1     )  *  )  ⟶ ⋯ ⟶  Hom  A ∘    (   (  Y       σ  − 1     )  *  ,   (  P n      σ  − 1     )  *  )  ⟶ ⋯ .  



(6)




Taking the n-th cohomology of complex (6), we obtain the extension group    Ext   A ∘   n   (   (  Y       σ  − 1     )  *  , M )   .



Notice that we have


   Hom  A ∘    (   (  X     θ  )  *  ,   (  Z     θ  )  *  )  ≅  Hom A   ( Z , X )   








for any finite-dimensional left A-modules   X , Z   and any automorphism  θ  of A. The sequence (6) is equivalent to the following complex:


  0 ⟶  Hom A   (  P 0  , Y )  ⟶  Hom A   (  P 1  , Y )  ⟶ ⋯ ⟶  Hom A   (  P n  , Y )  ⟶ ⋯ ,  



(7)




which is exactly the complex obtained from projective resolution (1) by applying the functor    Hom A   ( − , Y )   . The n-th cohomology of complex (7) is the extension group    Ext A n   ( M , Y )   . Therefore, we have


   Ext A n   ( M , Y )  ≅  Ext   A ∘   n   (   (  Y       σ  − 1     )  *  , M )   








for all   n ≥ 0  .



Notice that from Theorem 4 we also have an A-bimodule isomorphism    M    ς  − 1        σ  − 1      . Replacing the isomorphism   σ  − 1    in sequences (5) and (6) with  ς , we finally obtain the isomorphism


   Ext A n   ( M , Y )  ≅  Ext   A ∘   n   (   (  Y     ς  )  *  , M )   








for all   n ≥ 0  .



Summarizing the above narratives, we obtain the following result.



Theorem 5.

Let    M A   A     be a   ( ς , σ )  -Frobenius module and let    Y    A     be a finite-dimensional module. For each   n ≥ 0  , we have


    Ext A n   ( M , Y )  ≅  Ext   A ∘   n   (   (  Y       σ  − 1     )  *  , M )  ≅  Ext   A ∘   n   (   (  Y     ς  )  *  , M )  .   













The above theorem implies that the Ext-groups of a Frobenius module are left–right symmetric.



Corollary 4.

Let    M A   A     be a   ( ς , σ )  -Frobenius module. For each   n ≥ 0  , we have


    Ext A n   ( M , M )  ≅  Ext   A ∘   n   ( M , M )  .   













Proof. 

Note that as a right A-module, from Theorem 4 we have


  M ≅   (  M *  )   σ  − 1    ≅   (  M       σ  − 1     )  *  .  








The result follows from Theorem 5 by setting   Y = M  . □





Next, let   X A   be a right A-module. Applying the functor    ( X  ⊗ A  − )  *   to the projective resolution (1) of M, we obtain the following complex:


  0 ⟶   ( X  ⊗ A   P 0  )  *  ⟶   ( X  ⊗ A   P 1  )  *  ⟶ ⋯ ⟶   ( X  ⊗ A   P n  )  *  ⟶ ⋯ ,  



(8)




the n-th cohomology of which is equal to    Tor n A    ( X , M )  *   .



Note that this complex is equivalent to the following complex:


  0 ⟶  Hom  A ∘    ( X ,   (  P 0  )  *  )  ⟶  Hom  A ∘    ( X ,   (  P 1  )  *  )  ⟶ ⋯ ⟶  Hom  A ∘    ( X ,   (  P n  )  *  )  ⟶ ⋯ .  



(9)




From sequence (4), we can see that complex (9) is indeed obtained by applying the functor    Hom  A ∘    ( X , − )    to the injective resolution of   M σ  . Hence, the n-th cohomology of complex (9) is the extension group    Ext   A ∘   n   ( X ,  M σ  )   .



Summarizing the above narratives, we obtain the following Tor–Ext translation.



Theorem 6.

Let    M A   A     be a   ( ς , σ )  -Frobenius module and let   X A   be a right A-module. Then, we have the following isomorphisms:


    Tor n A    ( X , M )  *  ≅  Ext   A ∘   n   ( X ,  M σ  )    











for all   n ≥ 0  .





Let    Y    A     be a finitely generated left A-module. There is an Auslander–Reiten transpose   T r ( Y )   of Y (for instance, see [6]) which is defined as follows. Let


   P 1   ⟶ d   P 0  ⟶ Y ⟶ 0  








be a minimal projective resolution of Y; applying the functor    Hom A   ( − , A )    to the left A-module homomorphism    P 1   ⟶ d   P 0   , we denote the result of the right A-module homomorphism by    Hom A   ( d , A )   , that is, we have


   Hom A   ( d , A )  :  Hom A   (  P 0  , A )  ⟶  Hom A   (  P 1  , A )  .  








The Auslander–Reiten transpose is defined to be the right A-module:


  T r  ( Y )  : = coker  Hom A   ( d , A )  .  








Let    X    A     be another finitely generated left A-module. Let   P ( Y , X )   be the subspace of    Hom A   ( Y , X )    consisting of homomorphisms f which factors through a projective module, that is, there is a projective module P such that   f = g h   where   h : Y → P  ,   g : P → X  . Now, we write


    Hom ̲  A   ( Y , X )  : =  Hom A   ( Y , X )  / P  ( Y , X )  .  








The isomorphism in the next theorem is called the Auslander–Reiten duality.



Theorem 7

([18]). Let    X    A     and    Y    A     be finitely generated left A-modules. There is an isomorphism


    Hom ̲  A    ( Y , X )  *  ≅  Ext A 1   ( X , T r   ( Y )  *  )  .  













Lemma 1.

Let    Y    A     be a finitely generated left A-module. Assume that θ is an automorphism of A. We have   T r  (  Y     θ  )  ≅ T r   ( Y )  θ   .





Proof. 

Let    P 1   ⟶ d   P 0  ⟶ Y ⟶ 0   be a minimal projective resolution of Y; then,    P 1    θ   ⟶   d     θ     P 0    θ  ⟶  Y     θ  ⟶ 0   is a minimal projective resolution of    Y     θ   , where the map    d     θ    is indeed the same as d. Applying the functor    Hom A   ( − , A )   , we have the following right A-module homomorphism:


   Hom A   (  d     θ  , A )  :  Hom A   (  P 0    θ  , A )  ⟶  Hom A   (  P 1    θ  , A )  .  



(10)




Because    A       θ  − 1     ≅  A θ    as A-bimodules, we have the following right A-module isomorphisms:


   Hom A   (  P 0    θ  , A )  ≅  Hom A   (  P 0  ,  A       θ  − 1     )  ≅  Hom A   (  P 0  ,  A θ  )  ≅  Hom A    (  P 0  , A )  θ  .  








Then, the right A-module homomorphism in (10) is equivalent to the following map:


   Hom A    ( d , A )  θ  :  Hom A    (  P 0  , A )  θ  ⟶  Hom A    (  P 1  , A )  θ  .  



(11)




Hence,


  T r  (  Y     θ  )  = coker  Hom A   (  d     θ  , A )  ≅ coker  Hom A    ( d , A )  θ  = T r   ( Y )  θ  .  








 □





Remark. We end this note with the following explanation of Auslander–Reiten duality for Frobenius modules.



Theorem 8.

Let   ( ς , σ )   be a pair of automorphisms of A. Assume that    M A   A     is a   ( ς , σ )  -Frobenius module and that    Y    A     is a finitely generated left A-module. Then, we have the following isomorphism:


     Hom ̲  A   ( Y , M )  ≅  Tor 1 A   ( T r  ( Y )  , M )  .   













Proof. 

From the Auslander–Reiten duality, we have


    Hom ̲  A    ( Y , M )  *  ≅  Ext A 1   ( M , T r   ( Y )  *  )  .  








From Theorem 5,


   Ext A 1   ( M , T r   ( Y )  *  )  ≅  Ext  A ∘  1   (   (   ( T r   ( Y )  *  )        σ  − 1     )  *  , M )  .  








Now, per Lemma 1,


    (   ( T r   ( Y )  *  )        σ  − 1     )  *  ≅   ( T r   ( Y )   σ  − 1    )  *    )  *  ≅ T r   ( Y )   σ  − 1    ≅ T r  (  Y       σ  − 1     )  ;  








therefore, we have


    Hom ̲  A    ( Y , M )  *  ≅  Ext  A ∘  1   ( T r  (  Y       σ  − 1     )  , M )  .  



(12)




Because the functor    ( − )  σ   is an auto-equivalence of the Abelian category of right A-modules, we obtain the following isomorphisms:


   Ext  A ∘  1   ( T r  (  Y       σ  − 1     )  , M )  ≅  Ext  A ∘  1   ( T r   (  Y       σ  − 1     )  σ  ,  M σ  )  ≅  Ext  A ∘  1   ( T r  ( Y )  ,  M σ  )  .  



(13)




From Theorem 6, we have the isomorphism


   Ext  A ∘  1   ( T r  ( Y )  ,  M σ  )  ≅  Tor 1 A    ( T r  ( Y )  , M )  *  .  



(14)




Combining isomorphisms (12)–(14), we obtain


    Hom ̲  A    ( Y , M )  *  ≅  Tor 1 A    ( T r  ( Y )  , M )  *  .  








Hence, the result follows. □





Conclusions


In this short note, we have introduced the notion of Frobenius modules over a single algebra, which is a modification of the concept of Frobenius bimodules in the literature. Because a Frobenius module in our sense is not necessary projective as a left module or a right module, it enjoys many nontrivial homological properties. We have proved some symmetric properties of Ext-groups and Tor-groups of Frobenius modules. The following questions deserve further consideration:




	(a)

	
Is the differential graded structure on the co-chain complex of a Frobenius module still left–right symmetric?




	(b)

	
Does a Frobenius module have certain duality properties between Hochschild cohomology and Hochschild homology, say, Poincare duality?




	(c)

	
Does a Frobenius module relate to certain weak versions of Frobenius extensions?
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