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Abstract: In practical applications, the hydrophone array has element position errors, which seriously
degrade the performance of the direction of arrival estimation. We propose a direction of arrival
(DOA) estimation method based on sparse Bayesian learning using existing array position errors to
solve this problem. The array position error and angle grid error parameters are introduced, and
the prior distribution of these two errors is determined. The joint probability density distribution
function is established by means of a sparse Bayesian learning model. At the same time, the un-
known parameters are optimized and iterated using the expectation maximum algorithm and the
corresponding parameters are solved to obtain the spatial spectrum. The results of the simulation
and the lake experiments show that the proposed method effectively overcomes the problem of
array element position errors and has strong robustness. It shows a good performance in terms of its
estimation accuracy, meaning that the resolution ability can be greatly improved in the case of a low
signal-to-noise ratio or small number of snapshots.

Keywords: direction of arrival estimation; array position error; sparse Bayesian learning;
expectation maximization

MSC: 94-10

1. Introduction

Direction of arrival (DOA) estimation is still an important research direction in array
signal processing. Its main principle is analyzing the characteristic information of signals
(such as the angle of arrival, frequency, etc.) by using various algorithms in the data received
by the sensor array. It has been widely used in the fields of radar, sonar, microphones,
wireless communication, and other fields [1–5]. Traditional subspace class methods such as
the multiple signal classification (MUSIC) method [6,7], a form of signal parameter estimation
based on a rotation invariant technique [8], have attracted more attention from researchers.
These methods are simple and can achieve real-time processing, but these methods also have
some shortcomings, e.g., their estimation performance is severely degraded in cases where
there is a low signal-to-noise ratio (SNR) or small snapshot number [9].

The array aperture is one of the key factors affecting DOA estimation. Compared with
a uniform linear array with the same number of elements, the coprime array has a larger
array aperture, which will provide a better estimation performance. Pal et al. proposed
the spatial smoothing MUSIC (SS-MUSIC) method based on the coprime array, which
could detect more signal sources than the elements of the coprime array and had a better
estimation performance [10]. However, this method used the coprime array differential
operation to form the augmented virtual array; the virtual elements of the discontinuous
part were ignored in the smoothing process, and the information of the virtual array
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was not fully utilized. Zhou and Weng decomposed the coprime array into two uniform
linear arrays for DOA estimation [11,12], and a unique estimation of the signal source
was obtained from the results of phase ambiguity. This method reduced the number of
identifiable targets by at least 1/2 when compared with the traditional uniform linear
array [13]. Li proposed an extended aperture rooting MUSIC method in [14], but this is
still a derivation and application of the traditional subspace class method, so its estimation
accuracy is still reduced by factors such as the SNR or snapshot number.

In recent years, researchers have proposed many DOA estimation methods [15–23]
with sparse spatial characteristics. These sparse signal representation methods not only
discretize the angle range of interest into a spatial angle grid, but also assume that the real
signal angle falls on a predefined grid, such as the L1-norm singular value decomposition
(L1-SVD) method [15]. This method can fully exploit the advantage provided by the high
degree of freedom (DOF) of the coprime array, so the number of detected targets can be
significantly increased in comparison to traditional methods. In practice, the real incident
angle may not be accurately located on the sampling grid no matter how dense the grid
is, which results in a decrease in the accuracy of incident angle estimation. To solve this
problem, an off-grid sparse Bayesian inference (OGSBI) method is proposed in [16], which
introduces the angle grid error parameter and determines the prior distribution, and the
joint probability density distribution function was established with the help of a sparse
Bayesian learning model [17–19]. At the same time, the maximum expectation algorithm
was used to optimize the iteration expression of each unknown parameter and solve the
corresponding parameters; as a result, the DOA estimation performance was improved for
the case of an off-grid incident signal. Sparse Bayesian learning has good flexibility in sparse
signal modeling, so it is suitable for scenarios with a limited number of snapshots and an
unknown number of sources [20,21]. An off-grid root sparse Bayesian learning (Root-SBL)
method was proposed in [22], which greatly reduces the computational complexity of the
OGSBL method. A new off-grid sparse Bayesian learning (SBL) method for nested arrays
was also proposed in [23], which takes the noise variance as a part of the unknown signal of
interest, and directly learns the unknown parameters through the sparse Bayesian learning
model, which greatly improves the estimation performance.

However, the above methods do not consider various errors existing in practical appli-
cations, such as mutual coupling and array element position errors, which will seriously
affect their effectiveness. To address the above problems, an SBL method was proposed
to solve the problem of uncertain mutual coupling in [24–26] that deduces the theoreti-
cal expressions of all unknown parameters, e.g., noise variance, mutual coupling vector,
and off-grid error vector, to achieve a good estimation performance. A sparse Bayesian
reconstruction technique has also been considered to solve this estimation problem, with
the joint impact of the simultaneous existence of amplitude phase and mutual coupling
errors, and its results show that it has great engineering application value [27,28]. When
considering the effect of impulsive noise, an off-grid sparse Bayesian learning method was
also proposed in [29], which can effectively suppress impulsive noise while estimating
off-grid DOA. In [30], Zhou proposes a reparameterized gamma process with random
effects. Compared with the classical gamma process, the proposed model has a more
intuitive physical interpretation. In addition, statistical inference for this model can be
readily generated through the variational Bayesian algorithm.

This paper mainly studies how to reduce the impact of array element position errors
on DOA estimation. One new DOA estimation method based on sparse Bayesian learning
is proposed to overcome the presence of array position errors. The proposed method
establishes the prior distribution of grid errors and array element position errors, as well as
the joint probability density distribution function, and employs the expectation maximum
(EM) method to iterate each unknown parameter. Finally, the effectiveness of this method
is validated using the simulation results and the lake test.

The rest of this paper is organized as follows: In Section 2, the signal model is intro-
duced. In Section 3, the theory derivation and algorithm flow are given. In Section 4, the
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simulation and lake test results are provided to validate the proposed method. Finally, the
conclusion for this paper is provided in Section 5.

2. Signal Model

A model diagram of the coprime array is shown in Figure 1. Two uniform linear arrays
with different spacings are nested into a coprime array: where subarray 1 has M2 sensors
and its spacing is evenly distributed by M1; and subarray 2 has M1 sensors, and its spacing
is evenly distributed by M1d. d represents the unit array element spacing, and this satisfies
d = λ/2, where λ represents the signal wavelength. Additionally, the total number of
elements is M = M1 + M2 − 1. Based on the above assumption, the index for the collection
of element positions is represented as follows:

Ω = [M1m2|0 ≤ m2 ≤ M2] ∪ [M2m1|0 ≤ m1 ≤ M1]. (1)
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Figure 1. Model diagram of the coprime array.

Assuming that there are unknown errors at each position of the element
∆P = [∆P,1, ∆P,2, · · · , ∆P,M]T, the actual position of the element becomes
ΩP = [Ω1 + ∆P,1, Ω2 + ∆P,2, · · · , ΩM + ∆P,M]T. Given that K signals occur in different
directions on the coprime array, and the incident direction is θ = [θ1, θ2, · · · , θK], the
receiving signal model of the coprime array is then as follows:

Y(t) = A(θ)s(t) + N(t) t = 1, 2, · · · , T, (2)

where Y(t) = [y1(t), y2(t), · · · , yM(t)]T represents the data received by the coprime array.
s(t) = [s1(t), s2(t), · · · , sK(t)]

T represents K signal vectors. N(t) = [n1(t), n2(t), · · · , nM(t)]T

represents the noise vector received by the coprime array, which obeys the Gaussian distri-
bution with a mean value of 0 and covariance σ2

nI, where σ2
n represents the power of noise.

T represents the number of snapshots, and A(θ, ΩP) = [a(θ1, ΩP), · · · , a(θK, ΩP)] is the
manifold matrix of the array model; a(θk, ΩP) is represented by:

a(θk, ΩP) = [ej2π(Ω1+∆P,1)d sin θk/λ, · · · , ej2π(ΩM+∆P,M)d sin θk/λ]
T
= ψ(θk, ∆P) ◦ ã(θk), (3)

where ã(θk) = [ej2πΩ1d sin θk/λ, · · · , ej2πΩMd sin θk/λ]
T

denotes the array-steering vector of the
k-th incident signal for the ideal condition; ψ(θk, ∆P) = [ej2π∆P,1d sin θk/λ, · · · , ej2π∆P,Md sin θk/λ]

T

represents the element position error vector factor of the coprime array; and ◦ denotes the
Hadamard product operation. Therefore, the manifold matrix of the coprime array can be
expressed as A(θ, ΩP) = Ψ(θ, ∆P) ◦ Ã(θ), Ã(θ) = [ã(θ1), · · · , ã(θK)],
Ψ(θ, ∆P) = [ψ(θ1, ∆P), · · · , ψ(θK, ∆P)].

The spatial interval [−π/2,π/2] is evenly divided into N grid points, where N ≫ M > K,
and the corresponding overcomplete angle set can be expressed as θ = [θ1, · · · , θn, · · · , θN],
so the expression under the sparse model is obtained as:

Y(t) = A(θ, ΩP)X(t) + N(t) t = 1, 2, · · · , T, (4)
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where A(θ, ΩP) can be denoted as A(θ, ΩP) = [a(θ1, ΩP), a(θ2, ΩP), · · · , a(θK, ΩP)],
A(θ, ΩP) = Ψ(θ, ∆P) ◦ Ã(θ), Ψ(θ, ∆P) = [ψ(θ1, ∆P), · · · , ψ(θN, ∆P)], Ã(θ) = [ã(θ1), · · · ,
ã(θN)]. X(t) is the zero extension of the original signal s(t), which has a value near the
actual incident angle, and a value of 0 in other cases. However, the incident angle cannot
be accurately incident on the preset grid point in the actual received data. Therefore, we
introduced the off-grid error to the model, which was obtained with the help of the Taylor
expansion as follows:

Φ(ΩP, δ) ≈ A(θ, ΩP) + B(θ, ΩP)diag(δ), (5)

where B(θ, ΩP) = [b(θ1, ΩP), · · · , b(θn, ΩP), · · · , b(θN, ΩP)], 1 ≤ n ≤ N, b(θn, ΩP) =
∂a(θn, ΩP)/∂θn. δ = [δ1, δ2, · · · , δN ] represents the angle grid error, and it satisfies
δ ∈ [−ϑ/2, ϑ/2], where ϑ represents the grid spacing. diag(·) represents the operation
transforming the vector into a diagonal matrix. Therefore, the new discrete grid model can
be expressed as:

Y(t) = Φ(ΩP, δ)X(t) + N(t) t = 1, 2, · · · , T. (6)

3. Sparse Bayesian Learning Model
3.1. Model Parameter Distribution

(1) Distribution of noise and its precision: We can assume that the noise is Gaussian
white noise with a distribution function as follows:

p(N|0, αn) =
T

∏
t=1

CN(Nt|0, αnIM), (7)

where Nt represents the t-th column of signal noise. αn represents noise precision and
is defined as α−1

n ≜ σ2
n. Noise precision follows gamma distribution, and its probability

density distribution function can be denoted as:

p(αn) = Γ(αn|1, b), (8)

where b is the hyperparameter of the gamma distribution, Γ(v) =
∫ +∞

0 tv−1e−tdt, Γ(x|v, z) =
Γ−1(v)zvxv−1 exp(−zx).

Therefore, sparse model Y(t) is subject to CN(Y(t)|Φ(ΩP, δ)X(t), αnIM), and its prob-
ability distribution function can be given as:

p(Y|X, ∆P, ∆, αn) =
T

∏
t=1

CN(Yt|Φ(ΩP, δ)Xt, αnIM), (9)

where Yt represents the t-th column of the received signal Y, and Xt represents the t-th
column of sparse signal X.

(2) Distribution of signal and its precision: Assuming that the sparse signal X(t) is
independent in different snapshots, and has a normal distribution with a mean of 0 and
variance γ = [γ1, · · · , γn, · · · , γN ], its probability distribution function is:

p(X|γ) =
T

∏
t=1

CN(Xt|0, γ), (10)

where γn is signal precision, γ = [γ1, · · · , γn, · · · , γN ] represents the sparse signal precision
vector, which is subject to joint gamma distribution, and the probability distribution
function is as follows:

p(γ) =
N

∏
n=1

Γ(γn; 1, c), (11)

where c represents the hyperparameter of the gamma distribution.
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(3) Grid error distribution: The grid error satisfies δ ∈ [−ϑ/2, ϑ/2], which follows a
uniform distribution, and its probability distribution function is expressed as:

p(δ) = (U[−ϑ/2, ϑ/2])N . (12)

(4) Distribution of array error and its precision: We can suppose that the errors in
the array position ∆P are independent of each other, and they obey a normal distribution
with mean 0 and variance ρ = [ρ1, · · · , ρm · · · , ρM]; therefore, their probability distribution
function is:

p(∆P|ρ) =
M

∏
m=1

CN(∆P,m|0, ρm), (13)

where ρm represents the array element error precision, ρ = [ρ1, ρ2, · · · , ρM] follows the
joint gamma distribution, and its probability distribution function is:

p(ρ) =
M

∏
m=1

Γ(ρm; 1, e), (14)

where e represents the hyperparameter of the gamma distribution.
According to Equations (8)–(14), the joint probability density function can be obtained as:

p(X, Y, δ, ∆P, αn, γ, ρ) = p(Y|X, ∆P, δ, αn)p(X|γ)p(γ)p(αn)p(∆P|ρ)p(ρ)p(δ). (15)

3.2. Proposed Method

Since p(X, δ, ∆P, αn, γ|Y) cannot be directly calculated, the EM algorithm will be used
to perform Bayesian learning derivation. Using the above preset model, the posterior
probability distribution of sparse signal X can be given as:

p(X|Y, δ, ∆P, αn, γ) =
p(Y|X, δ, ∆P, αn)p(X|γ)

p(Y, δ, ∆P, αn, γ)
∝ p(Y|X, δ, ∆P, αn)p(X|γ). (16)

We treat the sparse signal X as a hidden variable whose posterior probability distribution
also follows the Gaussian distribution with the mean µ and covariance Σx, as follows:

Σx =
(

αnΦH(ΩP, δ)Φ(ΩP, δ) + Λ−1
)−1

, (17)

µ = αnΣxΦH(ΩP, δ)Y, (18)

where Λ = diag(γ).
The calculation of µ and Σx in (17) and (18) requires the estimation of hyperparameters

δ, ∆P, αn, and γ. These hyperparameter estimation results are obtained by maximizing
p(X, δ, ∆P, αn, γ|Y) using the MAP method; therefore, we have the following:

δ̂, ∆̂P, α̂n, γ̂, ρ̂ = max{L(δ, ∆P, αn, γ, ρ)}= max{E{ln p(X, Y, δ, ∆P, αn, γ, ρ)}}, (19)

where E{·} denotes the expectation operation.
(1) Noise precision αn: Ignoring the posterior probability distribution function unre-

lated to noise precision in Equations (15) and (19), the likelihood function expression of
noise precision is:

L(αn) = E{ln[p(Y|X, ∆P, δ, αn)p(αn)]} = MT ln αn
π − αn

T
∑

t=1
∥Yt − Φ(∆P, δ)Xt∥2

2 + ln b − bαn. (20)

Taking the derivative of Equation (20) and setting the derivative result to 0, we can
calculate the following:
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∂ ln L(αn)
∂αn

= MT
αn

−
T
∑

t=1
∥Yt − Φ(ΩP, δ)Xt∥2

2 − b = MT
αn

− ∑T
t=1∥Yt − Φ(ΩP, δ)µt∥2

2 − T × Tr
{

ΣxΦH(ΩP, δ)Φ(ΩP, δ)
}
− b. (21)

Therefore, the iterative expression of noise precision can be obtained as follows:

α̂n =
MT

T
∑

t=1
∥Yt − Φ(ΩP, δ)µt∥2

2 + T × Tr{ΣxΦH(ΩP, δ)Φ(ΩP, δ)}+ b
, (22)

where µt represents the t-th column of the mean µ, Tr{·} represents the trace operation of
the matrix, and ∥·∥2 represents the two-norm operation of the vector.

(2) Signal precision γ: Ignoring any parameters unrelated to signal precision, the
likelihood function expression regarding signal precision can be written as follows:

L(γ) = E{ln[p(X|γ)p(γ)]} = T ln
|Λ|
πN −

T

∑
t=1

XH
t ΛXt + N ln c − c

N

∑
n=1

γn. (23)

Taking the derivative of Equation (23) and setting the derivative result to 0, we calculate:

∂ ln L(γ)
∂γn

=
T
γn

−
T

∑
t=1

XH
t,nXt,n − c. (24)

Therefore, the iterative expression of signal precision can be obtained as follows:

γ̂n =
T

c + ∑T
t=1 XH

t,nXt,n
=

T

c + TΣx(n,n) + ∑T
t=1|µn,t|2

, 1 ≤ n ≤ N, (25)

where Σx(n,n) denotes the t-th row and t-th column of the covariance matrix Σx, And µn,t
denotes the n-th row and t-th column of the mean matrix µ.

(3) Array position error ∆P: Ignoring the posterior probability distribution function un-
related to array position error in Equations (15) and (19), the likelihood function expression
for array position error is:

(26)

Setting the derivative of (26) as 0, the iterative expression of the array position error is
obtained as follows:

∆̂P,m =

αnRe
{

T
∑

t=1
YH

t diag(em

)
Ξµt

}
− αnT × Tr

{
Re

{
Φ̃Hdiag(em

)
Ξ
}

Σx

}
ρm + αn

T
∑

t=1
µH

t ΞHdiag(em
)
Ξµt + αnT × Tr{ΞHdiag(em)ΞΣx}

, (27)

where m = 1, 2, · · · , M, Re{·} represents taking the real part of a matrix. Please see
Appendix A for the proof process.

(4) Array position error precision ρ: Ignoring the posterior probability distribution
function unrelated to array position error precision, the likelihood function expression of
array position error precision is:

L(ρ) = E{ln[p(∆P|ρ)p(ρ)]}
= ln |diag(ρ)|

πM − ∆H
P diag(ρ)∆P + M ln e − e∑M

m=1 ρm.
(28)
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The derivative of Equation (28) is set to 0, and the iterative expression of the array
position error precision is obtained as:

ρ̂m =
1

∆2
P,m + e

, m = 1, 2, · · · , M. (29)

(5) Grid error δ: Ignoring the posterior probability distribution function unrelated to
grid error, the likelihood function expression for grid error is:

L(δ) = E{ln[p(Y|X, ∆P, δ, αn)p(δ)]}

= αn
T

T
∑

t=1
∥Yt − Φ(ΩP, δ)µt∥2

2 + αnTr
{

ΣxΦH(ΩP, δ)Φ(ΩP, δ)
}

,
(30)

where:

∥Yt − Φ(ΩP, δ)µt∥2
2 = ∥(Yt − Aµt)− Bdiag(δ)µt∥2

2

= δH(
BHB ◦ µtµ

H
t
)
δ − 2Re

{
diag(µt)BH(Y − Aµt)

}H
δ + const ,

(31)

Tr
{

ΣxΦH(ΩP, δ)Φ(ΩP, δ)
}

= 2Re
{

Tr
{

BHAΣxdiag(δ)
}}

+ Tr
{

diag(δ)Σxdiag(δ)BHB
}
+ const

= 2Re
{

Tr
{

BHAΣx
}}

δ + δH(
Σx ◦ BHB

)
δ + const .

(32)

If we let the derivative of Equation (30) be equal to 0, the iterative expression of the
grid error is obtained as follows:

δ̂ = P−1v, (33)

where δ̂ ∈ [−ϑ/2, ϑ/2], P ∈ RN×N and v ∈ RN×1 are, respectively, represented by:

P = Re

{
1
T

T

∑
t=1

(
(BHB) ◦ (µtµ

H
t + Σx)

)}
(34)

v = Re

{
1
T

T

∑
t=1

diag(µt)BH(Yt − Aµt)

}H

− Re
{

diag
{

BHAΣx

}}
(35)

The estimated grid points are as follows:

θ = θ+ δ̂. (36)

Based on the above theoretical analyses, the process of the proposed DOA estimation
method based on sparse Bayesian learning presented in this paper is shown in Algorithm 1.

Algorithm 1. Sparse Bayesian learning with array position errors

Input: received data Y, Φ(ΩP, δ)
Initialization: b = c = e = 10−2, ε = 10−3, Iter = 0
Repeat:

Iter = Iter + 1.
Update Σx and µ using Equations (17) and (18).
Update α̂n using Equation (22).
Update γ̂n using Equation (25).
Update ∆̂P,m using Equation (27).
Update ρ̂m using Equation (29).

Until convergence
Update δ using Equation (33).
Output: estimated θ, Σx, and µ.
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4. Simulation Analysis

To verify the excellent performance of the proposed method in a DOA estimation,
we compared it with existing estimation methods such as the MUSIC method, OGSBL
method [16], and SunFG method [31]. The simulation parameters used in this simulation
experiment are shown in Table 1.

Table 1. Experimental simulation conditions.

Parameter Value

The number of arrays M 7
The number of subarray1 M2 3
The number of subarray2 M1 5
The number of snapshots T 500

Signal-to-noise ratio 10 dB
The number of signals K 2

The incidence angle θ −27.32◦ and 17.75◦

The space between arrays d 0.5 wavelength
The grid interval ϑ 3◦

The search interval of the MUSIC algorithm 0.5◦

4.1. Simulation Results

We assume that the coprime array is composed of seven arrays. According to Equation (1),
the ideal positions corresponding to the array elements are [0, 3, 5, 6, 9, 10, 12]λ/2, respec-
tively, and the errors between the actual placement position and the ideal position of each
array element are [−0.12,−0.17, 0.13, 0.09,−0.11, 0.14,−0.06]λ/2, respectively.

Figure 2 shows the spatial spectrum image of the simulation experiment. As can be
seen from Figure 2, all four methods can estimate the orientation of the signal source better.
In the signal-independent direction, the curve changes of the proposed method and the
MUSIC method are relatively gentle, while the curve changes of the OGSBL method and
the SunFG method change sharply, which will cause greater interference with the actual
signal incident direction and affect the judgment. Compared with the MUSIC method, the
proposed method improves the power spectrum of the signal-independent direction by
5~10 dB, which shows that it can achieve a better performance than the MUSIC method.
When we review the amplification details of the signal incidence direction, we find that the
angle estimated by the proposed method is closer to the actual incidence angle, which is
superior to the OGSBL, SunFG, and MUSIC methods. Therefore, the performance of the
proposed method is optimal.
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4.2. RMSE Performance Analysis

To investigate the influence of the SNR and the number of snapshots on the precision
of the proposed method, root mean square error (RMSE) is used in this section as the only
criterion for evaluating the accuracy, and we define the RSME expression as follows:

θRSME =

√√√√ 1
QK

Q

∑
q=1

K

∑
k=1

(
θ̂qk − θk

)
(37)

where Q represents the number of Monte Carlo simulation experiments; θ̂qk denotes the k-th
signal angle estimation result estimated by the q-th Monte Carlo simulation experiment.

To show the relation between the SNR and angle error, we set the number of snapshots
to 500, and changed the SNR from −10 dB to 10 dB with a step of 2 dB, with the other
conditions remaining unchanged. A total of 300 Monte Carlo simulation experiments were
carried out. Figure 3 shows the simulation results for the relationship between the SNR
and angle error.
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It can be seen from Figure 3 that the angle RSMEs of the above four methods de-
crease with the increments of SNR, and the proposed method can achieve a better esti-
mation performance in the whole SNR range. When the SNR is 10 dB, the RSMEs of the
four methods are about 0.032◦ (the proposed method), 0.039◦ (OGSBL method), 0.095◦

(SunFG method), and 0.102◦ (MUSIC method). The angle error of the proposed method is
lower than that of the other three methods. Therefore, it can be seen from the experimental
results that the DOA estimation accuracy of the proposed method is better than that of the
other three methods.

To show the relationship between the snapshots and the angle error, we set the SNR to
10 dB, and changed the snapshots from 50 to 500 with a step of 50, with other conditions
remaining the same. A total of 300 Monte Carlo simulation experiments were also carried
out. The simulation results regarding the relationship between the snapshots and the angle
error are shown in Figure 4.
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We can see that the angle RSMEs of the four methods decrease with the incremental
changes in snapshots from Figure 4, and that the proposed method can achieve a better
estimation performance in the whole snapshot range. When the number of snapshots
is 500, the RSMEs of the four methods are about 0.086◦ (the proposed method), 0.105◦

(OGSBL method), 0.18◦ (SunFG method), and 0.29◦ (MUSIC method). The angle error of the
proposed method is lower than that of the other three methods. Therefore, the experimental
results prove that the DOA estimation accuracy of the proposed method is better than that
of the other three methods.

4.3. Resolution Probability Performance Analysis

The probability of successful angle resolution was defined as the absolute deviation
between the estimated DOA value, and an actual incidence angle of less than 0.2◦, which
was considered a successful resolution: namely,

∣∣∣θ̂qk − θk

∣∣∣ ≤ 0.2◦.
While conducting the 300 Monte Carlo simulation experiments, the signal-to-noise

ratio (SNR) varied from −10 dB to 10 dB in 2 dB increments while keeping the other
conditions constant, with a shutter speed of 500 frames per second. Figure 5 illustrates the
simulation results for the relationship between the SNR and angle resolution probability.
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From this graph, we can see that the angle resolution capabilities of the four methods
mentioned above increase with increases in the signal-to-noise ratio. Moreover, the method
proposed in this paper exhibits a good estimation performance across the entire signal-
to-noise ratio range. At a signal-to-noise ratio of 8 dB, the probability of successful angle
resolution for the four methods is approximately 1 for the method proposed in this paper,
compared to 0.97 for the OGSBI method, 0.925 for the SunFG method, and 0.88 for the
MUSIC method. The method proposed in this paper achieves a higher accuracy in terms of
angle resolution compared to the other three methods. Therefore, the experimental results
indicate that the proposed method has a superior DOA estimation resolution compared to
the other three methods.

Keeping other conditions unchanged, with a signal-to-noise ratio of 5 dB, the number
of snapshots varied from 50 to 500 in increments of 50. A Monte Carlo simulation experi-
ment was conducted for 300 iterations, and the simulation results of the varying number of
snapshots and the probability of angle resolution are shown in Figure 6.
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From this figure, it can be seen that the angle resolution capabilities of the four methods
mentioned above increase with the increases in the number of snapshots. Moreover, the
method proposed in this paper demonstrates a good estimation performance across the
entire range of snapshot numbers. When the number of snapshots is 500, the probabilities of
successful angle resolution for the four methods are approximately 0.95 (proposed method),
0.89 (OGSBI method), 0.8 (SunFG method), and 0.72 (MUSIC method). The proposed
method exhibits higher accuracy in angle resolution compared to the other three methods.
Therefore, the experimental results indicate that the proposed method has better DOA
estimation resolution than the other three methods.

4.4. Running Time Analysis

Considering the influence of the snapshot number on the operation time, we kept all
other conditions unchanged, and changed the number of snapshots. The snapshot number
started from 50 and increased in steps of 50 until the simulation reached 300 iterations.
We ran it 100 times to take the average value and record the change in the operation time
between the different methods. The run time curves versus the number of snapshots across
the different methods are shown in Figure 7.
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From Figure 7, we can see that the MUSIC algorithm has the lowest computation time
and the highest computational efficiency among the four methods. The main reason for this
is that this method does not require iterative operations and can be achieved by performing
eigen decomposition of the covariance matrix. The computation times of the proposed
method, OGSBI method, and SunFG method increase gradually with the increases in
snapshot number, and the computation time of the proposed method is always smaller than
that of the other two methods; so, the computational efficiency of the proposed method is
superior to that of the SunFG method and OGSBI method.

4.5. The Lake Experimental Data Analysis

To verify the effectiveness and reliability of the above-mentioned methods in practical
applications, we conducted a lake experiment using a fiber-optic hydrophone array. The
structure of the coprime array in the lake experiment is shown in Figure 8. The received
signal of the fiber-optic hydrophone array is shown in Figure 9. We processed the lake
experimental data received by the fiber-optic hydrophone array to verify the resolution per-
formance of the proposed method. During the actual processing, we selected 60,000 valid
data points from Figure 9 for analysis. Then, the experimental data were processed using
three methods, and the spatial spectrum images of the three methods in the underwater
environment are shown in Figure 10. The SunFG method could not successfully estimate
the direction of the incident signal in this underwater experiment, so the processing results
for this method are not shown in Figure 10.
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Figure 10. Spatial spectrum of the data received via fiber-optic hydrophone in the lake experiment.

From Figure 10, we can see that the MUSIC method is relatively stable in the signal-
independent direction, but its power spectrum curve has a wide-angle range in the incident
angle direction; thus, the MUSIC method has a bad performance in the estimation of adjacent
directions, and its resolution is relatively poor compared to the other two methods. The
power of the OGSBL method and the proposed method is concentrated in the direction of the
incident angle, so these two methods have better resolution. However, the OGSBL method
generates four pseudo-peaks and the maximum value reaches −20 dB, which will interfere
with its application in practical engineering, while the proposed method generates only two
pseudo-peaks and its maximum peak only reaches −30 dB, which is smaller than that of
the OGSBL method. Therefore, our proposed method is far superior to the OGSBL method.
Overall, the performance of the proposed method is better than that of the other methods.

We framed the receiving signal and used the above three methods to estimate the
DOA of the incident signal in this underwater experiment. The bearing time recordings are
shown in Figures 11–13.
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From the bearing time recordings of the above three methods shown in Figure 11
Figures 12 and 13, we can see that all of the methods can obtain a linear course trajectory
of the target. Considering the overall effect, the MUSIC method has the widest course
trajectory and the worst resolution. The OGSBL method can also estimate a clear trajectory
curve, but produces three severely interfering pseudo-peaks, which require pseudo-peak
identification and greatly reduce the application of this method in practical engineering.
The proposed method can estimate a clear linear trajectory curve, and only generates two
pseudo-peaks, and the pseudo-peak value reaches −30 dB, which is better than the OGSBL
method. Therefore, the proposed method can obtain the best estimation performance
among the three methods.

5. Conclusions

In this paper, we analyzed and studied a DOA estimation method in which we
employed sparse Bayesian learning to overcome array position errors. The proposed
method substitutes the problem of array position errors into the signal receiving model
to obtain the joint probability density distribution function. We used the EM method to
optimize and derive parameters such as the off-grid error and array position error and
determined the DOA through the spatial spectral image. The simulation experiment results
and lake experiment results show that the DOA estimation performance of the proposed
method is better than that of three other classical methods, i.e., OGSBL, MUSIC, and SunFG.
In cases with fewer snapshots and a low SNR, the proposed method can still obtain robust
DOA estimation performance, and its estimation accuracy is better than that of the three
other methods. The proposed method effectively solved the problem of element position
errors and improved the robustness of the mutual prime array greatly, so it has great value
in practical application.
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Appendix A

Proof of Equation (25). The array position error is very small, so we performed a Taylor
series expansion to the array position error vector factor, from which we can obtain

ψ(θk, ∆P) = [ej2π∆P,1d sin θk/λ, · · · , ej2π∆P,Md sin θk/λ]
T

≈
[
1 + j2π∆P,1d sin θk

λ , · · · , 1 + j2π∆P,Md sin θk
λ

]T

= 1M×1 + ∆Pj2πd sin θk/λ

(A1)
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The over-complete basis matrix Φ(θ, ΩP) can be transformed into

Φ(ΩP, δ) = A(θ, ΩP) + B(θ, ΩP)diag(δ)
= Φ̃(δ) + diag(∆P)Φ̃(δ)diag(j2πd sin θ/λ)

+diag(∆P)Ã(θ)diag(δ)diag(j2πd cos θ/λ)

= Φ̃(δ) + diag(∆P)Ξ

(A2)

where Ξ = Φ̃(δ)diag(j2πd sin θ/λ) + Ã(θ)diag(δ)diag(j2πd cos θ/λ), Φ̃(δ) ≈ Ã(θ) +
B̃(θ)diag(δ), B̃(θ) = [b̃(θ1), · · · , b̃(θn), · · · , b̃(θN)], and b̃(θn) = ∂ã(θn)/∂θn.

By means of the definition in Equation (35), the first term of Equation (24) can be
converted into

T
∑

t=1
∥Yt − Φ(ΩP, δ)µt∥2

2 =
T
∑

t=1

∥∥∥Yt −
[

Φ̃(δ) + diag(∆P

)
Ξ
]
µt

∥∥∥2

2
=

T
∑

t=1
∥Yt − diag(∆P)Ξµt∥2

2 (A3)

where Yt = Yt − Φ̃(δ)µt. Taking the derivative of the element position error of equation in
Equation (35), the result can be obtained as

∂
T
∑

t=1
∥Yt−diag(∆P)Ξµt∥2

2

∂∆P,m
= ∂

∂∆P,m

T
∑

t=1

{
−2Re

[
YH

t diag(∆P

)
Ξµt

]
+ µH

t ΞHdiag(∆P ◦ ∆P

)
Ξµt

}
= −2Re

{
T
∑

t=1
YH

t diag(em

)
Ξµt

}
+ 2∆P,m

T
∑

t=1
µH

t ΞHdiag(em
)
Ξµt

(A4)

The second term of Equation (24) can also be converted into

Tr
{

ΦH(ΩP, δ)Φ(ΩP, δ)Σx
}

= Tr
{[

Φ̃(δ)+diag(∆P)Ξ
]H[

Φ̃(δ)+diag(∆P)Ξ
]
Σx

}
= Tr

{
Φ̃H(δ)Φ̃(δ)Σx

}
+ Tr

{
Φ̃H(δ)diag(∆P)ΞΣx

}
+Tr

{
ΞHdiag(∆P

)
Φ̃(δ)Σx

}
+ Tr

{
ΞHdiag(∆P ◦ ∆P

)
ΞΣx

} (A5)

If we take the derivative of the element position error of Equation (A1), the result can
be derived as

∂
∂∆P,m

Tr
{

ΦH(ΩP, δ)Φ(ΩP, δ)Σx
}

=
∂Tr{Φ̃H(δ)diag(∆P)ΞΣx}

∂∆P,m
+

∂Tr{ΞHdiag(∆P)Φ̃(δ)Σx}
∂∆P,m

+
∂Tr{ΞHdiag(∆P◦∆P)ΞΣx}

∂∆P,m

= 2Tr
{

Re
[

∂Φ̃H(δ)diag(∆P)ΞΣx
∂∆P,m

]}
+ Tr

{
∂ΞHdiag(∆P◦∆P)ΞΣx

∂∆P,m

}
= 2Tr

{
Re

[
Φ̃H(δ)diag(em)Ξ

]
Σx

}
+ 2∆P,m × Tr

{
ΞHdiag(em

)
ΞΣx

}
(A6)

Setting the result of Equation (24) as 0, the iterative expression of the array element
position error can be obtained as Equation (25). The proof is thus completed. □
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