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Abstract: This study proposes a discrete-time mathematical model to investigate the impact of
selective harvesting on the dynamics of a population with age and sex structures. The model assumes
that the birth rate depends on the sex ratio of the population and the number of breeding pairs. The
growth rate is regulated by limiting juvenile survival, where an increase in population size decreases
the survival of immature individuals. We consider the following selective proportional exploitation:
harvesting of juveniles and harvesting of mature males. Depending on the values of population
parameters, selective harvesting can lead to the stabilization of population dynamics by dampening
oscillations or the emergence and amplification of fluctuations in population size. The model reveals
multistability domains in which different dynamic modes coexist, and variations in initial conditions
can lead to changes in dynamic modes. Depending on the values of the population parameters,
the proposed models with harvest reveal the hydra effect, indicating an increase in the equilibrium
abundance of the exploited group after reproduction but before harvesting, with an increase in the
harvesting rate. Selective harvesting, resulting in the hydra effect, increases the remaining population
size due to reproduction and the number of harvested individuals.

Keywords: discrete-time model; age and sex structures; density-dependent regulation; selective
harvesting; stability; dynamic modes; multistability; hydra effect
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1. Introduction

For numerous animal species, commercial exploitation constitutes an inherent aspect
of the biological cycle intertwined with processes of reproduction and survival. Conse-
quently, harvesting, which substantially impacts ecosystems, has emerged as a fundamental
determinant of population management.

Individuals of a specific age or sex in structured populations are not uncommon
subjects of commercial harvesting. From a sustainable natural resource management point
of view, it is economically or ecologically beneficial to harvest only adult individuals of
certain animal species, while for others, it is more suitable to collect young individuals.
For example, the commercial value of sturgeon, whitefish, and salmon varies depending
on their age [1]. Note that the consequences of age-specific or stage-specific harvesting
have been extensively investigated [2–12], while the impact of harvesting individuals of
different sexes on population dynamics has been less studied [13–19].

Selective harvesting by sex is particularly relevant for species in which females and
males differ in behavior, morphology, or economic value. For instance, the extraction of
adult males is quite common in commercial harvesting or trophy hunting [20–25]. The
removal of mature females is often prohibited or performed simultaneously with other
groups. The increased mortality of females due to harvesting may be explained, for
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example, by their larger size compared to that of males, especially for certain species of
fish [26]. Note that in some cases, sex-specific harvesting can disrupt sex ratios, which
subsequently negatively impacts population dynamics [25,27–29]. Many species are able
to reproduce effectively with a strongly biased sex ratio. Nevertheless, even polygynous
species require a minimum number of males to maintain reproduction. Surveys of saiga
antelope [27] and perch [30] have revealed population size decreases likely due to the
hunting of males. In the context of applied research, dynamic models of populations
structured by sex and age (stage) have been successfully employed to analyze and describe
the dynamics of insects, reptiles, fish, birds, and mammals [15,19,25,28,31–33], including
exploited species [15,19,25,31]. Considering both sexes in the model has provided more
realistic and biologically meaningful predictions for different species than models of the
population with only stage structure [19,32,33].

Overall, hunting based on differentiation can be used to control population size and
structure, which can be beneficial in the development of strategies for maintaining sus-
tainable population growth [34–39]. Here, the study of selective harvesting in populations
structured by sex and stage often focuses on developing strategies for natural resource
management, maintaining the reproductive core of the population, and measures to pre-
vent overexploitation. Additionally, two-sex models serve as valuable tools for building
biological control strategies [19,40]. For example, harvesting males may lead to positive
outcomes accompanied by abundance growth in populations characterized by sexually
antagonistic interactions, such as the costs of excessive mating or male harassment, until
female fertility becomes limited by male availability [40].

One of the expected outcomes of harvesting is a decrease in the abundance of the
species being exploited. This approach is often used to manage invasive and dangerous
species to reduce their population numbers to safe levels or even eliminate them [41].
However, it is important to note that the decline in the population size of valuable species
due to harvesting should not lead to their extinction. In recent years, a growing body of
research has identified an interesting phenomenon known as the hydra effect [41–47]. This
phenomenon describes a situation in which population abundance grows with an increasing
harvest rate and is associated with the mythical hydra that regrew new heads in place of
severed heads. An increase in population size in response to higher mortality, including
harvesting, is also referred to as a paradoxical increase [48] or overcompensation [41]. One
of the mechanisms leading to the appearance of the hydra effect in discrete-time population
models is the overcompensatory density-dependent regulation of population growth [43].
As a result, harvest decreases the current size of the exploited population, which reduces
intraspecific competition and slows the further decline in abundance. This effect has been
observed in homogeneous [49] and structured population models [41,47,50].

Due to the difficulty of maintaining field censuses over a long enough period to deter-
mine an accurate average density, evidence of hydra effects in populations is scarce [43].
Several theoretical and empirical studies have shown that increased mortality caused
by harvesting can lead to both fluctuations and growth in population size [51–53]. The
occurrence of the hydra effect (overcompensation) and fluctuations in population due
to harvesting have been empirically confirmed in species with high reproductive poten-
tial (fecundity), such as some plants [54], invertebrates [6,51,52,55], and fish [41]. These
empirical studies [6,41,51,52,54,55] have considered cases where either adults only or juve-
niles and adults were harvested, which resulted in overcompensation and/or instability
in the population. An example of a population of terrestrial mammals with high fecundity
rates is the wild boar. Over the past decades in Europe and North America, the population
size of this species has increased despite hunting. Rapid maturation and high birth rates
enable these animals to increase in number in response to management by hunting and
control programs [56,57]. In some cases, selective harvesting of individuals of a specific size
and/or sex has been shown to lead to changes in growth rates, structure, and sex ratios [19].
With intensive exploitation, females of the wild boar population begin to reproduce at an
earlier age, which increases juvenile recruitment in response to harvesting [56].



Mathematics 2024, 12, 535 3 of 27

For large mammals, such as ungulates, harvesting can have direct consequences on
population size, age structure, and sex ratio [34,58,59]. Indirect effects arise because changes
in the size and structure of the population impact demographic processes. Phenomena
such as compensation, fluctuations, and changes in the lifecycle can eventually emerge in
population dynamics due to harvesting [58,60,61].

Exploitation has become an important driver of trait change in the wild, inducing selec-
tive pressures that vary in strength and direction depending on the intensity, practices, and
target phenotypes of harvest [62]. Harvest-induced selection on lifecycle, morphological,
and behavioral traits has been found in both fishery and hunting systems [62].

Harvesting can influence population structure and induce changes in phenotypic traits
and behavior, thus indirectly impacting the population growth rate and, consequently, the
dynamics and sustainable development of the population [21]. In long-lived mammals,
hunting-induced selection typically affects secondary sexual traits in males, such as the
antlers and horns of mule deer, elk, white-tailed deer, and bighorn sheep [63,64], as well as
body mass [65].

Theoretical and empirical investigations have revealed that an increase in mortality
due to harvesting can result in an earlier age at maturation, a greater probability of repro-
duction, and increased litter size [56,66,67]. Thus, the population response to harvest may
be complicated by demographic factors, specifically variations in vital population rates for
different ages, body sizes, and sexes, as well as density-dependent processes [41].

The hydra effect often occurs in discrete-time models, considering harvesting before
reproduction in the population [43]. However, harvesting after reproduction, which is
more common in resource management practices [68], can lead to the hydra effect in a
hidden form [45]. The primary difference between models that involve harvesting before
and after reproduction is the timing of the population size survey. If the population size is
measured immediately after reproduction, then these two scenarios are identical [44,45].

From a biological perspective, population dynamics are the result of the combination
of reproduction and harvest, and any variation in population size depends only on the
timing of harvest [69,70]. The order of these processes remains unchanged in both models
because harvesting follows reproduction and precedes reproduction. Consequently, the
stability conditions for these two harvesting scenarios are the same, as are the population
sizes after each process [70]. Depending on the time of the survey, population sizes can
vary quantitatively. With measurements taken after reproduction, higher densities are
obtained than after harvest [45]. Note that the stability conditions of nontrivial fixed points
are Identical for discrete-time models of stage-structured population dynamics under
harvesting before and after reproduction [11].

We have previously proposed and explored a discrete-time model of the dynamics of
age- and sex-structured populations with [18,71] and without harvest [72,73]. This paper
extends the analysis of this mathematical model by investigating the impact of selective
harvesting on the dynamics of the population, depending on the sex ratio. We suggest
that utilizing demographic models with sex and stage structures is a good approach to
designing management strategies aimed at population control. This method allows for
the study of the response of the population to exploitation by analyzing various possi-
ble scenarios of its development, thus increasing the likelihood of selecting appropriate
management measures.

To take into account the contributions of both sexes to reproduction, we utilize the
concept that fertility depends on the ratio of mature males to females. This can be de-
scribed using mating (pair formation) functions, which have been studied by various
researchers [31,74–76]. The specific pair formation function used can vary depending on
the species being studied. Theoretical modeling has revealed that factors such as the size
of the harem, population density, male competition, and territorial distribution can all
significantly impact the dynamics of a two-sex population [72,73,76,77].

Thus, our study focused on the dynamic modes of population with stage and sex
structure that can occur depending on the intensity and selectivity of harvesting. This
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problem is meaningful because birth and mortality in natural populations are hardly
variable, and both are determined by species biology. As a result, population size and
population structure can be managed only by harvesting. Therefore, within the framework
of this research, the harvest rate can and should be considered a control parameter due
to the effect of harvesting on system dynamics. This study allowed us to compare and
examine the possible changes in the dynamic modes of population size depending on the
intensity and selectivity of harvesting at the same values as other population parameters. In
addition, such research allows us to identify and analyze the occurrence of fluctuations, the
hydra effect, and extinction in populations depending on the sex ratio, density-dependent
regulation of juvenile survival, and demographic parameters.

2. The Population Model with Age and Sex Structures

We assume that a population with a seasonal breeding cycle can be represented by
three groups: immature individuals (juveniles), mature females, and mature males, denoted
as P (P ≥ 0), F (F ≥ 0), and M (M ≥ 0), respectively. The time step of the model is the interval
between successive breeding seasons. We assume that the number of newborn individuals
depends on the abundance of mature females and mature males in the population at the
previous time step. Note that we segregate young individuals by sex when they have
matured and replenish the adult part of the population.

A two-sex model in which fecundity depends on male and female abundances [74,76,77]
can be written as follows: Pn+1

Fn+1
Mn+1

 =

 0 rF rM
δ · w1 s 0

(1 − δ) · w2 0 v

 ·

 Pn
Fn
Mn

 (1)

where n is the number of breeding seasons, rF (rF > 0) and rM (rM > 0) represent the
fecundity values of females and males, respectively; δ (0 ≤ δ ≤ 1) is the proportion of
newborn females; w1 (0 ≤ w1 < 1) and w2 (0 ≤ w2 < 1) are the survival rates of immature
individuals; and s (0 ≤ s < 1) and v (0 ≤ v < 1) are the survival rates of mature males and
females, respectively.

In a two-sex model, the fecundity values for male rM and female rF are derived from
a total birth function B = B(Fn, Mn) [74,76]. The total number of offspring P in the year
(n + 1) is the sum of individuals of both sexes, taking into account the fertility coefficients
of the females (rF) and the males (rM):

Pn+1 = B(Fn, Mn) = rFFn + rM Mn.

Let us assume that the primary sex ratio in zygotes after fertilization is 1:1, meaning
that each zygote has one parent of each sex, such that rFFn = rM Mn. Therefore, the
coefficients rF and rM are rF = B(Fn, Mn)/(2Fn) and rM = B(Fn, Mn)/(2Mn), respectively,
where the factor of 1/2 prevents double counting of offspring from both males and females.

On the other hand, the number of newborns Pn is determined by the number of mating
pairs C participating in reproduction and by the average number of offspring (a) per pair,
i.e., Pn+1 = B(Fn, Mn) = a · C(Fn, Mn). We assume that the number of formed pairs C
depends on the ratio of the numbers of females and males in the population, and can be
described using the modified harmonic mean mating function [78]:

C(Fn, Mn) = min(Fn, 2Fn Mn/(Fn/h + Mn)), (2)

which determines the number of fertilized females, allows us to avoid overestimation of the
birth rate for populations whose females produce offspring once per breeding season. The
parameter h corresponds to the average size of the harem and characterizes the following
mating relationships in the population: monogamy with h = 1, polygyny with h > 1, and
polyandry at 0 < h < 1.
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The condition for switching this function corresponds to the balance of sexes in the
population and is expressed as Fn = hMn, where hMn is the number of females that can be
fertilized by males whose number is M and the average harem size is h.

In other words, if the abundance of males is sufficient, that is, Mn ≥ Fn/h, then the
number of pairs formed corresponding to the possible abundance of fertilized females will
equal the number of mature females min(Fn, 2Fn Mn/(Fn/h + Mn)) = Fn. Consequently,
the fertility values of female rF and male rM are as follows:

rF =
B(Fn, Mn)

2Fn
=

aFn

2Fn
=

a
2

, rM =
B(Fn, Mn)

2Mn
=

aFn

2Mn
.

When Mn < Fn/h, which indicates a shortage of males in the breeding population,
the number of pairs formed corresponding to the number of fertilized females is calculated
as the harmonic mean of the number of males and females, taking into account harem
size h, i.e., min(Fn, 2Fn Mn/(Fn/h + Mn)) = 2Fn Mn/(Fn/h + Mn). In this case, the fertility
values of female rF and male rM are as follows:

rF =
B(Fn, Mn)

2Fn
=

aMn

Fn/h + Mn
, rM =

B(Fn, Mn)

2Mn
=

aFn

Fn/h + Mn
.

Thus, the fertility functions of females and males can be rewritten as follows:

rF = a · min
(

1
2

,
Mn

Fn/h + Mn

)
, rM = a · min

(
Fn

2Mn
,

Fn

Fn/h + Mn

)
. (3)

Note that functional dependencies (3) were previously used in a two-sex matrix model to
describe the fertility functions of the population of the California sea lion, Zalophus californianus [32].

We assume that density-dependent factors influence population dynamics and that the
survival rates of immature females (w1) and males (w2) are the most sensitive parameters
to population size. To describe the density-dependent regulation of juvenile survival,
we use a discrete analog of the Verhulst equation, which takes into account self-limiting
processes and competitive interactions among age classes: w1 = 1 − α1P − β1F − γ1M,
w2 = 1 − α2P − β2F − γ2M. Here, αi (αi ≥ 0), βi (βi ≥ 0), and γi (γi ≥ 0) are coefficients
that characterize the intensities of declining juvenile survival due to competition between
juveniles, adult females, and adult males, respectively. In this study, we assume that
the impacts of adult females and males are the same, γi = βi and that the survival of
juvenile females and males does not differ, that is, w1 = w2 = w; as a result, α1 = α2 = α

and β1 = β2 = β. Therefore, survival rates linearly depend on the progeny and abundances
of mature males and females: w1 = w2 = 1 − αP − β(F + M). The coefficients α (α ≥ 0)
and β (β ≥ 0) characterize the intensity of decreasing juvenile survival due to ecological
limitations caused by competition for resources.

The linear dependence of young survival on the number of age-sex groups is convenient
for analytical investigation, but it can lead to the loss of biological meaning in the model at large
numbers, as in such cases, juvenile survival can be negative. Therefore, to maintain the meaning
of the model, it is necessary to satisfy the condition 0 ≤ w1 = w2 = 1−αP −β(F + M) < 1.
Our previous studies [72,73] discussed conditions for maintaining the biological meaning of
model (6) in detail, depending on the parameters and initial conditions.

The matrix form of model (1) with the fecundity functions of the female rF and the
male rM (3) and the survival of the immature females w1 and males w2 is as follows:

 Pn+1
Fn+1
Mn+1

 =

 0 a · min
(

1
2 , Mn

Fn/h+Mn

)
a · min

(
Fn

2Mn
, Fn

Fn/h+Mn

)
δ · (1 − αPn − β(Fn + Mn)) s 0

(1 − δ) · (1 − αPn − β(Fn + Mn)) 0 v

 ·

 Pn
Fn
Mn

 (4)
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Thus, the number of individuals in each sex and age group of a population without
harvesting can be described by a system of three recurrent equations proposed in [51] and
has the following form in scalar form:

Pn+1 = amin(Fn, 2Fn Mn/(Fn/h + Mn))
Fn+1 = δ(1 − αPn − β(Fn + Mn))Pn + sFn
Mn+1 = (1 − δ)(1 − αPn − β(Fn + Mn))Pn + vMn

, (5)

where n is the number of breeding seasons.
The following substitutions of p = αP, f = αF, and m = αM transform model (5) to a

simpler form: 
pn+1 = amin( fn, 2 fnmn/( fn/h + mn))
fn+1 = δ(1 − pn − ρ( fn + mn))pn + s fn
mn+1 = (1 − δ)(1 − pn − ρ( fn + mn))pn + vmn

. (6)

Here, p, f, and m describe the relative abundances or densities of the corresponding
age and sex groups, respectively; parameter ρ = β/α characterizes the relative contribution
of mature individuals to the limitation of juvenile survival.

Stationary numbers corresponding to the coordinates of the fixed point of system
(4) or (5) depend on the sex ratio. If f ≤ hm, then min( f , 2 f m/( f /h + m)) = f and the
coordinates of the non-zero fixed point are determined by the following formulas:

p(1) =
(1 − v)(s + aδ − 1)

ρ((s − v)δ + 1 − s) + aδ(1 − v)
, f

(1)
=

1
a

p(1), m(1) =
(1 − δ)(1 − s)

aδ(1 − v)
p(1), (7)

where a, δ ̸= 0, v ̸= 1. Solution (7) has biological meaning when the number of age classes
is positive, that is, a > (1 − s)/δ.

If f > hm, then min( f , 2 f m/( f /h + m)) = 2 f m/( f /h + m) and the coordinates of the
non-zero fixed point are as follows:

p(2) = (1−s)(1−v)((1−δ)h(s+2aδ−1)−δ(1−v))
((s−v)δ+1−s)((1−s)(1−δ)h+(1−v)δ)ρ+2ahδ(1−δ)(1−s)(1−v) ,

f
(2)

= (1−s)(1−δ)h+(1−v)δ
(1−s)2ah(1−δ)

p(2), m(2) = (1−s)(1−δ)h+(1−v)δ
(1−v)2ahδ

p(2)
(8)

and are positive with a > (δ(1 − v) + h(1 − δ)(1 − s))/(2hδ(1 − δ)), where a, h, δ ̸= 0,
and s, v, δ ̸= 1.

The boundaries of the stability area of fixed points in the system (6) are found based
on the characteristic polynomial.

λ3 + Sλ2 + Hλ+ D = 0, (9)

where S, H, and D are three invariants of the Jacobian matrix of the system (6).
Let us rewrite Equation (9) in the form det(J − λI) = 0, where J is the Jacobian matrix

of system (6) evaluated at the fixed point (p(i), f
(i)

, m(i)) at i = 1, 2, λ are the eigenvalues
of matrix J, and I is the identity matrix. The matrix J consists of elements, which are the
partial derivatives of the right-hand side of the system (6), and is as follows:

J =

g′p g′ f g′m
q′p q′ f q′m
b′p b′ f b′m


(p(i), f

(i)
,m(i))

,

where g = amin( f , 2 f m/( f /h + m)) , q = δ(1 − p − ρ( f + m))pn + s f , and
b = (1 − δ)(1 − p − ρ( f + m))p + vm.

The coefficients of the polynomial ∆(λ) = |λI − J| = λ3 + Sλ2 + Hλ+ D are expressed
in terms of the invariants of the Jacobian matrix J and have the following meanings: S is
the trace of the Jacobian matrix; H is the sum of the principal second-order minors of the
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Jacobian matrix J; and D is the determinant of the Jacobian matrix J. Therefore, S, H, and D
are determined using the following formulas:

S = −trace(J) = −g′p − q′ f − b′m,H =

∣∣∣∣∣g′p g′ f
q′p q′ f

∣∣∣∣∣+
∣∣∣∣∣g′p g′m
b′p b′m

∣∣∣∣∣+
∣∣∣∣∣q′ f q′m
b′ f b′m

∣∣∣∣∣, D = −det(J).

Based on these coefficients, we can find stability area boundaries, each of which is a
hypersurface that corresponds to specific bifurcations of codimension 1. The conditions for
different bifurcation lines have the following form [79]:

(1) The transcritical bifurcation line (TC) is H = −D − 1 − S at λ = 1;
(2) The period-doubling bifurcation line (PD) is H = D − 1 + S at λ = −1;
(3) The Neimark–Sacker bifurcation line (NS) is H = SD − D2 + 1 at λ = e±iϕ and

|λ| = 1.

The coefficients of the polynomial (9) for system (6) at f ≤ hm take the following values:

S(1) = ρp(1) − (s + v),

H(1) = δa(2p(1) + ρ f
(1)

+ ρm(1) − 1)− ρp(1)((1 − δ)s + δv) + sv,

D(1) = −δav(2p(1) + ρ f
(1)

+ ρm(1) − 1).

The coefficients of the polynomial (9) for system (6) at f > hm are as follows:

S(2) = ρp(2) − (s + v),

H(2) =
2ah((1−δ)

(
f
(2)

)2
+δh(m(2))

2
)(2p(2)+ρ f

(2)
+ρm(2)−1)−ρδvp(2)( f

(2)
+hm(2))

2

( f+hm)
2 + s(v − ρ(1 − δ)p(2)),

D(2) = −
2ah((1−δ)s

(
f
(2)

)2
+δhv(m(2))

2
)(2p(2)+ρ f

(2)
+ρm(2)−1)

( f
(2)

+hm(2))
2 .

The right-hand side of the system (6) is nonsmooth, which is the main feature of the
model (6) that does not affect the stability analysis of its fixed points. The parameter space
of model (6) is devided by hsw where hsw = δ(1 − v)/((1 − s)(1 − δ)) and corresponds to
Equality f = hm taking into account equilibrium numbers (7) and (8). Crossing value of
hsw leads to a switching of function (2) corresponding to the number of pairs formed. As a
result, the stability domain of system (6) in the (ρ, a) plane is determined by bifurcation
lines that correspond to either fixed point (7) or (8).

A study on the stability of system (6) was presented in [73], which showed that fixed
points of system (6) lose stability via both the Neimark–Sacker scenario, leading to the
emergence of quasiperiodics, and the period-doubling bifurcation, giving rise to regular
oscillations in population size.

3. Selective Harvest of Immature Individuals

Let us consider the scenario of an undifferentiated harvest of juveniles in a popu-
lation. Such selective harvesting is rational due to the economic value of the harvested
species and/or the preservation of population sustainability. Examples of juvenile-specific
exploitation due to its economic value include Greenland seals (Phoca groenlandica) [80],
northern fur seals (Callorhinus ursinus L.) [25], and sables (Martes zibellina) [81]. Moreover,
the harvesting of young wild boars [82], deer [83], and red deer (Cervus elaphus) [38] has
been shown to maintain population sustainability. In general, the differentiated harvest
of juveniles leads to the preservation of the reproductive core of the population, which
consists of mature females and large breeding males [83].

We assume that a constant share of the juveniles is harvested after the breeding season.
The number of captured individuals is proportional to the immature group size. Generally,
model (6) with juvenile harvest can be expressed as follows:
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
pn+1 = amin( fn, 2 fnmn/( fn/h + mn)) (1 − up)
fn+1 = δ(1 − pn − ρ( fn + mn))pn + s fn
mn+1 = (1 − δ)(1 − pn − ρ( fn + mn))pn + vmn

. (10)

3.1. Fixed Points of Model (10)

We distinguished the sizes of the population groups immediately after reproduction
but before harvesting, and denoted them as p̃, f̃ , and m̃, and the number of individuals
remaining after harvesting, which are p, f, and m, respectively. The sizes of the juvenile
group before and after harvesting are related by the equation p = p̃(1 − up), where the
harvest rate up is a fraction of the captured juveniles. The sizes of the unexploited sex
groups in the population before and after harvesting remain unchanged.

The stationary population sizes corresponding to the coordinates of the fixed point of
the system (10) depend on the sex ratio. When the number of males in the stable population
is sufficient, i.e., m ≥ f /h, and the number of pairs formed corresponds to the number of
mature females, which is min( f , 2 f m/( f /h + m)) = f , the stationary sizes of the stage
and sex groups are determined by the following formulas:

The coordinates of the non-zero fixed point of the model (10) after harvesting are
as follows:

p(1) =
(1 − v)(s + aδ(1 − up)− 1)

ρ((s − v)δ + 1 − s) + aδ(1 − v)(1 − up)
, f

(1)
=

1
a(1 − up)

p(1), m(1) =
(1 − δ)(1 − s)

aδ(1 − v)(1 − up)
p(1); (11)

The coordinates of the non-zero fixed point of the model (10) after reproduction but
before harvesting are as follows:

p̃
(1)

= p(1)/(1 − up), f̃
(1)

= f
(1)

, m̃
(1)

= m(1). (12)

In the case of a shortage of males in the breeding population m < f /h, the number
of pairs formed is calculated as the harmonic mean of the number of males and females,
taking into account the harem size h, that is, min( f , 2 f m/( f /h + m)) = 2 f m/( f /h + m),
and the coordinates of the non-zero fixed point of the model (10) are found as follows:

The solution after harvesting is as follows:

p(2) = (1−s)(1−v)((1−δ)h(s+2aδ(1−up)−1)−δ(1−v))
((s−v)δ+1−s)((1−s)(1−δ)h+(1−v)δ)ρ+2ahδ(1−δ)(1−s)(1−v)(1−up)

,

f
(2)

= (1−s)(1−δ)h+(1−v)δ
(1−s)2ah(1−δ)(1−up)

p(2), m(2) = (1−s)(1−δ)h+(1−v)δ
(1−v)2ahδ(1−up)

p(2);
(13)

The solution after reproduction but before harvesting is as follows:

p̃
(2)

= p(2)/(1 − up), f̃
(2)

= f
(2)

, m̃
(2)

= m(2). (14)

Non-zero positive values of the equilibrium numbers of the system (10) are possible
only if 0 ≤ up < ucr

p , where ucr
p is the critical value and equals ucr

p = 1 − (1 − s)/aδ for
solutions (11)–(12) or ucr

p = 1 − (1 − s)/2aδ − (1 − v)/2ah(1 − δ) for solutions (13)–(14). If
the harvest rate up is higher than ucr

p , then the population will go extinct.
The equality f = hm corresponds to the balance of sexes in a stable population.

Substituting the expressions for the equilibrium numbers of the model (10) into f = hm,
we can obtain the threshold value of the parameter hsw, providing the balance of sexes:

hsw = δ(1 − v)/((1 − s)(1 − δ)), (15)

which coincides with the condition to switch the pair-formation function in the model (6)
without harvest. Consequently, if the model parameters satisfy the inequality h ≥ hsw,
then (i) the number of males for breeding is sufficient or exceeds the required number
because m ≥ f /h; (ii) the offspring abundance is determined only by the number of
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mature females, and (iii) the equilibrium numbers are determined by the expressions(
p(1), f

(1)
, m(1)

)
. However, with h < hsw, the population has a shortage of males because

m < f /h, and some females cannot participate in reproduction; thus, the equilibrium

numbers of population groups are
(

p(2), f
(2)

, m(2)
)

.

3.2. Stability of Fixed Points of Model (10)

To find the boundaries of the stability area for fixed points of the system (10), we use
the coefficients of the characteristic polynomial based on the methodology presented in
Section 2. The coefficients of the characteristic polynomials (9) for solutions (11) and (12)
coincide and are as follows:

D(1) = aδv(1 − u1)(1 − ρ( f
(1)

+ m(1)) + 2p(1),

H(1) = aδ(1 − u1)(ρ( f
(1)

+ m(1)) + 2p(1) − 1) + ρp(1)(δs − δv − s) + sv),
S(1) = p(1)ρ− s − v.

The coefficients for solutions (13) and (14) are as follows:

D(2) = 2ah(1 − u1)(1 − ρ( f
(2)

+ m(2))− 2p(2))(δhv(m(2))
2
+ s( f

(2)
)

2
(1 − δ))/( f

(2)
+ hm(2))

2
,

H(2) = (2ahρ(1 − δ)(1 − u1)( f
(2)

)
3
+ ( f

(2)
)

2
(2ah(1 − δ)(1 − u1)(2p(2) + ρm(2) − 1)− ρp(2)(s(1 − δ)+

+δv) + sv)− 2h f
(2)

m(2)(ρp(2)(s(1 − δ) + δv)− sv) + 2aδh2ρ(1 − u1)(m(2))
3
+

+h2(m(2))
2
(2aδ(1 − u1)(2p(2) + ρ f

(2) − 1)− ρp(2)(s(1 − δ) + δv) + sv))/( f
(2)

+ hm(2))
2
,

S(2) = p(2)ρ− s − v.

In the parameter space of model (10), passing through hyperplane (15) leads to the
switching of the pair-formation function. As a result, the bifurcation lines for solutions (11)
or (13) bound the stability area of the system (10) (Figure 1a). Crossing the NS boundary,
with an increasing birth rate, results in the quasiperiodic dynamics of the population and
its stage groups. The transition through the PD line gives rise to stable oscillations due to
the cascade of period-doubling bifurcations.
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Figure 1. The stability areas of the system (10) on the plane (ρ, a) with various values of other
parameters. (a) The dotted lines show the boundaries of the stability domain of solution (11); the solid
lines correspond to those for solution (13). Changes in the stability regions of solutions (13) (b) and
(11) (c) at different values of harvest rate up.

Analysis of the locations of the stability areas of solutions (11) and (13) for different
sex ratios shows that at small ρ values corresponding to the low contribution of mature
individuals in competition, the largest stability range with the numerical superiority of
males m ≥ f /h is observed (Figure 1a). With increasing ρ, the stability area of the fixed
point decreases for a population with a numerical superiority of males and expands for
those with a shortage of males; that is, m < f /h.
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As shown in Figure 1b,c, an increase in up with any sex ratio shifts the bifurcation lines
NS and PD toward higher values of parameter a, which corresponds to an expansion of the
stability area of the non-trivial fixed point of the system (10). This means that population
dynamics stabilize with an increase in the harvest rate of juveniles.

Simultaneously, the non-trivial fixed point becomes unstable in accordance with the
Neimark–Sacker scenario at low ρ values when crossing the NS line and in accordance with
the period-doubling scenario at higher ρ values when crossing the PD line (Figures 1 and 2).
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Figure 2. Stability regions of solutions (13) (a,c) and (11) (b,d) of the system (10) on the plane (up,ρ)
with s = 0.8, v = 0.5, δ = 0.5 (a,b), a = 5, h = 2, δ = 0.5 (c,d). TC, NS, and PD are the lines of transcritical,
Neimark–Sacker, and period-doubling bifurcations, respectively.

An increase in the birth rate (a) leads to a narrowing of the stability region for the
non-trivial fixed point at any sex ratio and causes its displacement toward higher harvest
rates of juveniles up (Figure 2a,b).

An increase in the survival coefficient of females (s) or males (v) expands the stability
area and shifts it toward higher values of intraspecific competition (ρ) (Figure 2c,d).

A higher harvest rate can result in a change in the dynamic modes of the population.
Accordingly, if the estimated population parameter values are within the area of quasiperi-
odic or regular oscillations near the stability domain boundary, then the introduction of
harvesting or an increase in intensity can dampen oscillations and stabilize population
dynamics. Additionally, note that the bifurcation line PD has a convex form for certain
parameter values (Figures 1 and 2). Hence, an increase in the harvest rate of juveniles can
lead to a shift in the observed dynamic mode, namely, periodic oscillations. Moreover, the
increase in harvesting pressure can excite oscillations in a stable population.

3.3. Multistability of Dynamics

We investigate the dynamic modes of model (10) by means of dynamic mode maps. To
generate these maps, we use a scanning method. The size of each image is 500 × 500 pixels.
For example, in Figure 3a, for each pair of parameter values ρ and a at the nodes of a uniform
grid that covers the area {(ρ , a) | 0 ≤ ρ ≤ 20, 0 ≤ a ≤ 10 }, we computed 10,000 iterations
of the mapping. Subsequently, we analyzed the nature of the established dynamics after the
transient process. We use the results of the last k = 500 steps to determine a cycle period T,
which satisfies the inequality sup|xt − xt+T | < 10−6, where t = 1, 2, . . . , k, T = 1, 2, . . . , k/2.
After detecting periodicity, the corresponding pixel on the diagram is colored according
to the period obtained. If T > k/2, then we determine such dynamics to be irregular.
Additionally, we check the condition 1 − pn − ρ( fn + mn) > 0 at each iteration step, as the
survival function of juveniles w1 = w2 = 1 − pn − ρ( fn + mn) can become negative at large
population sizes. If this condition is violated at a given step, we reset the survival function
to zero at that step.
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Figure 3. Dynamic mode maps of the model (10). The figures correspond to the period of observed
cycles. ID stands for irregular dynamics. l0 corresponds to population extinction. The white lines TC,
NS, and PD are the transcritical, Neimark–Sacker, and period-doubling bifurcations, respectively.

From a biological point of view, zero survival can be interpreted as complete offspring
mortality for a given year due to high intraspecific competition for life resources among age
classes caused by overpopulation. For instance, density-dependent regulation of juvenile
survival, leading to extinction due to overcrowding, has been observed in the population
of the flour beetle (Tribolium confusum), whose dynamics were studied in laboratory ex-
periments [84]. The higher the initial density of the eggs, the fewer individuals survive
to the adult stage. Furthermore, a situation may arise where the population becomes
extinct because developing beetles consume all available food before any of them reach
maturity [84].

Figure 3a shows the stability loss of a non-trivial fixed point either through a period-
doubling bifurcation or via the Neimark–Sacker scenario. Moreover, there are wide areas
of irregular dynamics because juvenile survival is a piecewise-linear function during
numerical experiments, and newborn group size is determined by a minimum function
with switching between different pair-formation functions depending on the sex ratio.
For example, Figure 3a shows such a region of irregular dynamics within the 2-cycle
area. Note that at the boundaries of this region, there are “islands” with a cascade of
period-doubling bifurcations.

A numerical investigation of the model (10) also reveals multistability areas, where
different dynamic modes coexist with the same values of model parameters. The map of
dynamic modes in Figure 3 shows the multistability area, where a stable state coexists
with a 3-cycle. This follows from the fact that the period-3 Arnold tongue overlies the
stability domain of the non-trivial fixed point (Figure 3). Note that the 3-cycle arises due to
a tangential bifurcation and coexists with a stable fixed point and dynamic modes emerging
due to the stability loss of this fixed point.

The dynamic mode that will attract depends on the initial values of the age-sex group
sizes of the population. Consequently, variations in initial conditions, for example, due to
the influence of environmental factors or a changing harvest rate, can lead to either one
dynamic mode or another, which will result in altering the nature of population dynamics.

The initial condition space can be divided by the attraction basins of several dynamic
modes due to multistability. As shown in Figure 4a, different stable cycles can coexist. For
example, a stable fixed point and a 3-periodic fixed point can exist together (Figure 4a),
and cycles with 2 and 3 periods divide the initial condition space (Figure 4b). Generally,
3-cycle and dynamic modes, which arise from the loss of stability of the non-trivial fixed
point (Figure 4a) or 2-cycle (Figure 4b), are attractive simultaneously.
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Figure 4. Basins of attraction for the coexisting dynamic modes of the model (10) at s = 0.8, v = 0.5,
δ = 0.5, and h = 2 with variation in the harvest rate up value. The figures correspond to the periods of
the observed cycles. Q stands for quasi-periodic dynamics.

As seen in Figure 4, a higher harvest rate up narrows the 3-cycle attraction basins,
which is accompanied by the capture of the entire space of initial conditions by the stable
fixed point. In addition, as the dynamic modes change, quasi-periodic oscillations transit
to equilibrium (Figure 4a) or a 2-cycle (Figure 4b).

The cascade of period-doubling bifurcations, which is typical of Verhulst’s law, is not
observed in Figure 4b; the 2-cycle loses stability via the Neimark–Sacker scenario. The
bifurcation diagrams in Figure 5a,c allow us to study in more detail the transitions between
dynamic modes by increasing the bifurcation parameter. As shown in Figure 5a, under
certain initial conditions, a decrease in the harvest rate up leads to stability loss of the
2-cycle, resulting in quasiperiodic dynamics of the system (10). In the system (10) phase
space, closed invariant curves emerge around each cycle element (Figure 5b). Under other
initial conditions, a 3-cycle arises and bifurcates via a period-doubling scenario as the
values of up decrease. Figure 5c demonstrates that the 3-cycle transits to a 6-cycle, which is
then broken down with the emergence of six invariant curves.
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Figure 5. Bifurcation diagrams of the dynamic variable p with respect to the parameter up at various
values of the initial conditions (a,c). (b) Phase portrait of system (10) with s = 0.8, v = 0.5, δ = 0.5, h = 2,
a = 6.75, and ρ = 10.

Variations in population size and/or population parameters, caused by environmental
and human-induced factors, can lead to a transition between basins of attraction. This
transition in the dynamics of natural populations with age and sex structure is accompanied
by a change in the period of oscillation or the emergence or disappearance of fluctuations.
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Additionally, a variation in the harvest rate can also cause a shift in the dynamic mode,
such as swinging or dampening oscillations.

3.4. The Hydra Effect

The hydra effect refers to an increase in the equilibrium abundance of an exploited
group of individuals in a population with a higher harvesting rate, i.e., mortality due
to exploitation. Since this study considers harvesting after reproduction and the equilib-
rium population size is the number of individuals after harvesting, the hydra effect is
concealed. To determine this effect, we analyze changes in population size postharvest and
immediately after reproduction but before harvesting.

For system (10), the existence domain of the hydra effect is bounded by the surface
H(k) of the maximum values of the equilibrium abundances of the exploited group of
individuals in the population after reproduction. H(k) can be determined from the equation

∂
(

p̃
(k))

/∂up = 0. Consequently, the area where the hydra effect occurs is located within
the stability domain of the equilibrium solutions of the model (10).

The value of the harvest rate at which the pre-harvest equilibrium abundance of

juveniles reaches its maximum is determined from the equation ∂
(

p̃
(k))

/∂up = 0 and is
found as follows:

u(1)
H = (1−v)(s+aδ−1)−L

a(1−v)δ at m ≥ f /h;

u(2)
H = (1−s)(1−v)((1−δ)(s+2aδ−1)h−δ(1−v))−((1−δ)(1−s)h+δ(1−v))L

2a(1−v)(1−s)(1−δ)hδ
at m < f /h,

where L =
√
(1 − s)(1 − v)(ρ(s − v)δ + (1 − s)(ρ− v + 1)).

The maximums of the equilibrium numbers of mature females and males can be found

in the formulas ∂
(

f
(k)

)
/∂up = 0 and ∂

(
m(k)

)
/∂up = 0 and are both achieved when the

harvest rate u(k)
H is the same as the maximum pre-exploitation abundance of juveniles p̃

(k)
H .

Consequently, an increase in the numbers of females and males results in a hydra effect on
the pre-harvest abundance of juveniles.

An example of the existence area of the hydra effect is depicted in Figure 6a, which
shows a decrease in the hydra domain with an increasing harvest rate of immature indi-
viduals in the parameter plane (up, ρ). Figure 5b,c illustrates the change in the sizes of the
population groups with increasing up at different values of the parameter of intraspecific
competition ρ.

When ρ > 4ahδ(1−s)(1−v)(1−δ)((1−δ)(s+aδ+1)h+δ(1−v))
(1−δs+s+δv)((1−δ)(1−s−aδ)h+δ(1−v))2 = ρ∗(2) (ρ∗(2) is the solution of equa-

tion u(2)
H = 0), as seen in Figure 6a, where ρ = 10, an increase in the harvest rate of

juveniles up results in a decrease in the numbers of all age and sex groups in the population
(Figure 6b).

If the estimated population parameters are within the hydra effect area, such as
ρ = 1.2 < ρ∗(2) in Figure 6a, then the introduction of harvesting or a higher harvest intensity
will increase the abundance of all population groups (Figure 6c). Figure 6c shows that
with an increase in the harvest rate up to a level of u(2)

H , the juvenile abundance after

reproduction can reach p̃
(k)
H , while the post-harvest abundance of p decreases for any

value of up. Therefore, if we take into account the offspring number when considering
the equilibrium abundance of the exploited class after reproduction p̃, then the hydra
effect occurs. Consequently, the hydra effect is hidden if the abundance of p is counted
after harvesting.

The hydra effect can be observed in the domain of unstable solutions of the system
(10). By calculating the average population size under exploitation, we can see this effect
in the instability domain of the nontrivial solution (Figure 6d). As the harvesting rate up
increases, the average group size of immature individuals after reproduction also increases.
At up = u∗, the inverse Neimark–Sacker bifurcation occurs in system (10), and further
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growth of up stabilizes the population dynamics. As a result, the graphs of the equilibrium
post-reproduction number of juveniles, the asymptotic abundance of juveniles, and the
average value coincide and show that the hydra effect is observed up to the value u(2)

H
(Figure 6d).
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Figure 6. (a) In the plane (up, ρ), the stability area of the fixed point of system (10) (shading) and
the existence domain of the hydra effect (hatching). TC, NS, and PD are the lines of transcritical,
Neimark–Sacker, and period-doubling bifurcations, respectively. H is the line of maximum values of
the pre-harvest abundance of the population. (b,c) Dependences of the equilibrium numbers of the
system (10) on the harvest rate of juveniles up. The curves p̃, p, f , and m correspond to the numbers
of immature individuals before and after harvesting, mature females, and mature males, respectively.
(d) Bifurcation diagrams of the dynamic variable p̃n corresponding to the number of juveniles after
reproduction (blue dots). The green line is the equilibrium number of juveniles after reproduction p̃.
The red line corresponds to the average number of juveniles. ucr

p is the critical value, if the harvest
rate up is higher than ucr

p , then the population will go extinct. u∗ is the bifurcation value at which the
inverse Neimark–Sacker bifurcation occurs.

Figure 7 illustrates the changes in the area of occurrence of the hydra effect at dif-
ferent sex ratios with increasing harvest rates of juveniles up (Figure 7a,b) and birth rate
a (Figure 7c,d). As shown, in the parameter plane (ρ, a), an increase in up at different
sex ratios displaces the hydra effect area toward higher values of birth rate (Figure 7a,b).
Similarly, in the parameter plane (up, ρ), a higher birth rate (a) results in a shift of the hydra
domain toward higher values of up (Figure 7c,d).
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Figure 7. The existence domains of the hydra effect are highlighted by shading at up = 0.5 (a,b) and
a = 4 (c,d) and hatching at up = 0.1 (a,b) and a = 10 (c,d) with s = 0.8, h = 2, and δ = 0.5. TC, NS, and
PD are the lines of transcritical, Neimark–Sacker, and period-doubling bifurcations, respectively. H is
the line of the maximum pre-harvest abundance of the population.

4. Selective Harvest of Mature Males

The hunting of game species is usually non-selective when individuals of different
sexes and ages are harvested. However, during a hunting season, only adult males can be
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allowed to yield, for example, the following species in Russia: noble deer, spotted deer,
roe deer, European moose, Siberian moose, elk, and hind [24]. As a rule, hunting large
mammals involves harvesting mature individuals; for instance, in the Selous Game Re-
serve (Tanzania, Africa), tourists are allowed to shoot a large number of game species [85].
Recently, trophy hunting has become increasingly popular, where animals with impressive
antlers, tusks, or skulls are hunted to obtain derivatives. As a result, non-selective harvest-
ing transforms into selective harvesting [24]. Preference is given to mature individuals with
large body sizes and remarkable features of such “trophy” species as the Saiga antelope
(Saiga tatarica), elephants, moose, and other animal species [15,65].

In the case of selective proportional harvesting of mature males after the breeding
season, model (6) takes the following form:

pn+1 = amin( fn, 2 fnmn/( fn/h + mn))
fn+1 = δ(1 − pn − ρ( fn + mn))pn + s fn
mn+1 = ((1 − δ)(1 − pn − ρ( fn + mn))pn + vmn)(1 − um)

, (16)

where the harvest rate um corresponds to the fraction of captured mature males.

4.1. Fixed Points of Model (16) and Their Stability

If m ≥ f /h, then min( f , 2 f m/( f /h + m)) = f and the stationary population size is
determined by the following formulas:

The coordinates of the non-zero fixed point of the model (16) after harvesting are
as follows:

p(1) = (1−v(1−um))(s+aδ−1)
(((1−s+v)um+s−v)δ+(1−s)(1−um))ρ+aδ(1−v(1−um))

,

f
(1)

= p(1)/a, m(2) = (1−s)(1−δ)h+(1−v)δ
(1−v)2ahδ(1−up)

p(2);
(17)

The coordinates of non-zero fixed point after reproduction but before harvesting are
as follows:

p̃
(1)

= p(1), f̃
(1)

= f
(1)

, m̃
(1)

= m(1)/(1 − um), (18)

where a > (1 − s)/δ.
If m < f /h, then min( f , 2 f m/( f /h + m)) = 2 f m/( f /h + m) and the solution after

harvesting is as follows:

p(2) = (1−s)(1−v(1−um))((1−δ)(1−um)h(s+2aδ−1)−δ(1−v(1−um)))
h(1−δ)(1−s)(1−um)(Gρ+2aδ(1−v(1−um)))+ρδG(1−v(1−um))

,

f
(2)

= (1−s)(1−δ)(1−um)h+(1−v(1−um))δ
2ah(1−s)(1−δ)(1−um)

p(2),

m(2) = (1−s)(1−δ)(1−um)h+(1−v(1−um))δ
2ahδ(1−v(1−um))

p(2);

(19)

The solution after reproduction but before harvesting is as follows:

p̃
(2)

= p(2), f̃
(2)

= f
(2)

, m̃
(2)

= m(2)/(1 − um). (20)

Fixed points (17)–(18) are positive and exist with a > (1 − s)/δ. Solutions (19)–(20)
exist at 0 ≤ um < ucr

m , where ucr
m = 1 − δ/(δv − h(δ − 1)(s + 2aδ − 1) is the critical value. If

the harvest rate um is higher than ucr
m , then the population will go extinct. The condition for

switching the pair-formation function for model (16), determining the threshold value of
the parameter u, is as follows:

usw
m = 1 − δ/((1 − δ)(1 − s)h + δv). (21)

When um < usw
m , the sex ratio considering harem size h is m ≥ f /h. This means that

the abundance of offspring is determined by the number of mature females. In this case,
Equations (17)–(18) can be used to find the equilibrium population size. If um ≥ usw

m , then
the number of mature females is greater than the maximum number of pairs: f > hm. In



Mathematics 2024, 12, 535 16 of 27

this case, Equations (19)–(20) can be used to determine the equilibrium population size. A
high harvest of mature males can cause a shortage of males, meaning that some mature
females will not be able to produce offspring.

Note that if an abundance of males is plentiful in an unexploited population, i.e.,
m ≥ f /h, and the sex ratio is skewed toward males, then the introduction of exploitation of
males with values of harvest rate um higher than the threshold level usw

m will cause a shift
in the sex ratio. If a population without harvesting has a sex ratio that is skewed toward
mature females due to a shortage of males m < f /h, then an increase in the harvest rate of
males um will not change the sex ratio.

The boundaries of the stability area of fixed points in the system (16) are found based
on the coefficients of the characteristic polynomial (9). The coefficients for solutions (17)
and (18) have the following form:

D(1) = aδv(1 − u3)(1 − ρ( f
(1)

+ m(1))− 2p(1),

H(1) = aδ(ρ( f
(1)

+ m(1))− 1) + p(1)(2aδ − ρ(1 − u3)(s − δ(v + s)) + sv(1 − u3),
S(1) = ρp(1)(1 − u3(1 − δ))− v(1 − u3)− s.

The coefficients for solutions (19) and (20) are

D(2) = 2ah(1 − u3)(1 − ρ( f
(2)

+ m(2))− 2p(2))(δhv(m(2))
2
+ s( f

(2)
)

2
(1 − δ))/( f

(2)
+ hm(2))

2
,

H(2) = (2ahρ(1 − δ)(1 − u3)( f
(2)

)
3
+ (1 − u3)( f

(2)
)

2
(2ah(1 − δ)(2p(2) + ρm(2) − 1)−

−ρp(2)(s(1 − δ) + δv) + sv) + 2h f
(2)

m(2)(1 − u3)(sv − ρp(2)(s(1 − δ) + δv)) + 2aδh2ρ(m(2))
3
+

+h2(m(2))
2
((1 − u3)(−ρp(2)(s(1 − δ) + δv) + sv) + 2aδ(2p(2) + ρ f

(2) − 1)))/( f
(2)

+ hm(2))
2
,

S(2) = ρp(2)(1 − u3(1 − δ))− v(1 − u3)− s.

Let us consider the change in the stability domain of the system (16) depending on the
value of the harvest rate um at m ≥ f /h, which corresponds to an unexploited population
with a sufficient number of males (Figure 8a,c). With um > usw

m , an increase in the value of
the coefficient um leads to a change in the sex ratio and, accordingly, the stability area of the
model (16) (Figure 8b,d).
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Figure 8. Stability regions of fixed points (17) (a,c) and (19) (b,d) in the (ρ, a) plane at h = 2 and δ = 0.5
with variation in the harvest rate of mature males um. TC, NS, and PD are the lines of transcritical,
Neimark–Sacker, and period-doubling bifurcations, respectively.

If the offspring number is only determined by the number of females, m ≥ f /h, then
the introduction of male harvesting and an increase in its intensity contract the stability area
in order to the birth rate (a); the Neimark–Sacker bifurcation lines (NS) shift toward smaller
values of a (Figure 8a). Consequently, when an abundance of males is plentiful, a higher
harvest rate can result in the emergence and amplification of quasiperiodic oscillations.
With an increase in the value of the parameter um, crossing the threshold value defined
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by relation (21) means that the number of mature females in the population exceeds the
number of forming pairs: f > hm (Figure 8b). Simultaneously, the stability region of the
nontrivial fixed point of the system (16) expands for the same values of the birth rate a.
Therefore, an increase in the intensity of male harvesting um in a population with a sex
ratio skewed toward females can dampen quasiperiodic oscillations.

A variation in the parameter of intraspecific competition, ρ, can cause changes in
the stability domain for any sex ratio in the population that are not necessarily consistent.
When m ≥ f /h, there are population parameter values at which an increase in the harvest
rate um can move the period-doubling bifurcation line PD to either lower values (Figure 8a)
or higher values of ρ (Figure 8c). The same is true for the case of f > hm (Figure 8b,d).
Therefore, an increase in male harvest intensity for any sex ratio can result in the emergence,
amplification, or dampening of periodic oscillations, depending on the values of system
(16) parameters.

Note that, with m ≥ f /h, an increase in um up to usw
m narrows the stability area

concerning values of the parameter of intraspecific competition (ρ) (Figure 8a). If um > usw
m ,

then the sex ratio in the population is f > hm, and further growth of um expands the
stability domain concerning ρ (Figure 8b). If initially, with m ≥ f /h, a higher um expands
the stability area (Figure 8c), then crossing the threshold value and subsequent growth in
um lead to the stability area construction concerning values of ρ (Figure 8d).

4.2. The Hydra Effect

The functional dependence determining the boundary of the hydra effect area for

system (16) H(k) is found from the equation ∂
(

m̃
(k))

/∂um = 0.
With values of the system (16) parameters corresponding to a non-exploited popu-

lation with a sufficient number of males, i.e., m ≥ f /h, the hydra effect area does not
depend on the harvest rate um and is located between the lines: a(1)1H = (1 − s)/δ and

a(1)2H = ρ((s − v − 1)δ + 1 − s)/vδ, and a(1)2H > a(1)1H (Figure 9a–d). In Figure 9a–d, the graphs

a = a(1)1H and a = a(1)2H correspond to the lines TC(1) and H(1), respectively. Note that the

curves a(1)2H and a(1)1H intersect at ρ∗ = v(1 − s)/(1 − s − δ(1 − s + v)). At the same time,
the maximum equilibrium numbers of juveniles and mature females, which are calculated

using the formulas ∂
(

f
(1)

)
/∂um = 0 and ∂

(
p(1)

)
/∂um = 0, are achieved at values greater

than a = (1 − s)/δ and coincide with the lower boundary of the hydra’s area. Note that the
boundary a(1)1H = (1 − s)/δ is a condition for the existence of a nontrivial solutions (17) and
(18) of the system (16). Therefore, if m ≥ f /h, then the equilibrium numbers of juveniles

p(1) and mature females f
(1)

always increase with the growth of harvest rate of males um.

Mathematics 2024, 12, x FOR PEER REVIEW 18 of 28 
 

 

siperiodic oscillations. With an increase in the value of the parameter um, crossing the 

threshold value defined by relation (21) means that the number of mature females in the 

population exceeds the number of forming pairs: mhf   (Figure 8b). Simultaneously, 

the stability region of the nontrivial fixed point of the system (16) expands for the same 

values of the birth rate a. Therefore, an increase in the intensity of male harvesting um in 

a population with a sex ratio skewed toward females can dampen quasiperiodic oscilla-

tions. 

A variation in the parameter of intraspecific competition,  , can cause changes in 

the stability domain for any sex ratio in the population that are not necessarily con-

sistent. When hfm / , there are population parameter values at which an increase in 

the harvest rate um can move the period-doubling bifurcation line PD to either lower 

values (Figure 8a) or higher values of   (Figure 8c). The same is true for the case of 

mhf   (Figure 8b,d). Therefore, an increase in male harvest intensity for any sex ratio 

can result in the emergence, amplification, or dampening of periodic oscillations, de-

pending on the values of system (16) parameters.  

Note that, with hfm / , an increase in um up to sw
mu  narrows the stability area 

concerning values of the parameter of intraspecific competition (  ) (Figure 8a). If um > 
sw
mu , then the sex ratio in the population is mhf  , and further growth of um expands the 

stability domain concerning   (Figure 8b). If initially, with hfm / , a higher um ex-

pands the stability area (Figure 8c), then crossing the threshold value and subsequent 

growth in um lead to the stability area construction concerning values of   (Figure 8d). 

4.2. The Hydra Effect 

The functional dependence determining the boundary of the hydra effect area for 

system (16) H(k) is found from the equation ( ) 0/~ )( = m
k um . 

With values of the system (16) parameters corresponding to a non-exploited popu-

lation with a sufficient number of males, i.e., hfm / , the hydra effect area does not 

depend on the harvest rate um and is located between the lines: −= /)1(
)1(

1 sa H  and 

−+−−= vsvsa H /)1)1((
)1(

2 , and )1(
1

)1(
2 HH aa   (Figure 9a–d). In Figure 9a–d, the graphs 

)1(
1Haa =  and )1(

2Haa =  correspond to the lines TC(1) and H(1), respectively. Note that the 

curves )1(
2Ha  and )1(

1Ha  intersect at ))1(1/()1(* vsssv +−−−−= . At the same time, the 

maximum equilibrium numbers of juveniles and mature females, which are calculated 

using the formulas ( ) 0/)1( = muf  and ( ) 0/)1( = mup , are achieved at values greater 

than −= /)1( sa  and coincide with the lower boundary of the hydra’s area. Note that 

the boundary −= /)1(
)1(

1 sa H  is a condition for the existence of a nontrivial solutions (17) 

and (18) of the system (16). Therefore, if hfm / , then the equilibrium numbers of ju-

veniles )1(p  and mature females )1(f  always increase with the growth of harvest rate 

of males um. 

 

Figure 9. The domains of the hydra effect are highlighted by shading at um = 0.1 for the fixed point
(18) and hatching at um = 0.6 for the fixed point (20) in the parameter plane (ρ, a). TC, NS, and PD are
the lines of transcritical, Neimark–Sacker, and period-doubling bifurcations, respectively. H is the line
of the maximum values of pre-harvest abundance of mature males. Mf is the line of the maximum
equilibrium values of the abundance of mature females.
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When m ≥ f /h, a decrease in the survival rate of mature males v (Figure 9b) and the
proportion of newborn females δ (Figure 9d) leads to the expansion of the hydra effect area
and a shift of this area toward lower values of the intraspecific competition parameter ρ.
Conversely, an increase in the survival rate of mature females s (Figure 8c) contracts the
hydra domain.

A further increase in the harvest rate um beyond the threshold level usw
m leads to a

change in the sex ratio (Figure 9). Thus, for higher values of um, there exists a hydra
effect area for a fixed point (20). If the population has a shortage of males m < f /h, then
the area where the hydra effect occurs depends on the value of um. The boundary of
the hydra effect area is defined by the surface H(2), which is determined by the equation

∂
(

m̃
(2)

)
/∂um = 0 (Figure 9). At the same time, the maximum equilibrium population

of mature females is found from ∂
(

f
(2)

)
/∂um = 0, which corresponds to the curve M2

f
in Figure 9. Note that the highest values of the equilibrium number of females occur at
lower values of reproductive potential (a) compared to the maximum number of males. The
local maximum of the equilibrium juvenile abundance, determined by ∂

(
p(2)

)
/∂um = 0,

is achieved at biologically meaningless values of the system (16) parameters. Thus, with
m < f /h, the stationary juvenile number always decreases as the harvest rate of mature
males um increases.

If the sex ratio is skewed toward mature females in the unexploited population:
m < f /h, then an increase in the harvest rate of mature males um does not alter the sex ratio.
Figure 10 shows the changes in the hydra effect area due to variations in the population
parameters and an increase in the harvest rate um.
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Figure 10. Changes in the domains of the hydra effect for fixed point (20) with variations in the values
of population parameters and an increase in harvest rate um. The domains are highlighted in shading
at um = 0.1 (a,b) and um = 0.7 (c,d) and hatching at um = 0.6 (a,b) and um = 0.8 (c,d). TC, NS, and PD
are the lines of transcritical, Neimark–Sacker, and period-doubling bifurcations, respectively. H is the
line of the maximum values of pre-harvest abundance of mature males.

With m < f /h, an increase in the survival coefficients of females (s) and males (v), the
proportion of newborn females (δ), and the male harvest rate (um) leads to a shift in the
hydra area toward higher birth rates (a) and intraspecific competition (ρ) (Figure 10).

Additionally, Figure 11 shows the changes in the hydra effect area and the equilibrium
numbers of age-sex groups in the population with increasing um for different sex ratios.
The equilibrium number of immature individuals p increases with a higher harvest rate of
males (um) if the population has a sufficient number of males, i.e., m ≥ f /h (Figure 11b–d).
Conversely, with m < f /h, the number of juveniles decreases. A growth in the number of
mature females can be observed with increasing um for any sex ratio in the population. The
equilibrium post-harvest number of males m always decreases. However, the equilibrium
number of males after reproduction but before harvesting m̃ can reveal the hydra effect.
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Figure 11. (a) The stability domains of the fixed point of the system (16) and the hydra effect areas
are highlighted by shading and hatching, respectively, in the parameter plane (um, a). TC and NS are
the lines of transcritical and Neimark–Sacker bifurcations, respectively. H is the line of the maximum
values of pre-harvest abundance of mature males. Mf is the line of the maximum values of the
abundance of mature females. (b–d) Dependences of the equilibrium numbers of the system (16)
on the harvest rate of mature males (um) with variations in parameter a. p, f , m̃, and m are the
stationary numbers for immature individuals, mature females, and mature males before and after
harvesting, respectively. The values of usw

m separate regions ΩI (m ≥ f /h) and ΩII (m < f /h). uc is
the critical value; if the harvest rate um is higher than ucr

m , then the population will go extinct.

With the values of the model parameters from hydra’s domain, if the sex ratio is
skewed toward males m ≥ f /h, then an increase in the harvest rate of males (um) up to the
threshold value usw

m leads to a growth of male numbers after reproduction m̃ (Figure 11a).
In the case of a non-high birth rate (a), the pre-exploitation number of males m̃ rises to

the level of m̃
(1)
H , after which it begins to decline at um > usw

m and m < f /h. Such behavior
is depicted in Figure 11b for a = 2.5. In this case, the threshold value usw

m coincides with the
harvest rate u(1)

H , and the maximum equilibrium pre-exploitation number is achieved at um
= usw

m . Simultaneously, with an increase in the pre-exploitation male number, the numbers
of juveniles and females also grow with increasing values of um up to usw

m .
With a higher birth rate a, the maximum equilibrium number of females is achieved

at um > usw
m , corresponding to m < f /h, as shown in Figure 11c for a = 3.5. As before, the

hydra effect is observed at the harvest rate value of um = usw
m .

A further increase in parameter a leads to the emergence of the hydra effect on the
number of males for any sex ratio in the population; for example, a = 6.5 in Figure 11d. As
can be seen, at m ≥ f /h, with a higher harvest rate of males, the pre-harvesting equilibrium
number m̃ increases slowly. After surpassing the threshold value usw

m , the sex ratio is
skewed toward females: m < f /h. Moreover, the parameter values continue to fall within
the hydra domain, and pre-harvest abundance m̃ continues to increase with growth in um.
When um surpasses um = u(2)

H , the equilibrium male number after reproduction begins to

decrease. Therefore, the pre-harvest number of males increases to m̃
(1)
H at usw

m = u(1)
H with

m ≥ f /h and then reaches m̃
(2)
H at um = u(2)

H with m < f /h.

4.3. Instability and Multistability

A further growth of the reproductive potential (a) destabilizes the dynamics of the
system (16), when m < f /h, for example, the case of a = 7.6 in Figure 11a. Here, the hydra
effect occurs within a limited area with stable fixed points of the system (16). Figure 12a,b
depict changes in equilibrium and average numbers of males after reproduction with a
bifurcation diagram showing the asymptotic dynamic mode of male abundance for specific
values of the parameters. As shown, in the instability area, the average number of males can
both increase and decrease with the growing harvest rate um (Figure 12a,b). Consequently,
in the domain of unstable solutions of the system (16), the hydra effect has a non-monotonic
nature. In general, a growth of the average number of males with an increase in the harvest
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rate um allows us to conclude the existence of the hydra effect in the instability area of the
system (16).
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Figure 12. (a,b) Bifurcation diagrams of the dynamic variable m̃n corresponding to the number of
mature males after reproduction (blue dots) with respect to the parameter um under different initial
conditions with m0 = 0.025. The green line is the equilibrium number of males after reproduction m̃.
The red line corresponds to the average number of males. The parameter values are s = 0.4, v = 0.2,
δ = 0.5, h = 2, a = 7.6, and ρ = 4.8. The values of usw

m separate regions ΩI (m ≥ f /h) and ΩII (m < f /h).
ucr

m is the critical value, if the harvest rate um is higher than ucr
m , then the population will go extinct.

(c–g) The basins of attraction for the coexisting dynamic modes of the model (16) at m0 = 0.025. The
figures correspond to the periods of observed cycles. ID stands for irregular dynamics.

Note that different dynamic modes are observed under different initial conditions
(Figure 12a,b), which indicates multistability in the system (16). Thus, one set of initial
values gives equilibrium dynamics of population size (Figure 12a), while the other one
results in the occurrence of a 3-cycle (Figure 12b). Figure 12c shows the basin of attraction
of these dynamic modes, where points B1 and B2 are the initial conditions for bifurcation
diagrams depicted in Figure 12a,b.

Note that in the model under consideration multistability arises due to the tangent
bifurcation caused by the nonlinearity of the system (16) (Figure 12) and due to switching
in the pair formation function. Note that switching the pair formation function significantly
complicates the observed dynamics of the system (16). For example, in the switching region,
the coexistence of three dynamic modes is possible: a fixed point, a 3-cycle, and irregular
dynamics (Figure 12d). These fixed and periodic points occur when m ≥ f /h, that is,
the number of formed pairs in the population corresponds to the number of females, and
irregular dynamics emerge with m < f /h. Consequently, if the model parameter values
are within the switching condition (21) area, then the existing dynamic modes overlap, and
the observed dynamics depend on the current abundance of the population.

Figure 12e–g shows basins of attraction of coexisting dynamic modes at m < f /h,
where irregular dynamics are possible. Note that with a decrease in the harvest rate um,
the following series of bifurcations of fixed point with 3-cycle are observed. The fixed
point (1-cycle) bifurcates via the Neimark–Sacker scenario, which leads to the emergence of
irregular dynamics. The cycle with period 3 loses stability through the cascade of period-
doubling bifurcations; thus, the 3-cycle is replaced by 6-cycle, 12-cycle, 26-cycle, etc. As a
result, irregular dynamics (ID) can coexist with 26-cycle (Figure 12e) or 12-cycle (Figure 12f),
also 1- and 3-cycles can simultaneously attract (Figure 12g).
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The dynamic modes maps in Figure 13a,b illustrate the change in the dynamic modes
in the parameter plane (um, a) due to the variation in the initial conditions, which correspond
to points B1 and B2 in Figure 12c. Figure 13 shows that there exist multistability areas; for
example, resonant cycles with different periods overlap, and 1- and 3-cycles coexist. In
these domains, the initial conditions determine which dynamic mode will be attractive.
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Figure 13. (a,b) Dynamic mode maps of model (16) for s = 0.4, v = 0.2, δ = 0.5, h = 2, ρ = 4.8,
and m0 = 0.025. The figures correspond to the period of observed cycles. 10 corresponds to the
extinction of the population. ID stands for irregular dynamics. The white lines TC, NS, and PD are
the transcritical, Neimark–Sacker, and period-doubling bifurcations, respectively. (c) Bifurcation
diagrams of the dynamic variable m̃n corresponding to the number of mature males after reproduction
(blue dots) with respect to the parameter um at m0 = 0.025. The green line is the equilibrium number
of males after reproduction m̃. The red line corresponds to the average number of males. The values
of usw

m separate regions ΩI (m ≥ f /h) and ΩII (m < f /h). ucr
m is the critical value, if the harvest rate

um is higher than ucr
m , then the population will go extinct.

A further increase in the birth rate a destabilizes the dynamics of the system (16) for
any sex ratio in the population, for example, a = 8.1 in Figures 11a and 13c. Similar to the
previous case, the hydra effect occurs within a limited region where the fixed points of
the system (16) are stable. Figure 13c illustrates the dynamics of the male number after
reproduction with an increasing harvest rate um. Initially, the pre-harvest number of males
m̃ is stable and grows slowly. Then, the non-trivial fixed point of the system (16) loses
stability via the Neimark–Sacker bifurcation (Figure 11a), and irregular oscillations in
population size occur, initially at m ≥ f /h and then at m < f /h (Figure 13a). Figure 13c
also demonstrates the possibility of multistability within this range. A further increase in
um stabilizes the dynamics of the system (16).

5. Discussion

The research conducted in this paper demonstrates complex relationships between
the sex ratio, harvesting, and the nature of population dynamics.

The stability loss of fixed points of systems (10) and (16) is shown to occur via the
Neimark–Sacker bifurcation, leading to the emergence of quasiperiodic dynamics and the
period-doubling bifurcation, resulting in oscillations with finite periods. In most cases,
an increase in the harvest rate stabilizes dynamics by dampening oscillations. However,
shifts in dynamics due to changes in sex ratios and non-monotonic behavior of the stability
domain boundaries of systems (10) and (16) with variations in the values of population
parameters can lead to unexpected scenarios of population development.

Specifically, increasing the intensity of harvesting immature individuals up can both
dampen and induce oscillations depending on the reproductive potential a (Figures 1 and 2).
In the case corresponding to a non-exploited population with a sufficient number of males,
i.e., m ≥ f /h, the introduction of exploitation of males with harvest rate um can lead to
the emergence and amplification of quasiperiodic oscillations (Figure 8a,c). Conversely,
in populations with a shortage of males m < f /h, such selective harvesting dampens
quasiperiodic oscillations (Figure 8b,d). However, it is important to note that depending on
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the value parameters of the system (16) for the population with any sex ratio, an increase
in the harvest rate of males can result in the emergence and amplification or suppression
of periodic oscillations (Figure 8). The possibility of oscillation emergence or stabilization
with increasing harvesting intensity has been demonstrated previously in models of the
dynamics of ecologically limited populations structured by stage or age, e.g. [11,50].

Moreover, models (10) and (16) of exploited population dynamics reveal the possi-
bility of achieving various dynamic modes under different initial population sizes due
to multistability, as in model (6) without harvesting [73]. Variations in initial conditions
may lead to the realization of either one dynamic mode or another (Figures 3–5, 12 and 13).
Multistability arises due to the tangent bifurcation caused by the system’s nonlinearity and
switching in the pair formation function (Figures 12 and 13). Therefore, slight variations in
the current population size, leading to changes in the sex ratio, can complicate population
dynamics due to multistability. Simultaneously, challenges arise in identifying the type
of observed dynamic mode, as self-regulation processes and the current sex ratio in the
population impact the behavior of the trajectory.

The harvest of juveniles is shown to not significantly change the sex ratio of mature
individuals in the population (Figure 6). For an unexploited population at any sex ratio
with the offspring abundance determined by the number of females, the introduced harvest
of juveniles does not alter the sex ratio but can decrease or increase the equilibrium numbers
of females and males (Figure 6b and c, respectively). Evidently, the number of immature
individuals decreases with increasing harvest rate. Moreover, under specific values of pa-
rameters, with an increase in harvest rate, the number of juveniles after harvest can increase
by the next breeding season before harvest. Note that the growth of the juvenile number
after reproduction and the numbers of mature females and males occur simultaneously;
as a result, their highest numbers correspond to the same harvest rate. Consequently, the
selective harvest of immature individuals can lead to the emergence of the hydra effect
on the equilibrium number of juveniles in the population after reproduction but before
harvesting (Figure 6c).

It is generally accepted that the occurrence of the hydra effect requires harvesting to
precede reproduction [43,48]. This paper, as the study [45], demonstrates that the hydra
effect can occur during harvesting after reproduction. When considering population size
immediately after harvesting, the hydra effect is hidden.

At low reproductive potential, the hydra effect arises at low values of the intrapopula-
tion competition coefficient and the harvest rate of juveniles (Figure 7). With an increase
in population reproductive potential, the hydra effect area within the stability domain of
equilibrium solutions expands with respect to intraspecific competition parameters and
the harvest rate of immature individuals. A higher birth rate increases the intensity of
density-dependent regulation and leads to the emergence of oscillations. Consequently, in
this case, the hydra area for stable equilibrium numbers narrows and shifts toward higher
harvest rates (Figure 7).

In contrast to the exploitation of juveniles, the harvest of mature males alters the
sex ratio among breeding individuals. In the case of a non-exploited population with a
sufficient number of mature males, which corresponds to a common situation in nature, the
introduction of male harvesting and an increase in its intensity initially led to a balanced
sex ratio, followed by a shortage of males in the population (Figure 8). However, if there is
an unexploited population with a sex ratio skewed toward females, then harvesting males
will lead to an even greater deficit of males. As a result, the abundance of all age-sex groups
in the population can significantly decrease due to excessive harvesting. There are known
cases of dramatic declines in reproduction and population collapse in various species due
to the intensive hunting of males [27,30].

Similarly to the juvenile harvest, the exploitation of males demonstrates the hy-
dra effect in the exploited group numbers after reproduction but before exploitation
(Figures 9–11). The equilibrium pre-harvest number of individuals in the exploited popula-
tion group increases with a higher harvest rate due to overcompensatory density-dependent
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regulation of juvenile survival. The individuals removed can be considered to be in excess
abundance, the harvest of which decreases competitive pressure and leads to growth in
population size. This effect is observed in the population with any sex ratio. In the case of
mature male exploitation, the hydra effect occurs at relatively high birth rates, even if the
survival rates of females and males are relatively low. Moreover, with a higher harvesting
rate, the population size increases with a higher birth rate. Conversely, in a population with
a sufficient number of males, an increase in the harvesting mortality of mature males can
result in the growth of the pre-harvesting number at relatively low birth rates (Figure 9).

Moreover, the numerical investigation of the model proposed in this study revealed
the non-monotonic nature of the hydra effect in the instability domain (Figure 12a,b and
Figure 13c). Note that the increase in the equilibrium number of a stable population due to
harvesting is driven by overcompensatory density regulation [43,48]. However, in cases of
unstable dynamics, the hydra effect can occur due to changes in the amplitude and nature
of population fluctuations [43]. A higher harvesting mortality often dampens oscillations,
which leads to a higher average population size. However, the analysis carried out in this
study shows that an increase in the harvesting rate does not always suppress oscillations,
so it is necessary to consider the type and amplitude of fluctuations.

The existence of the hydra effect and its influence on the older age class of the popula-
tion have previously been investigated for overcompensatory models with proportional
exploitation [41,50] and threshold exploitation [47]. Such studies have been developed
since adult individual harvest is the most promising from a fishing point of view [47]. Note
that the existence of excess abundance in fish populations and its harvesting have been
actively discussed [43].

The emergence of the hydra effect during differentiated harvesting can be used for the
sustainable management of renewable resources [45]. Specifically, the hydra effect leads to
an increase in the numbers of both the exploited group of the population accounting for
offspring after reproduction and harvested individuals. However, under specific parameter
values, the value of the harvest rate, corresponding to the maximum equilibrium number
of the exploited group, is near a critical harvest rate, leading to population extinction.
Consequently, the organization of harvesting requires a balanced approach, especially
when population parameters are unknown.

The removal of individuals can be used to combat biological invasions or pests. In
this case, management measures can have the opposite effect when the pest number
increases due to the hydra effect [41,45,55]. For example, in a coastal marine ecosystem, an
eradication program resulted in stage-specific overcompensation and a 30-fold, single-year
increase in the population of the invasive European green crab (Carcinus maenas) [55]. One
hypothesis for this overpopulation is that the removal of adults reduces the cannibalism of
young individuals and leads to an overcompensatory replenishment in the population of
this species. Cannibalism of young individuals by adult individuals is crucial for density-
dependent regulation of population replenishment [55].

6. Conclusions

Thus, depending on the values of population parameters, the selective harvest of
individuals from a specific age-sex group (juveniles or mature males) can result in either
the damping of fluctuations and stabilization of population dynamics or the emergence of
oscillations in abundance. The proposed models reveal multistability domains in which
different dynamic modes coexist. In these domains, the initial conditions determine which
dynamic mode will be achieved. Notably, multistability arises due to bifurcations caused
by the nonlinearity of the systems and due to switching in the pair formation function.
Therefore, slight variations in the current population size, leading to changes in the sex
ratio, complicate population behavior and can result in a shift in the observed dynamic
mode. Depending on the values of the population parameters, the harvesting scenarios
considered in this paper reveal the hydra effects, which correspond to an increase in the
equilibrium abundance of the harvested age-sex group after reproduction with an increase
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in the harvest rate. Selective harvesting, causing the hydra effect, leads to an increase in
the abundance of the remaining population after reproduction but before harvest and to a
growth in the number of harvested individuals.
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