Autonomous Ride-Sharing Service Using Graph Embedding and Dial-a-Ride Problem: Application to the Last-Mile Transit in Lyon City
Abstract
:1. Introduction
2. Literature Review
2.1. Integration of PT-SAV Systems
2.2. Dial-a-Ride Problems
2.3. Graph Embeddings
3. Proposed Method
3.1. Mathematical Formulation
3.2. Graph Reduction Mechanism
Algorithm 1: node2vec-based Graph Reduction |
Inputs: The routing graph , the contraction rate . 1. Apply the node2vec algorithm to . 2. Compute the similarity matrix S of G using the cosine measure on the embedding of 1. 3. Compute for each two P-D couples the value . 4. Select the top similar pairs of P-D couples. 5. Compute the optimal order of points to visit within each chosen pair. 6. Update the graph’s costs for the arcs going to/coming from the newly merged nodes. |
4. Case Study: The Industrial District of “Vallée De La Chimie”, Lyon City
4.1. Territory
4.2. Demand Generation
5. Results
5.1. Parameters Setting
5.2. Constrained K-Means
5.3. Indicators
5.4. Baseline Scenario
5.5. Sensitivity Analysis
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sinha, K.C. Sustainability and urban public transportation. J. Transp. Eng. 2003, 129, 331–341. [Google Scholar] [CrossRef]
- Shaheen, S.; Chan, N. Mobility and the sharing economy: Potential to facilitate the first-and last-mile public transit connections. Built Environ. 2016, 42, 573–588. [Google Scholar] [CrossRef]
- Waymo. Autonomous Ridesharing Isn’t Dead: How Waymo Is Adapting to the Post-COVID Era. By Ronan Glon. 3 July 2000. Available online: https://www.digitaltrends.com/cars/waymo-in-post-covid-era/ (accessed on 7 February 2024).
- Amazon. Amazon Buys Autonomous Taxi Company Zoox. Look Out, Uber and Lyft. By Eric J. Savitz. 26 June 2020. Available online: https://www.barrons.com/articles/amazon-buys-autonomous-taxi-company-zoox-51593187053 (accessed on 7 February 2024).
- Jaguar Land Rover. Jaguar Land Rover Reveals Project Vector Autonomous Ride-Share Vehicle. By Alistair Charlton. 19 February 2020. Available online: https://www.gearbrain.com/jaguar-land-rover-project-vector-2645188684.html (accessed on 7 February 2024).
- Bauer, G.S.; Greenblatt, J.B.; Gerke, B.F. Cost, energy, and environmental impact of automated electric taxi fleets in Manhattan. Environ. Sci. Technol. 2018, 52, 4920–4928. [Google Scholar] [CrossRef] [PubMed]
- Fagnant, D.J.; Kockelman, K.M. The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios. Transp. Res. Part C Emerg. Technol. 2014, 40, 1–13. [Google Scholar] [CrossRef]
- International Transport Forum. Organisation for Economic Co-Operation and Development. Urban Mobility System Upgrade: How Shared Self-Driving Cars Could Change City Traffic; OECD Publishing: Paris, France, 2015. [Google Scholar]
- Hyland, M.F.; Mahmassani, H.S. Taxonomy of shared autonomous vehicle fleet management problems to inform future transportation mobility. Transp. Res. Rec. 2017, 2653, 26–34. [Google Scholar] [CrossRef]
- Gurumurthy, K.M.; Kockelman, K.M. Analyzing the dynamic ride-sharing potential for shared autonomous vehicle fleets using cellphone data from Orlando, Florida. Comput. Environ. Urban Syst. 2018, 71, 177–185. [Google Scholar] [CrossRef]
- Narayanan, S.; Chaniotakis, E.; Antoniou, C. Shared autonomous vehicle services: A comprehensive review. Transp. Res. Part C Emerg. Technol. 2020, 111, 255–293. [Google Scholar] [CrossRef]
- Levin, M.W. Congestion-aware system optimal route choice for shared autonomous vehicles. Transp. Res. Part C Emerg. Technol. 2017, 82, 229–247. [Google Scholar] [CrossRef]
- Ma, J.; Li, X.; Zhou, F.; Hao, W. Designing optimal autonomous vehicle sharing and reservation systems: A linear programming approach. Transp. Res. Part C Emerg. Technol. 2017, 84, 124–141. [Google Scholar] [CrossRef]
- Ho, S.C.; Szeto, W.Y.; Kuo, Y.H.; Leung, J.M.; Petering, M.; Tou, T.W. A survey of dial-a-ride problems: Literature review and recent developments. Transp. Res. Part B Methodol. 2018, 111, 395–421. [Google Scholar] [CrossRef]
- Gschwind, T.; Irnich, S. Effective handling of dynamic time windows and its application to solving the dial-a-ride problem. Transp. Sci. 2015, 49, 335–354. [Google Scholar] [CrossRef]
- Grover, A.; Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864. [Google Scholar]
- McNally, M.G. The Four-Step Model; Emerald Group Publishing Limited: Leeds, UK, 2007. [Google Scholar]
- Shen, Y.; Zhang, H.; Zhao, J. Integrating shared autonomous vehicle in public transportation system: A supply-side simulation of the first-mile service in Singapore. Transp. Res. Part A Policy Pract. 2018, 113, 125–136. [Google Scholar] [CrossRef]
- Pinto, H.K.; Hyland, M.F.; Mahmassani, H.S.; Verbas, I.Ö. Joint design of multimodal transit networks and shared autonomous mobility fleets. Transp. Res. Part C Emerg. Technol. 2019, 113, 2–20. [Google Scholar] [CrossRef]
- Shan, A.; Hoang, N.H.; An, K.; Vu, H.L. A framework for railway transit network design with first-mile shared autonomous vehicles. Transp. Res. Part C Emerg. Technol. 2021, 130, 103223. [Google Scholar] [CrossRef]
- Yantao, H.; Kockelman, K.M.; Truong, L.T. SAV Operations on a Bus Line Corridor: Travel Demand, Service Frequency, and Vehicle Size. J. Adv. Transp. 2021, 2021, 5577500. [Google Scholar] [CrossRef]
- Liang, X.; de Almeida Correia, G.H.; Van Arem, B. Optimizing the service area and trip selection of an electric automated taxi system used for the last mile of train trips. Transp. Res. Part E Logist. Transp. Rev. 2016, 93, 115–129. [Google Scholar] [CrossRef]
- Al Maghraoui, O.; Vosooghi, R.; Mourad, A.; Kamel, J.; Puchinger, J.; Vallet, F.; Yannou, B. Shared autonomous vehicle services and user taste variations: Survey and model applications. Transp. Res. Procedia 2020, 47, 3–10. [Google Scholar] [CrossRef]
- Gurumurthy, K.M.; Kockelman, K.M. Dynamic ride-sharing impacts of greater trip demand and aggregation at stops in shared autonomous vehicle systems. Transp. Res. Part A Policy Pract. 2022, 160, 114–125. [Google Scholar] [CrossRef]
- Golbabaei, F.; Yigitcanlar, T.; Bunker, J. The role of shared autonomous vehicle systems in delivering smart urban mobility: A systematic review of the literature. Int. J. Sustain. Transp. 2021, 15, 731–748. [Google Scholar] [CrossRef]
- Psaraftis, H.N. A dynamic programming solution to the single vehicle many-to-many immediate request dial-a-ride problem. Transp. Sci. 1980, 14, 130–154. [Google Scholar] [CrossRef]
- Jaw, J.J.; Odoni, A.R.; Psaraftis, H.N.; Wilson, N.H. A heuristic algorithm for the multi-vehicle advance request dial-a-ride problem with time windows. Transp. Res. Part B Methodol. 1986, 20, 243–257. [Google Scholar] [CrossRef]
- Ropke, S.; Cordeau, J.F.; Laporte, G. Models and branch-and-cut algorithms for pickup and delivery problems with time windows. Netw. Int. J. 2007, 49, 258–272. [Google Scholar] [CrossRef]
- Masmoudi, M.A.; Hosny, M.; Braekers, K.; Dammak, A. Three effective metaheuristics to solve the multi-depot multi-trip heterogeneous dial-a-ride problem. Transp. Res. Part E Logist. Transp. Rev. 2016, 96, 60–80. [Google Scholar] [CrossRef]
- Mourad, A.; Puchinger, J.; Chu, C. A survey of models and algorithms for optimizing shared mobility. Transp. Res. Part B Methodol. 2019, 123, 323–346. [Google Scholar] [CrossRef]
- Cordeau, J.F.; Laporte, G. The dial-a-ride problem: Models and algorithms. Ann. Oper. Res. 2007, 153, 29–46. [Google Scholar] [CrossRef]
- Molenbruch, Y.; Braekers, K.; Caris, A. Typology and literature review for dial-a-ride problems. Ann. Oper. Res. 2017, 259, 295–325. [Google Scholar] [CrossRef]
- Goyal, P.; Ferrara, E. Graph embedding techniques, applications, and performance: A survey. Knowl. -Based Syst. 2018, 151, 78–94. [Google Scholar] [CrossRef]
- Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 701–710. [Google Scholar]
- Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q. Line: Large-scale information network embedding. In Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 1067–1077. [Google Scholar]
- Chen, S.; Wang, H.; Meng, Q. Solving the first-mile ridesharing problem using autonomous vehicles. Comput. -Aided Civ. Infrastruct. Eng. 2020, 35, 45–60. [Google Scholar] [CrossRef]
- Bradley, P.S.; Bennett, K.P.; Demiriz, A. Constrained k-means clustering. Microsoft Res. Redmond 2000, 20, 1–8. [Google Scholar]
- Cordeau, J.F. A branch-and-cut algorithm for the dial-a-ride problem. Oper. Res. 2006, 54, 573–586. [Google Scholar] [CrossRef]
- Gawron, J.H.; Keoleian, G.A.; De Kleine, R.D.; Wallington, T.J.; Kim, H.C. Deep decarbonization from electrified autonomous taxi fleets: Life cycle assessment and case study in Austin, TX. Transp. Res. Part D Transp. Environ. 2019, 73, 130–141. [Google Scholar] [CrossRef]
- Bongiovanni, C.; Kaspi, M.; Geroliminis, N. The electric autonomous dial-a-ride problem. Transp. Res. Part B Methodol. 2019, 122, 436–456. [Google Scholar] [CrossRef]
- Vosooghi, R.; Puchinger, J.; Bischoff, J.; Jankovic, M.; Vouillon, A. Shared autonomous electric vehicle service performance: Assessing the impact of charging infrastructure. Transp. Res. Part D Transp. Environ. 2020, 81, 102283. [Google Scholar] [CrossRef]
- Métropole de Lyon. Vallée de la Chimie Presentation. 2021. Available online: https://lyonvalleedelachimie.fr/en/home/ (accessed on 15 January 2021).
- ESPRIT Project. 2019. Available online: http://www.esprit-transport-system.eu/ (accessed on 23 November 2020).
- TCL. Transport à la Demande. 2020. Available online: https://www.tcl.fr/transport-a-la-demande-vallee-de-la-chimie (accessed on 27 July 2020). (In French).
- Acheampong, R.A.; Silva, E.A. Land use–transport interaction modeling: A review of the literature and future research directions. J. Transp. Land Use 2015, 8, 11–38. [Google Scholar] [CrossRef]
- François, C.; Gondran, N.; Nicolas, J.P.; Parsons, D. Environmental assessment of urban mobility: Combining life cycle assessment with land-use and transport interaction modelling—Application to Lyon (France). Ecol. Indic. 2017, 72, 597–604. [Google Scholar] [CrossRef]
Fixed Parameters | Variable Parameter | VKT [Km] | VOR [%] | ZOR [%] | GHG [Kg CO2-eq] | ||||
---|---|---|---|---|---|---|---|---|---|
N2V | K-Means | N2V | K-Means | N2V | K-Means | N2V | K-Means | ||
Q = 25 L = 15 min | |K| = 1 | 67.7 | 78.7 | 30.8 | 29.4 | 35.2 | 38.9 | 11.6 | 13.45 |
|K| = 2 | 67.0 | 76.8 | 41.7 | 29.9 | 17.6 | 19.4 | 11.5 | 13.13 | |
|K| = 3 | 65.6 | 75.8 | 32.2 | 36.9 | 11.7 | 13.0 | 11.2 | 12.97 | |
|K| = 4 | 65.5 | 74.4 | 42.1 | 31.6 | 8.8 | 9.7 | 11.2 | 12.73 | |
|K| = 5 | 64.5 | 73.0 | 43.5 | 29.4 | 7.0 | 7.8 | 11.0 | 12.49 | |
|K| = 6 | 62.8 | 73.9 | 42.4 | 36.9 | 5.9 | 6.5 | 10.7 | 12.63 | |
|K| = 7 | 61.6 | 73.7 | 42.5 | 38.7 | 5.0 | 5.6 | 10.5 | 12.61 | |
|K| = 8 | 60.4 | 72.6 | 39.8 | 35.4 | 4.4 | 4.9 | 10.3 | 12.41 | |
|K| = 9 | 59.3 | 72.6 | 38.6 | 38.2 | 3.9 | 4.3 | 10.1 | 12.41 | |
|K| = 10 | 59.9 | 73.2 | 39.4 | 38.1 | 3.5 | 3.9 | 10.2 | 12.51 | |
|K| = 4 Q = 25 | L = 10 min | 64.3 | 72.0 | 30.3 | 31.7 | 9.7 | 9.7 | 11.0 | 12.31 |
L = 11 min | 66.1 | 70.9 | 38.6 | 33.8 | 9.7 | 9.7 | 11.3 | 12.1 | |
L = 12 min | 65.4 | 68.5 | 34.9 | 40.4 | 9.3 | 9.3 | 11.2 | 11.7 | |
L = 13 min | 69.7 | 73.2 | 36.5 | 42.2 | 9.7 | 9.3 | 11.9 | 12.5 | |
L = 14 min | 66.0 | 74.2 | 36.4 | 32.4 | 8.8 | 10.2 | 11.3 | 12.7 | |
L = 15 min | 69.8 | 75.8 | 35.5 | 30.1 | 9.3 | 10.2 | 11.9 | 13.0 | |
L = 16 min | 67.4 | 74.9 | 32.8 | 41.9 | 8.8 | 9.3 | 11.5 | 12.8 | |
L = 17 min | 67.5 | 71.6 | 34.4 | 32.4 | 9.7 | 10.2 | 11.5 | 12.2 | |
L = 18 min | 71.9 | 76.6 | 33.6 | 29.6 | 10.2 | 10.2 | 12.3 | 13.1 | |
L = 19 min | 71.8 | 74.9 | 38.7 | 27.6 | 9.7 | 10.2 | 12.3 | 12.8 | |
L = 20 min | 68.1 | 73.2 | 37.5 | 37.8 | 9.3 | 9.3 | 11.6 | 12.5 | |
|K| = 4 L = 15 min | Q = 20 | 70.9 | 70.1 | 38.5 | 43.3 | 9.7 | 9.7 | 12.1 | 11.0 |
Q = 25 | 68.2 | 73.3 | 32.4 | 38.2 | 9.7 | 9.3 | 11.7 | 12.5 | |
Q = 30 | 63.1 | 70.8 | 40.5 | 40.7 | 7.4 | 8.3 | 10.8 | 12.1 | |
Q = 35 | 62.4 | 80.1 | 34.0 | 24.8 | 7.4 | 9.3 | 10.7 | 13.7 | |
Q = 40 | 62.5 | 78.3 | 28.1 | 24.0 | 8.3 | 9.3 | 10.7 | 13.4 | |
Q = 45 | 54.1 | 70.6 | 33.6 | 24.3 | 6.9 | 7.4 | 9.3 | 12.1 | |
Q = 50 | 51.6 | 66.2 | 24.9 | 22.7 | 6.5 | 7.4 | 8.8 | 11.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rifki, O. Autonomous Ride-Sharing Service Using Graph Embedding and Dial-a-Ride Problem: Application to the Last-Mile Transit in Lyon City. Mathematics 2024, 12, 546. https://doi.org/10.3390/math12040546
Rifki O. Autonomous Ride-Sharing Service Using Graph Embedding and Dial-a-Ride Problem: Application to the Last-Mile Transit in Lyon City. Mathematics. 2024; 12(4):546. https://doi.org/10.3390/math12040546
Chicago/Turabian StyleRifki, Omar. 2024. "Autonomous Ride-Sharing Service Using Graph Embedding and Dial-a-Ride Problem: Application to the Last-Mile Transit in Lyon City" Mathematics 12, no. 4: 546. https://doi.org/10.3390/math12040546
APA StyleRifki, O. (2024). Autonomous Ride-Sharing Service Using Graph Embedding and Dial-a-Ride Problem: Application to the Last-Mile Transit in Lyon City. Mathematics, 12(4), 546. https://doi.org/10.3390/math12040546