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Abstract: This study systematically investigates the pivotal role of inventory management within
the framework of “cloud supply chain” operations, emphasizing the efficacy of leveraging machine
learning methodologies for inventory allocation with the dual objectives of cost reduction and height-
ened customer satisfaction. Employing a rigorous data-driven approach, the research endeavors
to address inventory allocation challenges inherent in the complex dynamics of a “cloud supply
chain” through the implementation of a two-stage model. Initially, machine learning is harnessed
for demand forecasting, subsequently refined through the empirical distribution of forecast errors,
culminating in the optimization of inventory allocation across various service levels.The empirical
evaluation draws upon data derived from a reputable home appliance logistics company in China,
revealing that, under conditions of ample data, the application of data-driven methods for inventory
allocation surpasses the performance of traditional methods across diverse supply chain structures.
Specifically, there is an improvement in accuracy by approximately 13% in an independent structure
and about 16% in a dependent structure. This study transcends the constraints associated with
examining a singular node, adopting an innovative research perspective that intricately explores the
interplay among multiple nodes while elucidating the nuanced considerations germane to supply
chain structure. Furthermore, it underscores the methodological significance of relying on extensive,
large-scale data. The investigation brings to light the substantial impact of supply chain structure
on safety stock allocation. In the context of a market characterized by highly uncertain demand, the
strategic adaptation of the supply chain structure emerges as a proactive measure to avert potential
disruptions in the supply chain.

Keywords: cloud supply chain; machine learning; inventory optimization

MSC: 90B06

1. Introduction

With the continuous evolution of e-commerce, the market demand is burgeoning,
further propelled by the advancements in Industry 4.0 and digital technologies. This
progress has given rise to new business models, including those based on cloud platforms
and intelligent manufacturing organizations. The broad concept of a cloud supply chain
offers a novel perspective on operational management. It is a business model that leverages
a cloud-supported network based on certain third-party physical and digital assets for
designing and managing supply chain networks [1]. Currently, an increasing number of
major corporations, such as Amazon, JD.com, and Cainiao Logistics, are adopting this
model. However, despite its practical application in the industry, there is a paucity of
research specifically addressing this new paradigm.

This paper aims to investigate inventory management issues within the context of
the cloud supply chain. The cloud supply chain heavily relies on the digitized operations
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of Industry 4.0, with big data playing a crucial role in decision-making. In the realm of
inventory decision-making, data-driven methodologies hold the potential for achieving
superior outcomes. Although there has been a continuous stream of research in the field
of inventory management in recent years, literature specifically focused on data-driven
inventory decision methods has also accumulated. However, an examination of existing
literature reveals that some studies merely engage in pure demand forecasting, using
the predicted demand as the basis for inventory decision-making without correcting for
forecast errors. On the optimization front, much of the research remains confined to the
optimization of inventory for individual nodes, overlooking the potential impact of other
nodes and the supply chain structure on inventory allocation.

The operational management of a cloud supply chain necessitates a holistic consid-
eration of issues from a supply chain perspective. The intricate structure of this system
requires concurrent evaluation of the collaborative effects among multiple nodes and
the overarching structure of the supply chain. However, existing literature displays a
significant gap in research concerning this particular aspect.This study endeavors to fill
these identified research gaps and contribute to the expanding literature on inventory
management within the context of the cloud supply chain. Through a thorough explo-
ration of data-driven inventory decision methodologies, we aim to enhance the under-
standing of how the unique characteristics of the cloud supply chain influence inventory
management practices.

To address the inventory allocation challenges within the cloud supply chain using
a data-driven approach, this paper introduces a two-stage model, particularly adopting
the “demand forecasting-inventory optimization” framework. In comparison to ensemble
methods, the intuitiveness and higher interpretability of this approach are advantageous
for practical applications. The selection of a multiple linear regression model over a
neural network aligns with the belief that fundamental machine learning models are
more suitable for our problem, supported by practical examples. This study refrains from
assuming demand distribution, mitigating potential decision biases and their consequential
impacts. In the inventory optimization phase, the research delves into the allocation issues
under two supply chain structures–one allowing same-level replenishment and the other
prohibiting it.

Leveraging the newsvendor model as the foundational model, this study extends
its application, drawing inspiration from the data-driven newsvendor model [2] and
expanding upon their work. Different models are provided for two supply chain networks
with distinct structures, offering applicable solutions for these models. The validation of the
proposed model is conducted using real data from a Chinese logistics company operating
within the cloud supply chain from 2018 to 2019. This company provides end-to-end
solutions for transportation, warehousing, distribution, delivery, installation, and after-
sales service for household appliances, serving entities throughout the supply chain process.
The methodology presented in this paper receives positive feedback from real-world data,
affirming its utility in practical decision-making scenarios.

In comparison to previous research, this study introduces a novel perspective by
considering inventory issues in supply chain management from the vantage point of
the cloud supply chain. Utilizing a data-driven approach, we propose a practical in-
ventory decision-making method that accounts for the interactive relationships among
multiple nodes and the structure of the supply chain. This method dynamically ad-
justs inventory decisions based on different service levels, addressing a research gap in
this domain.
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In summary, the primary contributions of this paper include the following:

1. The study offers a data-driven inventory decision-making method from the perspec-
tive of the cloud supply chain.

2. Emphasis is placed on the superior performance of data-driven inventory decision
solutions in cases of sufficient data volume.

3. The study highlights that, in certain scenarios, the predictive performance of deep
learning models may not surpass that of machine learning models.

4. The study discusses multi-node inventory decisions under different cloud supply chain
structures, elucidating the impact of supply chain structure on inventory decisions.

However, it is essential to acknowledge the limitations of the proposed approach.
Firstly, in situations where data volume is insufficient, the methods employed in this
study may not yield optimal results. Secondly, for specific industries characterized by
fixed product demand and products prone to supply chain interruptions, the model pro-
posed in this study may no longer be applicable. Consequently, in subsequent mod-
els, certain restrictions will be imposed to ensure the model’s applicability within a
reasonable scope.

2. Relate Literature

The advent of the digital era, marked by Industry 4.0 and advancements in digital
technology, has profoundly reshaped traditional supply chain management strategies.
Within these transformative shifts, the emergence of the cloud supply chain has garnered
considerable attention in recent years. Leukel et al. [3] has adopted the basic idea of
cloud computing and proposed to represent the supply chain as a set of service offer-
ings and to present customer needs as service requests from the system service concept.
Surucu et al. [4] systematically elucidated the pivotal role of digital transformation in
enhancing supply chain information sharing and processing. They revealed the dynamic
capabilities, driving factors, and impediments associated with digital information sharing
based on blockchain and cloud platforms. The study emphasized the methods and theories
applied in its supply chain applications. This research provides robust theoretical support
for investigating inventory management issues in cloud supply chains, underscoring the
significance of digital information sharing and highlighting the reliability of data-driven
approaches within cloud supply chain contexts. Chauhan et al. [5] deliberated on the
sustainable development potential inherent in intelligent supply chains. They underscored
the imperative of intelligent supply chain management, placing particular emphasis on the
future elements of sustainability. The discussion highlighted the need to consider environ-
mental, social, and economic factors in intelligent supply chain management to achieve
sustainable development. Ivanov et al. [1] through the analysis of practical cases, have
deduced some common features of the cloud supply chain, constructing a comprehensive
model for this paradigm. Simultaneously, they have identified future research directions
for the cloud supply chain. Inventory management within the context of the cloud supply
chain stands out as a crucial area of contemporary supply chain research. The integration
of cloud technology, data analytics, and digital platforms heralds a new era in supply
chain operations, presenting both opportunities and challenges for effective inventory
management. This chapter will conduct a retrospective review of previous literature from
three dimensions, elucidating the research gaps and contributions of this study compared
to prior research.

Table 1 provides a visual representation of the literature related to the developed
model. It also highlights succinct research gaps identified in the relevant studies.
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2.1. Demand Forcasting

In the realm of inventory management within the cloud supply chain, a pivotal chal-
lenge lies in the necessity for precise demand forecasting. Through the integration of abun-
dant real-time data and the incorporation of machine learning algorithms, the cloud supply
chain holds the potential to significantly enhance the accuracy of demand forecasting.

The history of demand forecasting dates back several decades. In the previous cen-
tury, Silver et al. [6] highlighted the normalization of demand distribution in mainstream
inventory management models, such as assuming demand follows a normal or gamma
distribution. Random algorithms were then employed to determine the required inventory
levels, and this approach continues to hold a prominent position in inventory management.
Also, Eppen et al. [7] addressed the deviations between forecasted and actual demand. They
considered exponential smoothing and probability models, using the variance of forecast
errors in lead time to establish safety stock levels. Drawing inspiration from this research,
we incorporated considerations of deviations between forecasted and actual demand in our
model construction to mitigate decision biases.Furthermore, Kleywegt et al. [8] employed a
sample average approximation method, replacing the assumption of demand distribution
with empirical data. They discussed the convergence speed, stopping rules, and compu-
tational complexity of this approach.Wang et al. [9] introduced an error compensation
mechanism for demand forecasting and assessed the necessity of compensation using
individual and moving range (I-MR) control charts. This evaluation aimed to leverage
predictive models in addressing current bottleneck issues. These work provided valuable
insights for our study. In our model, an empirical distribution will be utilized to adjust
forecast errors.

The advancement of machine learning technologies has provided additional tools for
demand forecasting. Carbonneau et al. [10] discussed the application of machine learning
techniques in supply chain demand forecasting, specifically investigating the suitability of
Artificial Neural Networks (ANN), Recurrent Neural Networks (RNN), and Support Vector
Machines (SVM) for predicting distorted demand at the end of the supply chain. The study
compared these methods with traditional time series models, revealing that machine
learning technologies generally exhibit better predictive performance. Kilimci et al. [11]
improved demand forecasting models using machine learning and proposed comprehen-
sive strategies for supply chain decision-making. Kharfan et al. [12] employed machine
learning to forecast new seasonal products, demonstrating the effectiveness of data-driven
approaches in inventory management and providing support for this study.

Villegas et al. [13] introduced a novel model selection approach based on SVM for
prediction. This method offered a set of candidate models rather than considering indi-
vidual criteria, resulting in failure when faced with high demand fluctuations. Allowing
model changes when the fit is high reduced technical risks when handling large datasets.
Similarly, in demand forecasting, this study adopted a multi-criteria approach, presenting
different predictive models to further reduce forecasting biases.

The application of deep learning methods in cloud supply chain is also within
our scope of consideration, showcasing promising results in various studies. For in-
stance, Bandara et al. [14] unified cross-sequence information in e-commerce using Long
Short-Term Memory (LSTM). Abbasimehr et al. [15] proposed a demand forecasting
method based on multi-layer LSTM, demonstrating its strong ability to capture nonlinear
patterns in time series data and outperforming other standard techniques empirically.
Falatouri et al. [16] trained and evaluated Seasonal Autoregressive Integrated Moving
Average (SARIMA) and LSTM on over 37 months of actual retail data from an Austrian
retailer. Both models yielded reasonable to good results, indicating that LSTM performs
better for products with stable demand, while SARIMA performs better for products with
seasonality. These studies highlight the efficacy of neural networks in demand forecasting.
However, neural networks have certain drawbacks, including high requirements for data
scale and paradigm, as well as a lack of interpretability. Although this study considers
neural networks, when machine learning methods exhibit similar accuracy to neural net-
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works, it is argued that machine learning methods with higher interpretability should
be preferred.

2.2. Inventory Optimization

Due to its dynamic and interconnected nature, cloud supply chains introduce unique
complexities to inventory management. Unlike traditional supply chain models, cloud
supply chains rely on real-time data sharing and collaboration across multiple nodes.
This interconnectivity necessitates a reevaluation of conventional inventory management
strategies to adapt to the nuanced differences in the cloud environment. Simultaneously,
the interconnected nodes and dynamic characteristics of cloud supply chains require
innovative approaches to balance inventory levels, minimize stockouts, and optimize
order fulfillment processes. Therefore, in cloud supply chains, it is crucial to consider the
mutual influence among nodes, adjusting inventory strategies based on demand forecasts
to optimize inventory management.

Research on inventory optimization under uncertain demand is a classic problem,
and scholars have approached this issue from various perspectives. Carlson et al. [17]
addressed scenarios involving stochastic demand, determining safety stock for each compo-
nent in the product structure. They proposed a heuristic upper-bound solution considering
a systematic production plan. Datta et al. [18] investigated the dynamic pricing of the
newsvendor model under price-sensitive stochastic demand, incorporating geometric
Brownian motion. They employed the Black-Scholes equation for solving this, presenting a
highly meaningful contribution. This work introduced novel perspectives into cost calcula-
tions within dynamic systems, addressing a gap in the existing literature. Similarly, our
study utilizes an extended newsvendor model to contemplate optimal inventory decisions
within dynamic systems. The methodology proposed in this paper offers a fresh direction
for subsequent research. Bahroun et al. [19] used Monte Carlo methods to determine the
dynamic safety stock for cyclic production plans under non-stationary demand patterns.
These studies are significant, highlighting the importance of optimization under stochastic
demand conditions.

Buffa and Frank [20] , combining demand forecasting models, presented a goal pro-
gramming problem to determine safety stock in a multi-product environment. It is ac-
knowledged that generating accurate demand forecasts remains a considerable challenge,
particularly without considering exogenous factors in the forecasting process. They in-
corporated a demand regression function into a news vendor model, creating a data-
driven safety stock framework. This article is interesting as it integrates external factors
influencing demand estimation, such as weather and seasonality, into the prediction,
proposing a comprehensive data-driven framework. Inspired by this research, our study
incorporates factors like weather and seasonality into the forecasting model to enhance
prediction accuracy.

Furthermore, Huber et al. [2] introduced a solution based on machine learning and
quantile regression that does not assume specific demand distributions, demonstrating sig-
nificantly improved performance with sufficiently large datasets. Oroojlooyjadid et al. [21]
integrated neural networks into a newsvendor model, comparing this integrated model
with other methods and finding superior performance in specific environments. While
these studies inspired our research, they primarily focused on optimizing inventory at
individual nodes, neglecting the interaction among nodes in the supply chain structure.
In our study, we consider the supply chain structure and dynamic market changes to align
with the requirements of cloud supply chains.

2.3. Supply Chain Structure

Certainly, the impact of cloud supply chain structures on inventory allocation is an ad-
ditional dimension that warrants exploration. For instance, Chinelloren et al. [22] employed
simulation techniques to optimize multi-tier supply chains; Jiang et al. [23] established
a cost model for ordering and supplying distributed material warehouses, employing
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an improved Genetic Algorithm-Simulated Annealing (IGA-SA) to address the optimiza-
tion problem of distributed material warehouses; Hammler et al. [24] assessed various
optimization algorithms to determine the applicability of deep reinforcement learning
in multi-level inventory optimization frameworks, leading to the development of fully
dynamic reordering strategies. Kumar et al. [25] considered a multi-warehouse model,
utilizing the Rain Optimization Algorithm to design optimal replenishment strategies
and evaluating the model using data from footwear inventory management. Pirhoosh-
yaran et al. [26] proposed a framework that utilizes deep neural networks to optimize
inventory decisions in complex multi-tier supply chains. Li et al. [27] discussed the
optimization of product inventory distribution in a large-scale logistics network com-
prising up to hundreds of distribution center warehouses. The authors constructed a
scenario-based distributed robust optimization model, transforming the original problem
into a large-scale linear programming problem for rapid resolution, thereby enhancing
computational efficiency.

While these studies considered the interconnectivity among multiple nodes and pro-
vided numerous intriguing solutions, there is a paucity of literature incorporating demand
forecasting into the models. Moreover, the dynamic changes in inventory management
resulting from different configurations in cloud supply chains, such as allowing or restrict-
ing replenishment between nodes, have not been adequately addressed. In this study, we
incorporate these factors into consideration and propose a feasible solution, intending to
make a modest contribution to research in this area.

2.4. Research Gap

While existing literature extensively explores the impact of cloud technology on supply
chain management, a significant research gap remains in the specific domain of cloud-
based inventory management within the supply chain. The current body of knowledge
primarily focuses on the macro-level, highlighting the general advantages and challenges
brought about by cloud computing in supply chain environments. However, there is a lack
of in-depth research into the nuanced differences in inventory control and optimization
specifically tailored to cloud-based supply chain environments. This paper addresses this
gap by starting from specific models and delving into inventory management methods in
cloud supply chain environments at a micro-level, thus filling this void.

Existing research on inventory management provides broad insights into cloud supply
chain inventory management and offers excellent inspiration for implementing specific
aspects. However, most articles do not integrate demand forecasting accuracy and dynamic
optimization of inventory strategies, often focusing solely on either forecasting or optimiza-
tion. This paper delves into both aspects, providing concrete implementation plans and
making a minor contribution to this area of research.

Moreover, the existing literature on data-driven inventory management predomi-
nantly overlooks the structure of the supply chain or remains confined to a single node.
Another portion of the research focuses solely on a single supply chain structure. However,
the impact of cloud supply chain structure on inventory allocation is another dimension
that requires exploration; different configurations in cloud supply chains (such as allowing
or restricting replenishment between nodes) lead to dynamic changes in inventory manage-
ment. This paper provides distinct inventory management methods for two supply chain
configurations, addressing a gap in this area of research.
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Table 1. Contribution of previous authors.

Author Demand Forecasting
Methods Optimization Methods Supply Chain Structure

Type Replenishment

Buffa and Frank (1977) [20] Linear regression Goal Programming Single Node

Carlson et al. (1986) [17] Heuristic upper-bound
algorithm

Eppen et al. (1988) [7] Exponential smoothing
and probability models

Silver et al. (1998) [6] Assuming demand
distribution

Kleywegt et al. (2002) [8] Sample average
approximation

Carbonneau et al. (2008) [10] ANN; RNN; SVM

Villegas et al. (2018) [13] SVM

Huber et al. (2019) [2] Machine learning Quantile regression Single Node

Kilimci et al. (2019) [11] Machine learning

Bandara et al. (2019) [14] LSTM

Bahroun et al. (2019) [19] Assuming normal
distribution Monte Carlo simulation Single Node

Abbasimehr et al. (2020) [15] Multi-layer LSTM
Networks

Oroojlooyjadid et al. (2020) [21] Deep learning Neural network
integration Single Node

Chinello et al. (2020) [22] Simulation Multi-echelon supply
chain

Jiang et al. (2020) [23] Assuming normal
distribution

Genetic
Algorithm-Simulated
Annealing (IGA-SA)

Multiple Nodes

Pirhooshyaran et al. (2020) [26] Deep neural networks Multi-echelon supply
chains

Kumar et al. (2021) [25] Rain Optimization
Algorithm Multiple Nodes

Li et al. (2021) [27] Assuming demand
distribution Robust optimization Multiple Nodes

Kharfan et al. (2021) [12] Machine learning

Ivanov et al. (2022) [1] Introducing a notion of
cloud supply chain

Falatouri et al. (2022) [16] SARIMA; LSTM

Wang et al. (2022) [9]
Hybrid LSTM-ARMA
Demand-Forecasting

Model

Hammler et al. (2022) [24] Deep Reinforcement
Learning

Multi-echelon supply
chain

Chauhan et al. (2023) [5] Sustainable development
in smart supply chains

Surucu et al. (2024) [4]
Application of digital
information sharing in

supply chain

Datta et al. (2024) [18] Geometric Brownian
motion

This study Machine learning Quantile regression; PSO
algorithm

Multi-echelon supply
chains(two types)
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3. Methodology
3.1. Problem Description

This study examine a prominent logistics company operating within the framework
of the “cloud supply chain”, as illustrated in Figure 1. Initially, the manufacturer directly
dispatches products to the logistics company, bypassing the retailer on the platform. Sub-
sequently, when the platform receives an order request from a customer, it forwards the
order to the logistics company, which then processes the order. Upon dispatch, the goods
are readied and sent directly to the customer. Throughout this entire process, the plat-
form remains uninvolved in the logistics operations and instead outsources the complete
supply chain.

Figure 1. Distribution process in cloud supply chain model.

In this model, the warehouse is not singular but rather constitutes a distributed
warehouse comprising multiple facilities to cover the customer area adequately. The con-
figuration of safety stock in this model cannot be confined to a single warehouse; instead, it
necessitates considering the inventory arrangement across multiple warehouses simultane-
ously. Inadequate safety stock may result in insufficient warehouse inventory, leading to
extended logistics times and diminished customer satisfaction. Conversely, excessive stock
may lead to inventory backlogs, incurring additional inventory costs.

In the actual production process, specific market demand for each warehouse is
unknown. However, historical information and data acquired from external sources,
such as past order records, warehouse details, temperature information, and external
sources’ discount information, are available. Leveraging this information aids in making
informed decisions.

In the following model discussion, this study assumes the following: (1) Demand
is stochastic; (2) Products undergo various stages, including production, warehousing,
and transportation, and can be delivered within specified timeframes; (3) There is no
physical loss of products during warehousing and transportation. These assumptions
aim to streamline the model configuration and delineate the applicable scope of the pro-
posed model.

In the subsequent section of this chapter, This study will delineate the methodologies
employed, as illustrated in Figure 2. These methodologies encompass demand forecast-
ing techniques, inventory optimization methods within a configuration that prohibits
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cross-replenishment among peers (independent replenishment inventory optimization
method), and inventory optimization methods within a configuration that permits cross-
replenishment among entities at the same hierarchical level (relying on replenishment
inventory optimization methods). Ultimately, we propose solutions for inventory optimiza-
tion models operating under distinct structural constraints.

Figure 2. Methodology process in cloud supply chain model.

3.2. Demand Estimation

In many instances, the selection of a suitable predictive model holds paramount
significance, contingent upon factors such as the data source, data volume, and data
characteristics. Employing data-driven methodologies for prediction involves a judicious,
fact-driven choice. Within the scope of this paper, we opt for the utilization of multiple
linear regression, a machine learning method, as the primary predictive approach based
on the available data. We undertake a comparative analysis with alternative methods to
substantiate this choice.

Multiple linear regression models, as a statistical method, are frequently employed
to establish a linear relationship involving multiple independent variables and a single
dependent variable. This method assumes a specific linear relationship between the
independent and dependent variables, utilizing multiple linear functions to articulate this
connection. In the context of multiple linear regression, model parameters can be estimated
by minimizing the sum of squared residuals, where residuals represent the disparities
between observed and predicted values. This process allows for the straightforward
establishment of the relationship between parameters and data characteristics, which can
be expressed as:

min||Y − Xθ||, (1)
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where X represents the input features, Y represents the actual output, and θ represents the
parameters that need to be learned. The solution to this problem is simple, and we can
easily obtain the optimal solution for the parameters:

θ = (XTX)−1XTY. (2)

In this study, particular emphasis is placed on scrutinizing the disparities between the
model’s predictive outcomes and the actual results. It is acknowledged that all forecasting
models must exhibit a degree of generalization to forestall overfitting, particularly in
markets characterized by highly uncertain demand. In such contexts, forecasting models
often capture demand trends but struggle to provide precise quantity estimates. While
exploring the distribution of errors in traditional safety stock optimization is a valid research
avenue, the conventional approach involves making initial assumptions about the error
distribution, typically assuming a normal distribution. Subsequently, an optimization
model is constructed based on these assumptions. While this traditional method can
address general scenarios and yield optimal solutions if the assumed distribution holds
true, accurately pinpointing the actual error distribution proves challenging in practical
production settings. The true error distribution may exhibit temporal variations, posing
additional complexities. To circumvent these challenges, our approach employs empirical
distribution as a substitute for assuming the error distribution. This strategy effectively
mitigates assumption errors and, over time, aligns the empirical distribution more closely
with the true distribution as additional data becomes available. We assume that the
historical errors are ϵ1, ϵ2, ..., ϵn, then the empirical error distribution can be expressed as:

F(p) =
1
n

n

∑
i=1

I(ϵi ≤ p), (3)

where F(p) represents the empirical error distribution, I(x) is an indicative function,
assuming that the full set is R, for any set A ⊂ R, when x ∈ A take 1, when x /∈ A take 0.
We use this method to characterize the error distribution, and correct the demand forecast
through the error distribution to prepare for the next part.

3.3. Independent Structure Inventory Optimization

This study initially explores a two-level supply chain structure. In this arrangement,
the primary tier comprises a Regional Distribution Center (RDC), tasked with transporting
goods to the subsequent tier, known as the Local Transshipment Center (LTC). The second
tier encompasses a total of nLTCs, as illustrated in Figure 3.

Figure 3. Two-level independent replenishment structure.

In this model, the warehouses at each level operate independently, without mutual
replenishment between them. Specifically, when one of the LTCs depletes its stock, it can
only request replenishment from the higher-level RDC, even if other LTCs still have stock.
Similarly, when the RDC exhausts its inventory, it must replenish goods to the higher-level
warehouse. Therefore, each LTC’s ordering decision is based on its individual optimal
ordering strategy. Huber et al. [2] also adopted a data-driven approach in their article to
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construct the newsvendor model, where the optimal inventory decision for the single-node
model can be expressed as:

q∗ = d f + in f
{

p : F(p) ≥ cl
cl + ch

}
, (4)

where F(p) represents the demand distribution, cl represents the unit shortage cost, ch
represents the unit inventory cost, d f represents the forecast demand, and F(p) represents
the use of empirical error distribution.

Assuming the optimal safety stock for each LTC is denoted as q∗i , and the total demand
of RDC is represented by DR. For the RDC, its demand originates from the downstream
LTC. Given that each downstream LTC optimally determines its safety stock, it follows that
each LTC will transmit its optimal order request to the RDC based on its own optimal safety
stock, resulting in the formulation of the demand distribution for the RDC as follows:

FR =
n

∑
i=1

q∗i + FR(p). (5)

where FR(p) denotes the historical empirical distribution of replenishment from the RDC
forecast of total downstream demand versus actual downstream demand with a random
variable greater than 0. It is unlikely that the RDC will have negative replenishment.

For each LTC, we have acquired the forecasted demand and its empirical error dis-
tribution through the forecasting model. Consequently, the demand distribution for each
LTC can be formulated as follows:

Fi(p) = d fi
+ Fi(p). (6)

where d fi
denotes the forecasted demand for the ith LTC obtained using the data-driven

approach, and Fi(p) denotes the empirical error distribution between the actual and fore-
casted demand for the ith LTC, which differs from FR(p) in that the random variable of the
distribution differs from the historical experience of replenishment of RDCs, and the error
may be positive or negative.

For the entire supply chain, our objective is to minimize the overall cost. Therefore,
this problem can be expressed as an optimization problem:

min
n

∑
i=1

E[ci
l(Fi(p)− qi)

+ + ci
h(qi − Fi(p))+]+

E[cR
l (FR(p)− qR)

+ + cR
h (qR − FR(p))+].

(7)

where ci
l , ci

h denote the unit shortage cost and unit inventory cost of the ith LTC, and cR
l , cR

h
denote the unit shortage cost and unit inventory cost of the RDC, respectively. In addressing
this optimization problem within the independent model, each LTC, being independent,
will autonomously make the most optimal inventory decision. As for the RDC, it is aware
of the optimal inventory decisions of each LTC, and the demand distribution of the RDC
is predetermined. Consequently, the RDC is treated as a single-node scenario, enabling it
to make the most advantageous decision for itself. Therefore, the optimal solution for the
RDC and each LTC can be formulated as:

q∗i =d fi
+ in f

{
p : Fi(p) ≥

ci
l

ci
l + ci

h

}
, (8)

q∗R =
n

∑
i=1

q∗i + in f

{
p : FR(p) ≥

cR
l

cR
l + cR

h

}
, (9)
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where d fi
represents the predicted demand of the ith LTC, ci

l , ci
h represent the shortage

cost and inventory cost of the ith LTC respectively, cR
l , cR

h represent the shortage cost and
forecast cost of RDC respectively. The comprehension of this solution is intuitive. Each LTC
independently makes its optimal decision, and for its parent RDC, it only needs to be aware
of the optimal decisions made by each downstream LTC to determine its own optimal
decision. Thus, in this network of independent warehouses that cannot replenish each
other, the optimal inventory strategy entails each warehouse formulating its individual
optimal inventory strategy.

3.4. Dependent Structure Inventory Optimization

This study will elaborate on the scenario that permits mutual replenishment of goods
between entities at the same hierarchical levels. In this configuration, the top tier comprises
a regional distribution center (RDC), responsible for delivering goods to the lower-tier local
transfer centers (LTCs), constituting the second level with n LTCs. The distinctive feature is
that this structure facilitates LTCs to replenish each other’s goods, as depicted in Figure 4.

Figure 4. Two-level dependent replenishment structure.

In this model, a decision must be made when an LTC faces stockouts. It can either
directly send a replenishment request to the upstream warehouse or request replenishment
from a same-level warehouse that has available stock. In this scenario, each LTC is no
longer considered an independent entity, introducing complexity to the entire model.

Suppose we know that the optimal decision of each LTC is q∗i , then for RDC, its optimal
decision can be expressed as:

q∗R =
n

∑
i=1

q∗i + in f

{
p : FR(p) ≥

cR
l

cR
l + cR

h

}
. (10)

The problem is reformulated to minimize the total cost incurred by all LTCs while
permitting replenishment. We assume that each LTC incurs a fixed transfer cost, which
is linearly correlated with the average distance between itself and the other LTCs within
the network. This assumption is justifiable, given the strong linear relationship between
transfer costs and distance in practical scenarios. Employing the average distance to
ascertain the transshipment cost of LTCs is deemed feasible, particularly when numerous
transshipments are required over an extended period. The problem is then mathematically
expressed as a constrained objective optimization problem:

min
n

∑
i=1

E
[
(qi − Fi(p)− Si)

+ci
h + λi(Fi(p)− qi)

+ci
t + (1 − λi)(Fi(p)− qi)

+ci
l

]
, (11)

s.t:
n

∑
i=1

λi(Fi(p)− qi)
+ ≤

n

∑
i=1

(qi − Fi(p))+, (12)

0 ≤ λi ≤ 1, (13)

qi ≥ 0. (14)
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where Fi(p) represents the demand distribution obtained using a data-driven approach. ci
t

represents the transfer cost generated by scheduling between warehouses of the same level.
qi represents the safety stock of each LTC. Si represents the quantity expected to be used for
replenishment by other LTCs, and this data can obtain the average value or its empirical
distribution through historical data. λi represents the proportion used for scheduling from
other warehouses in the decision. The main problem is to minimize the sum of the costs of
all LTCs. The first term represents the inventory cost of the i-th warehouse; The second term
represents the cost of scheduling the i-th warehouse between the same levels. The specific
meaning is expressed as the ratio of λi is used to request replenishment between the same
levels in case of shortage during the cycle; The third term indicates the out-of-stock cost
for the i-th warehouse, which is specifically expressed as the cost incurred by requesting
replenishment from the RDC using a ratio of (1 − λi) when out-of-stock occurs during
the cycle. The first constraint indicates that the number of all LTCs scheduled at the same
level should be less than or equal to the number of excess inventory in all warehouses.
The second constraint indicates that the scheduling rate must be between 0 and 1, and the
third constraint indicates that all quantities and unit costs must be greater than or equal
to 0.

The solution to this problem is evidently intricate. To address this challenge, we
employ the particle swarm optimization algorithm as our primary tool. The particle
swarm optimization algorithm is a nature-inspired metaheuristic algorithm that has been
extensively utilized as a robust optimization tool since its inception. Below Algorithm 1 is
the pseudo-code for the particle swarm optimization algorithm.

Algorithm 1: Particle swarm optimization
Data: particle i, position xi, velocity vi, fitness fi
Result: Optimal position and find minimum fitness

1 for each particle i do
2 Initial position xi randomly within search space;
3 Initial velocity vi randomly wtihin (vmin, vmax);
4 evalute fitness fi of particle i;
5 set pbest position pi = xi;
6 set pbest fitness fpi = fi;
7 end
8 Find global best position g = xi with minimum fitness fi among all particles;
9 while not termination criterion do

10 for each particle i do
11 Update velocity vi;
12 Update position xi;
13 Evaluate fitness fi of particle i;
14 if fi < fpi then
15 Set pbest position pi = xi;
16 Set pbest fitness fpi = fi;
17 end
18 end
19 Find global best position g = xi with minimum fitness fi among all particles;
20 Record global best position and minimum finess;
21 end
22 Return global best position g and minimum finess f(g)

This study employs the particle swarm optimization algorithm to address the inven-
tory optimization problem within a dependent replenishment structure, yielding favorable
outcomes. Further empirical analysis will be presented in the fourth chapter.
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4. Empirical Analysis

To assess the feasibility and impact of the methods proposed in this paper across
different levels, empirical analysis of the aforementioned data-driven approaches will
be conducted. This chapter will encompass the following aspects: (1) Comparison of
forecasting models; (2) Inventory optimization analysis; (3) Supply chain structure analysis;
(4) Comparison of traditional and data-driven approaches. The effectiveness of our model
will be demonstrated through an analysis of a major home appliance logistics company
in China.

4.1. Data

To validate the reliability of the predictive model, This study utilize warehouse order
data from a prominent domestic logistics company in China, specializing in the man-
agement of home appliance business. This dataset comprises nearly 14 million records
of orders generated by various warehouses throughout the calendar year. Information
includes the order generation timestamps, origins, destinations, and shipping methods.
Leveraging this data, we can discern the daily order count, along with the origins and
destinations of the orders.

As an illustrative example, this study selected four warehouses, analyzed their daily
order volumes, and illustrated the trends in order volumes from December 2018 to July
2019 using line graphs (refer to Figures 5–8). Remarkably, the order demand for each
warehouse displays substantial fluctuations between different months, indicative of an
overall non-stationary trend.

Figure 5. LTC1 demand line chart.

Figure 6. LTC2 demand line chart.
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Figure 7. LTC3 demand line chart.

Figure 8. LTC4 demand line chart.

These four warehouses belong to the same level of LTCs, and thus, they exhibit a
roughly similar fluctuation trend. However, variations in order demand from different LTCs
can still be discerned. Additionally, it is noticeable that the number of orders experiences
spikes during specific time periods, often coinciding with e-commerce holidays such as
“6.18 Shopping Day” and “12.12 Shopping Day”. The temperature season is also a significant
influencing factor. As evident from the graph, there is a discernible seasonal tendency,
with lower demand in winter compared to summer.

4.2. Predictive Model Analysis

This study meticulously considered e-commerce platform discount information span-
ning the years 2018 to 2019, subjecting it to transformation based on predetermined weights.
Additionally, we conducted a comprehensive processing of the features essential for fore-
casting. Beyond incorporating their individual daily order volumes and warehouse details,
we took measures to ensure the accuracy of data collection for these features. Subsequently,
a filtration process was applied, and the primary features were singled out as our input
variables. Predominantly, these input variables consist of five features: temperature, season,
discount, holiday, and location. It is noteworthy that the location feature primarily serves
the purpose of distinguishing between warehouses in different regions and is not utilized
as an input variable. The season, being a categorical variable, underwent conversion into a
dummy variable for regression analysis. The deliberate selection of these characteristics
took into account not only their significance in relation to inventory requirements but also
the availability and accuracy of the data for forecasting purposes.
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The chosen features were selected for their simplicity and ease of accuracy in actual
forecasting. Meteorological predictions and early release of discounts by platforms are as-
pects that can be readily captured. The dataset was partitioned into two segments, with data
spanning from December 2018 to July 2019 allocated for model training, while data from
August 2019 served as the test set. Employing the dummy variable method for analysis,
where the spring season acted as the control group, regression analysis was applied to
gauge the relationship between our selected features and order demand. The results of this
analysis are presented in Tables 2 and 3. Upon scrutinizing the outcomes of the regression
analysis, a robust correlation emerged between the chosen characteristics and the quantity
demanded, a correlation we will endeavor to elucidate.

Table 2. Feature description of Multiple linear regression.

Feature Description Scope Example

lowtemp The minimum temperature of the day [−50, 50] lowtemp = 23
hightemp The maximum temperature of the day [−50, 50] hightemp = 37
discount E-commerce platform discount strength [0, 1] discount = 0.1
season The season of the day, set as a dummy variable win,spr,sum, season = spr
holiday Indicate whether the day is a holiday 0,1 festival = 1

Table 3. The result of regression analysis for all LTC.

Warehouse LCT1 LCT2 LCT3 LCT4

summer 617.1840 ** 227.0788 ** 417.6497 ** 384.9574 **
winter −869.8527 *** −250.3708 ** −407.0030 ** −363.3952 **
lowtemp −250.7641 *** −56.2812 *** −134.9787 *** −109.2522 ***
hightemp 118.9390 *** 60.1963 *** 119.6490 *** 81.5322 ***
discount 1.335 × 10−4 *** 5548.0741 *** 9417.4020 *** 8962.4242 ***
holiday −456.9492 ** −163.2782 ** −298.4687 ** −256.6419 **

R-squared 0.383 0.441 0.367 0.412
*: p-value < 0.1; **: p-value < 0.05; ***: p-value < 0.01

The first aspect of consideration is the correlation between the season and demand.
In this study, the dummy variable method was employed with spring designated as the
control group. The regression analysis revealed that the demand for orders tends to increase
during the summer season and decrease during the winter season. This pattern is attributed
to the company’s primary focus on the logistics of large home appliances, including air
conditioners, refrigerators, and washing machines. Notably, there exists a discernible
seasonal trend for home appliances like refrigerators, air conditioners, and electric fans in
these stores. Consumer demand for such appliances tends to surge in the summer months
and decline in winter, thereby influencing demand fluctuations with changing seasons.

The second aspect is the correlation between temperature and household appliances.
Both maximum and minimum temperatures were taken into account. Typically, the maxi-
mum temperature occurs during the day, and the minimum temperature occurs at night.
An increase in maximum temperature during the day tends to prompt people to purchase
appliances for maintaining physical comfort. Conversely, at night, as most people begin to
sleep, an increase in the minimum temperature is conducive to achieving an ideal sleeping
temperature. Therefore, a rise in the minimum temperature is associated with a decrease in
appliance demand, aligning with the outcomes highlighted by the regression analysis.

The third aspect concerns the association between discounts and demand. It is crucial
to acknowledge that discounts constitute the most influential factor affecting demand.
The magnitude of discounts significantly impacts the demand quantity. Beyond major
e-commerce events such as “11.11 Shopping Day”, “12.12 Shopping Day”, and “6.18
Shopping Day”, various other festive promotions exert a substantial influence on demand.
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The rationale for the impact of discounts is apparent—as discounts increase, demand
experiences a notable rise, a correlation evident in the regression analysis results.

Finally, this study posits that there exists a relationship between holidays and demand,
albeit less intuitively discernible than the previously discussed features. Given that the or-
der data is derived from e-commerce platforms, it is evident that people often lack the time
for offline shopping on weekdays, thereby turning to the convenience of online shopping,
resulting in an increased demand for e-commerce platforms. Conversely, during holidays,
individuals tend to engage in offline purchases, particularly for significant items like home
appliances, due to the ample time available. In such instances, e-commerce platforms may
experience a decline in orders. The results of the regression analysis further confirm that
holidays exert a dampening effect on demand.

It is essential to emphasize that our objective is to employ multiple linear regression
for forecasting, necessitating the pre-acquisition of chosen features. While there are other
features demonstrating correlation with demand, such as the national economic index,
these data are not available in advance, and accurate access is a prerequisite for our feature
selection. Despite the “R-squared” of the multiple linear regression indicating that its
accuracy in this paper is not particularly high, and utilizing forecast data directly for setting
safety stock may lead to decision errors, the performance of multiple linear regression
remains superior compared to other models, as will be elaborated in the subsequent analysis.
Consequently, This utilize empirical errors to rectify model errors and then optimize based
on this correction to derive more accurate decisions.

In summary, the finding of this part include the following:

1. Compared to neural networks, machine learning methods exhibit greater interpretabil-
ity, facilitating data analysis for practitioners.

2. In the home appliance industry, factors such as seasonality, temperature, discounts,
and holidays can influence the quantity of online orders.

3. In the home appliance industry, the factors associated with holidays may potentially
suppress the quantity of online orders.

5. Predictive Performance Analysis

For the performance evaluation of forecasting models, this study employed the median
method (Median), Autoregressive Integrated Moving Average model (ARIMA), artificial
neural network (ANN), and long short-term memory neural network (LSTM). The selected
methods encompass basic models, time series models, and machine learning models, which
currently dominate the field of forecasting. The median model is considered first, as it is
frequently employed in production. In this case, the forecast is generated using the median
of the data from 30 days before the forecasting date. The ARIMA model holds a crucial role
in time series forecasting. Its autoregressive component represents a linear combination of
past values, while the moving average component is a linear combination of past errors,
and temporal sequences are stabilized through differencing. In this study, the auto.arima()
function from the pmdarima package in Python is directly utilized to determine the most
suitable model for each time series.The ANN model is one of the most widely employed
models in machine learning. In our approach, we utilize 8 months of data as input, apply
the sigmoid function as the activation function, and employ a backpropagation algorithm
for training. The predicted values for August 2019 are generated after completing the
training process. LSTM, designed specifically for time series data, is constructed using the
Tensorflow framework. In this model, five-dimensional features primarily serve as input
variables, and the backpropagation method is employed for training, followed by the output
of predicted values. We conducted statistical analysis on the prediction results, employing
RMSE, MAE, and MAPE as evaluation metrics for model performance. Lower values for
these metrics indicate better prediction performance and higher accuracy. A comprehensive
evaluation and comparison of the aforementioned models were conducted, forecasting
order data for August. Figures 9–12 compares the forecast results.
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Figure 9. LTC1 demand line chart.

Figure 10. LTC2 demand line chart.

Figure 11. LTC3 demand line chart.
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Figure 12. LTC4 demand line chart.

From these figures, both multiple linear regression and LSTM can capture the overall
demand trend, with multiple linear regression showing a slight superiority. Notably, multi-
ple linear regression exhibits distinct advantages in capturing holiday effects, particularly
during e-commerce events such as the “88 Shopping Festival” and “8.14 Green Valentine’s
Day”, where strong discounts are prevalent. Multiple linear regression effectively reflects
the demand on those specific days, whereas the LSTM model demonstrates a somewhat
lesser performance. The ANN model fails to effectively reflect the trend and exhibits a
lag in capturing it. The ARIMA model displays mediocre characteristics without clear
distinguishing features. The median model, on the other hand, demonstrates minimal
fluctuations and lacks any discernible trend characteristics. Table 4 will present variations
in different indicators across the various forecasting models.

Table 4. Comparison of predictive model metrics.

Method Multi-LR LSTM ANN ARIMA MEDIAN

LCT1-RMSE 392.77 475.74 580.13 630.88 431.26
LCT1-MAE 339.7 401.83 471.4 583.37 359.53
LCT1-MAPE 49.8 59.47 73.61 88.86 55.14
LCT2-RMSE 231.98 335.19 410.2 345.26 324.48
LCT2-MAE 169.77 251.53 294.43 261.2 217.46
LCT2-MAPE 31.87 49.02 47.45 52.76 42.40
LCT3-RMSE 357.8 535.39 556.78 546.28 502.31
LCT3-MAE 273.53 384.37 344.73 398.3 280.8
LCT3-MAPE 51.99 73.78 55.47 77.07 45.48
LCT4-RMSE 346.02 484.69 552.81 481.84 464.31
LCT4-MAE 265.1 330.4 362.97 337.1 291.33
LCT4-MAPE 37.84 53.87 47.48 55.92 44.92

Upon comparing various metrics, multiple linear regression emerges as slightly su-
perior to other models in either LTC, aligning with our intuitive observations from the
graphical representations. This paper asserts that the multiple linear regression model
exhibits higher prediction accuracy. Multiple linear regression is widely favored as a fore-
casting method due to its advantages in simple model construction, easy implementation,
and high interpretability. Nevertheless, it is crucial to note that the efficacy of multiple
linear regression heavily depends on data accuracy and effective feature selection. Conse-
quently, the application of multiple linear regression mandates ensuring data correctness
and possessing extensive experience in feature selection.
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It is noteworthy that upon comparing metrics, the neural network exhibits poor
performance in our example. Specifically, the Artificial Neural Network (ANN) ranks
among the least effective models in our comparison. A noticeable lag in predictions,
as depicted in the figures, contributes to the suboptimal performance observed in the
metric analysis. Long Short-Term Memory neural networks (LSTM) perform comparatively
better than ANN and fall within the mid-to-upper range of performance among the selected
models. As a neural network framework tailored for time series data, LSTM outperform
general-purpose neural networks like ANN. The primary reason for the neural network’s
suboptimal performance is attributed to the limited data size. The training set utilized for
the neural network model comprises only 8 months of data, and neural networks may not
excel at such a modest scale. It is anticipated that the neural network’s performance will
improve in future application scenarios as the volume of available data continues to grow.

Remarkably, the conventional median method exhibits commendable performance in
model metrics. Solely based on indicators, the median method ranks second only to the
multiple linear regression method. However, upon visual inspection, the median method
fails to capture the predicted trend. This implies that while the median method holds
an advantage in terms of metrics, it struggles to respond promptly to demand surges or
abrupt declines. In terms of outcomes, the median method proves to be straightforward
to operate and serves as a suitable choice in scenarios where substantial data support is
lacking, and swift decision-making is imperative. However, it is not advisable to employ
the median method when ample data support is available.

In summary, the finding of this part include the following:

1. In demand forecasting, neural networks do not necessarily outperform machine
learning methods.

2. Professionals should choose models based on the characteristics of the dataset, conduct
tests and comparisons of different models, and select the best-performing model as
the demand forecasting model.

5.1. Predictive Error Analysis

In this study, we aligned the empirical error distribution with both the demand
forecast data and the actual demand data for August 2019. Subsequently, we computed the
discrepancy between the actual and forecasted demand, subjecting it to the Shapiro-Wilk
test. The outcomes of this test are presented in Table 5.

Table 5. The result of Shapiro-Wilk test.

Warehouse LCT1 LCT2 LCT3 LCT4

p-value 3.15 × 10−1 1.01 × 10−1 9.9 × 10−2 2.9 × 10−2

It is evident that the p-values for LTC1, LTC2, and LTC3 are all greater than 0.05,
suggesting that LTC1, LTC2, and LTC3 can be considered to follow a normal distribution.
However, the p-value for LTC4 is less than 0.05, indicating that we lack sufficient evidence to
conclude that it adheres to a normal distribution. This also implies that the error distribution
generated by the data-driven method varies across different warehouse distribution centers,
potentially influenced by numerous factors.

In traditional approaches, it is common to assume that the error distribution follows
a specific distribution (often assumed to be normal). However, such assumptions are not
always reliable, and errors in assumptions can lead to significant biases in decision-making,
subsequently increasing enterprise costs. In this case, assuming a traditional method where
each long-term cycle follows a normal or other specific distribution is not dependable.
Therefore, we employ an empirical distribution method for estimation.

While this empirical distribution method is contingent on the size of the data, it is more
persuasive than assuming a normal distribution. As the data volume continues to expand,
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the accuracy of the empirical error distribution improves, offering better corrections to our
demand forecasting model.

In summary, the finding of this part include the following:

1. The distribution between actual demand and forecasted demand may not necessarily
adhere to a normal distribution. Employing a normal distribution to adjust the
demand may introduce biases in the correction process.

2. In cases where there is sufficient historical data, employing an empirical distribu-
tion instead of a normal distribution for correcting forecasted demand might yield
better performance.

5.2. Inventory Optimization Analysis

In this section, the study aims to underscore the necessity of inventory optimization
following the forecasting process through the use of simulations. A comparative analysis
will be carried out to assess inventory allocation costs in different supply chain structures.
This evaluation will involve a comparison between the direct utilization of forecast results
and the incorporation of inventory optimization after forecasting. Additionally, the study
will delve into the variations in total inventory costs across diverse supply chain structures
and offer an explanation for these discrepancies.

This study will focus on a segment of the company’s supply chain network as the
primary subject of investigation. Based on delivery data from the logistics company, we
observe that 99.3% of the company’s orders are fulfilled within a week, indicating a high
level of service. Given the distinctive characteristic of the “cloud supply chain” with its
emphasis on rapid delivery and superior service, our analysis will consider service levels of
0.8, 0.85, 0.9, and 0.95. Furthermore, it is reasonable to assume uniformity in service levels
between LTCs and RDC in this structure. Similar service targets and service areas among
LTCs at the same level result in identical service level requirements, while the RDC, serving
LTC, maintains an equivalent service level. According to industry surveys, the average
replenishment cycle for home appliances typically ranges from 10 to 30 days. We opt for a
15-day replenishment cycle to ensure comprehensive consideration of other factors such as
weather, season, discounts, etc., within this timeframe.

This study assumes a linear relationship between LCT and RDC inventory costs and
shortage costs. We consider three scenarios where RDC costs are lower than LTC, equal to
LTC, and higher than LTC. For the sake of simulation convenience, we explore three cases
with linear coefficients of 0.5, 1, and 2. In the dependent structure, we presume a linear
relationship between the transshipment cost and LTC. Additionally, the transshipment
cost is strictly assumed to be lower than the out-of-stock cost, as transshipment among
peers would be unnecessary otherwise. We assess variations in inventory quantities for
safety stock under different structures and discuss the values across four service levels,
as illustrated in Table 6.

Table 6. Comparison of inventory quantities under different structures.

Method LTC1 LTC2 LTC3 LTC4 RDC

ORGNUMBER 13,364 10,632 13,866 14,906 52,768
PRENUMBER 14,265 9169 11,778 10,357 45,569
PRE + OPT (IND, SL = 0.8) 18,690 11,029 14,343 14,572 78,434
PRE + OPT (D, SL = 0.8) 18,619 11,412 12,906 13,273 56,210
PRE + OPT (IND, SL = 0.85) 21,143 12,792 16,173 15,592 89,377
PRE + OPT (D, SL = 0.85) 21,216 10,989 12,599 13,287 58,091
PRE + OPT (IND, SL = 0.9) 21,795 13,549 17,898 16,777 97,229
PRE + OPT (D, SL = 0.9) 21,193 12,406 12,476 13,675 59,750
PRE + OPT (IND, SL = 0.95) 24,000 15,679 18,836 19,882 112,289
PRE + OPT (D, SL = 0.95) 21,884 11,125 16,369 13,059 76,027
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To delve deeper into the necessity of inventory optimization, this study conducted a
comparison between the total costs accrued by utilizing forecast results directly as safety
stock and the total costs associated with inventory optimized following the forecast, as de-
picted in Table 7.

Table 7. Comparison of total cost of forecasting-inventory optimization and direct forecasting.

Method SL = 0.8 SL = 0.85 SL = 0.9 SL = 0.95

PREDICT (IND, a = 0.5) 47,699 67,198.2 106,196.5 223,191.5
PREDICT (IND, a = 1) 62,097 87,595.3 138,592 291,582
PREDICT (IND, a = 2) 90,893 128,389.7 203,383 428,363
PREDICT (D, a = 0.5) 43,950.8 61,948.3 98,943.3 205,928.3
PREDICT (D, a = 1) 58,348.8 82,345.5 130,338.8 274,318.8
PREDICT (D, a = 2) 87,144.8 123,139.8 195,129.8 411,099.8
PRE + OPT (IND, a = 0.5) 20,369 31,236.7 39,481.5 55,389.8
PRE + OPT (IND, a = 1) 33,202 49,541.5 61,712 85,150.5
PRE + OPT (IND, a = 2) 58,868 86,151 106,173 144,672
PRE + OPT (D, a = 0.5) 11,916.2 15,266.2 16,803.1 23,603.6
PRE + OPT (D, a = 1) 13,637.2 17,927.6 20,294.1 35,233.1
PRE + OPT (D, a = 2) 17,079.2 23,250.6 27,276.1 58,492.1

As observed in the comprehensive cost analysis table, across all scenarios, there is a
consistent upward trend in total costs with the escalation of service levels. Notably, as the
service level advances from 0.9 to 0.95, the total cost experiences a substantial increase,
almost doubling or achieving a twofold increase in all instances. This unequivocally
indicates that the expenses associated with upholding a high service level are notably
higher, a trend vividly demonstrated in our simulations.

A noteworthy observation from the data lies in the substantial contrast in total costs
incurred when utilizing forecasts directly for safety stock allocation versus employing fore-
casting followed by inventory optimization. This substantiates our hypothesis, emphasizing
that relying on forecasts directly for allocation can result in considerable decision-making
discrepancies and, consequently, substantial costs. Particularly in the context of highly
uncertain markets and inadequately large datasets, the inherent limitations of forecasting
models may lead to inaccuracies in predicting actual demand. These inaccuracies tend to
escalate as the service level increases, potentially resulting in significant losses. The opti-
mization strategy post-forecasting effectively addresses this issue. As the service level rises,
the optimization approach leans towards increasing inventory, adeptly mitigating the risk
of stockouts and thereby yielding considerable cost savings.

This study also conducts a comparison based on inventory volume, as presented in
Table 7. It is evident that there are discrepancies between the predicted and actual values
for each LTC, with notable errors observed for LTC3 and LTC4. This discrepancy implies
that utilizing the forecast result directly for inventory allocation would result in significant
out-of-stock costs. Furthermore, since our prediction model does not account for the service
level, the forecast result remains constant as the service level changes. Consequently,
under high service levels, the losses due to stockouts become substantial, leading to an
increase in costs.

Now, turning our attention to the optimized inventory allocation, we observe that,
when the service level is 0.8, the inventory levels for all LTCs increase compared to the
predicted result, and this trend continues as the service level rises. The rationale behind
this is that as the service level increases, decision-makers lack knowledge about the actual
inventory levels in the future, necessitating an increase in inventory quantity to avert
shortages. Hence, inventory optimization post-forecasting proves to be indispensable.
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In light of our analysis, this study contends that optimization based on demand fore-
casting is crucial, particularly within the context of the “cloud supply chain” where a high
service level is of utmost importance. For decision-makers, a more accurate predictive
model yields superior outcomes. However, confronted with highly uncertain market de-
mand, compounded by limitations in data size and other factors, the reliable assurance
of the model’s predictive accuracy and effectiveness becomes challenging. In such cir-
cumstances, optimization serves as an additional auxiliary tool for enhancing inventory
allocation decisions.

In summary, the finding of this part include the following:

1. Utilizing demand forecast results directly for inventory decisions may lead to signifi-
cant deviations in decision-making.

2. In the context of a cloud supply chain environment, it is essential to dynamically
adjust inventory decisions based on market service levels.

5.3. Supply Chain Structure Analysis

Moreover, this study recognizes that diverse supply chain structures can influence
safety stock allocations. In this subsection, we will analyze these structures by examining
inventory quantities and costs, referring to Tables 6 and 7.

It is evident that, for each warehouse, the inventory levels under the non-independent
replenishment structure are lower than those under the independent replenishment struc-
ture. Furthermore, as the service level increases, the disparity in inventory levels among
LTCs under both structures widens. This discrepancy arises from the interdependence
among LTCs in the non-independent structure, where each LTC serves as a buffer for the
others, unlike the independent structure. Examining the RDC data reveals that the inven-
tory of dependent RDCs is significantly lower compared to that of standalone structures.
This is attributed to the fact that, under the independent structure, if an LTC is out of stock,
it must restock directly from the RDC, prompting the RDC to maintain higher inventory
levels to accommodate LTC restocking needs. Under the dependent structure, when an
LTC faces a stockout, it replenishes its stock from the LTC at the same level, leading to a
proportionate reduction in safety stock allocation for the RDC. However, it is crucial to
note that, with high service levels, the RDC also augments its inventory significantly to
mitigate potential disruptions. The data indicates a substantial increase in RDC inventory
when the service level rises from 0.9 to 0.95. This elevation is attributed to the heightened
risk of stockouts at higher service levels, prompting both LTC and RDC to bolster their
inventories substantially to avert any potential shortages due to uncertain future demand.

From a cost perspective, the total cost of the dependent replenishment structure
is lower than that of the independent replenishment structure at the same service level,
as indicated in Table 6. Notably, this cost difference is more pronounced when the cost of the
RDC exceeds that of the LTC (a = 2). This amplification occurs because a higher operating
cost for the RDC necessitates increased inventory to accommodate LTC’s replenishment
requests, resulting in a wider gap in total costs. Therefore, the dependent replenishment
structure emerges as a preferable option, particularly in scenarios with elevated upstream
operating costs.

Considering service levels, the total cost disparity between the two structures expands
with higher service levels. Despite both structures opting to augment safety stock to prevent
stockouts as service levels increase, the rate of increase in the independent structure is
comparatively lower than that in the dependent structure. Consequently, in terms of
total cost, the dependent structure exhibits superior performance, especially at higher
service levels.
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Confronted with highly uncertain market demand, adjusting the supply chain struc-
ture in a timely manner becomes crucial. This adjustment could involve transitioning
from an independent replenishment structure to a dependent replenishment structure,
contingent upon meeting specific conditions. Such an adaptation ensures the availability of
ample buffer space to mitigate the risk of potential stockouts.

In summary, the finding of this part include the following:

1. In inventory management within the context of the cloud supply chain, the structure
of the supply chain can have an impact on inventory decisions.

2. In specific circumstances, practitioners can mitigate supply chain risks and prevent
disruptions by adjusting the structure of the supply chain.

5.4. Comparative Analysis of Methods

To further elucidate the effectiveness of the data-driven approach, this study conducts
a comparative analysis with the traditional approach. We provide comprehensive details
regarding the data-driven method and the acquisition of each parameter. The normal
distribution is applied as the demand distribution to capture the normal parameters from
the data, while considering the seasonality of these parameters. The optimization model
employed in the traditional approach is in line with that of the data-driven approach.
However, in the traditional approach, the study resorts to the normal distribution to model
errors, deviating from the empirical distribution used in the data-driven approach. Specifi-
cally, in the traditional approach, we relies on the assumption of a normal distribution for
demand forecasting instead of embracing the machine learning approach. The simulation
of inventory data is carried out using software, and the results are presented in Table 8.

Table 8. Comparison of traditional and data-driven approaches to inventory levels.

Method LTC1 LTC2 LTC3 LTC4 RDC

ORGNUM 13,364 10,632 13,866 14,906 52,768
PRENUM 14,601 9776 12,294 11,569 48,240
TRA (IND, SL = 0.8) 18,194 13,590 17,260 17,863 86,359
TRA (D, SL = 0.8) 15,597 12,870 14,168 14,529 66,924
PRE + OPT (IND, SL = 0.8) 18,690 11,029 14,343 14,572 78,434
PRE + OPT (D, SL = 0.8) 18,619 11,412 12,906 13,273 56,210
TRA (IND, SL = 0.85) 19,428 14,608 18,792 19,316 94,038
TRA (D, SL = 0.85) 17,699 11,887 13,970 18,694 73,747
PRE + OPT (IND, SL = 0.85) 21,143 12,792 16,173 15,592 89,377
PRE + OPT (D, SL = 0.85) 21,216 10,989 12,599 13,287 58,091
TRA (IND, SL = 0.9) 20,984 15,873 20,719 21,143 103,647
TRA (D, SL = 0.9) 15,793 14,913 19,494 14,349 78,219
PRE + OPT (IND, SL = 0.9) 21,795 13,549 17,898 16,777 97,229
PRE + OPT (D, SL = 0.9) 21,193 12,406 12,476 13,675 59,750
TRA (IND, SL = 0.95) 23,285 17,748 23,578 23,851 117,887
TRA (D, SL = 0.95) 18,478 15,053 17,248 18,120 85,788
PRE + OPT (IND, SL = 0.95) 24,000 15,679 18,836 19,882 112,289
PRE + OPT (D, SL = 0.95) 21,884 11,125 16,369 13,059 76,027

In the initial analysis, this study focuses on the independent replenishment structure.
Our research compares the inventory levels resulting from the two methods across four
service levels. We observed that at a service level of 0.8, the traditional method effectively
prevents stockouts, while the data-driven method incurs a slight but acceptable shortfall.
However, with increasing service levels, the data-driven approach demonstrates a more
pronounced advantage, particularly at high service levels. The gap between the data-driven
approach and the traditional approach is substantial. This difference is primarily attributed
to the highly uncertain nature of markets, where the actual distribution may not necessarily
adhere to a normal distribution. Assuming a normal distribution of demand can introduce
bias into decision-making.
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This study further compares the inventory levels between the two methods across four
service levels. The data-driven approach consistently outperforms the traditional method,
and this advantage becomes more pronounced with higher service levels. At a service level
of 0.8, both methods exhibit reasonable inventory allocation at the LTC level; however,
at the RDC level, the data-driven method clearly outperforms the traditional approach.
This is attributed to the data-driven method’s utilization of an empirical distribution
for replenishment, contrasting with the normal distribution employed by the traditional
method. The error introduced by this distribution assumption results in higher inventory
levels for the traditional method in RDC decisions. In instances of high service levels,
the traditional method demonstrates inferior performance at both the LTC and RDC levels
when compared to actual demand.

As evident from the table, the data-driven approach leads to more rational inventory
decisions than the traditional approach. To conduct a comprehensive comparison of their
performance, this study will analyze them from the perspective of total cost. The total cost
incurred by the traditional safety stock allocation method is compared with that of the
data-driven method, as shown in Table 9.

Table 9. Total cost of ownership comparison of traditional and data-driven approaches.

Method SL = 0.8 SL = 0.85 SL = 0.9 SL = 0.95

TRA (IND, a = 0.5) 30,934.5 40,011 51,390.5 68,253.5
TRA (IND, a = 1) 47,730 60,646 76,830 100,813
TRA (IND, a = 2) 81,321 101,916 127,709 165,932
PRE + OPT (IND, a = 0.5) 20,369 31,236.7 39,481.5 55,389.8
PRE + OPT (IND, a = 1) 33,202 49,541.5 61,712 85,150.5
PRE + OPT (IND, a = 2) 58,868 86,151 106,173 144,672
TRA (D, a = 0.5) 12,079 19,971.5 25,201.6 32,641
TRA (D, a = 1) 19,157 30,461 37,927.1 49,151
TRA (D, a = 2) 33,313 51,440 63,378.1 82,171
PRE + OPT (D, a = 0.5) 11,916.2 15,266.2 16,803.1 23,603.6
PRE + OPT (D, a = 1) 13,637.2 17,927.6 20,294.1 35,233.1
PRE + OPT (D, a = 2) 17,079.2 23,250.6 27,276.1 58,492.1

From a cost perspective, it is evident that both structural data-driven methods are
significantly superior to the traditional method. The data-driven approach eliminates the
assumed distribution of the traditional method, allowing it to capture the distribution more
accurately. When the operating cost of RDC is low (a = 0.5), the difference between the
traditional method and the data-driven method is not pronounced, with the data-driven
method showing a slight advantage. As operating costs increase, this gap widens due to the
greater accuracy of the data-driven approach in capturing the replenishment distribution.
With the rise in service levels, the data-driven approach consistently outperforms the
traditional approach, although the gap does not widen further at higher service levels,
indicating that the traditional approach remains somewhat reliable. In situations with a
small data size or inaccurate data, opting for the traditional method is a reasonable choice.

In summary, the finding of this part include the following:

1. In situations with insufficient data volume, utilizing traditional methods for inventory
decision-making is a viable solution.

2. In the context of cloud supply chains, leveraging the data collection capabilities of
cloud platforms, employing a data-driven approach for inventory decision-making is
a superior choice.

5.5. Additional Example

To enhance the persuasiveness of the methods proposed in this paper and demonstrate
the reliability of the data-driven framework, we applied the model to sub-product data
within the same company. Numerical experiments were conducted on a local network in
another region, yielding results similar to the analysis mentioned earlier. Due to length



Mathematics 2024, 12, 573 26 of 29

constraints, the primary numerical results are presented in Appendix A. The supplementary
examples corroborate the main findings, affirming the necessity of optimization after
forecasting. These examples illustrate the impact of different supply chain structures on
safety stock allocation, consistently showing that the data-driven method outperforms
the traditional approach in most scenarios. The comparison between traditional and data-
driven methods is substantiated by the supplementary examples, further reinforcing the
arguments presented in this paper.

6. Conclusions

In conclusion, this study provides an in-depth exploration of inventory management
within the context of cloud supply chains. The investigation into inventory management in
the cloud supply chain environment offers valuable insights into the dynamic interaction
between cloud technology and inventory control. Our research adopts a micro-level
perspective, thoroughly examining inventory allocation issues under different supply chain
structures and proposing data-driven solutions. The study has yielded unique findings,
elucidated certain limitations, and laid the groundwork for future research directions.

One of the notable contributions of this study lies in its meticulous exploration of
inventory management within the framework of cloud supply chains at the micro-level.
Through a detailed examination of the characteristics of diverse supply chain structures
and the application of machine learning and optimization techniques, this research intro-
duces a specific data-driven model, offering a novel perspective on inventory management
from the vantage point of cloud supply chains. To validate the reliability of the proposed
methodology, this paper utilizes data from a major domestic logistics company as a case
study, conducting analyses encompassing predictive performance, forecast errors, inven-
tory optimization, supply chain structure, and comparisons with traditional methods.
Empirical results underscore the significant impact of supply chain structure on safety
stock, with distinct safety stock allocations observed under different supply chain struc-
tures. A comparative analysis between traditional methods and the data-driven approach
proposed in this study reveals the superior decision-making capabilities of the data-driven
method. Simultaneously, intriguing phenomena emerge in the empirical analysis: firstly,
the case study in this paper illustrates that in situations with insufficient data, deep learn-
ing may not necessarily outperform other models; secondly, regression results from the
empirical analysis suggest that holidays exert a certain inhibitory effect on online orders,
presenting a noteworthy observation; finally, the study emphasizes the influence of sup-
ply chain structure on inventory management, underscoring that practitioners should
adopt different inventory decision-making strategies when confronted with diverse supply
chain structures.

However, it is essential to acknowledge the inherent limitations of this study. The gen-
eralizability of the strategies proposed in this research may be contingent upon specific
industry sectors, organizational structures, and the maturity of cloud adoption within the
supply chain, making them not universally applicable across all industries. Additionally,
the model presented in this paper relies on the scale and accuracy of the data; the per-
formance of the method significantly diminishes when the data quality falls below the
required standards. Furthermore, while our focus on demand forecasting and inventory
optimization is crucial, it only represents one facet of the broader domain of cloud supply
chain management.

To broaden the impact of this research, future studies can explore several promising
avenues. Firstly, research focused on the integration of real-time data sharing mechanisms
in cloud supply chains could enhance the responsiveness of inventory management sys-
tems. Secondly, investigating the impact of emerging technologies such as blockchain on
inventory traceability and transparency holds promise for improving the overall efficiency
and reliability of supply chain operations [4]. Additionally, future research efforts can
extend our findings by examining the applicability of the proposed inventory management
strategies in different industry contexts and supply chain configurations. This may involve



Mathematics 2024, 12, 573 27 of 29

conducting case studies in specific sectors to validate and refine the proposed models.
Given the increasing importance of sustainability in supply chain management, future
research could delve into how cloud-based inventory management aligns with sustain-
able practices. Examining the environmental, social, and economic feasibility of these
approaches would be a promising avenue [5].

In summary, while our study has advanced the understanding of cloud supply chain
inventory management, there remains ample room for further exploration. Addressing
these research gaps and extending our findings to different contexts will contribute to the
ongoing development of supply chain management practices in the era of cloud technology.
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Abbreviations
The following symbols and abbreviations are used in this manuscript:

RDC Regional Distribution Center
LTC Local Transportation Ceter
MAE Mean absolute error
MAPE Mean absolute percentage error
RMSE Root mean square error
Multi-Lr Multiple linear regression model
Armia Autoregressive integrated moving average
Median Median model
ANN Artificial neural networks
LSTM Long short-term memory model
X Input features
Y Actual output
θ Parameters to be learned
ϵi Historical errors
I(x) Indicator function
q∗ Optimal inventory quantity
in f Lower bound of set
cl Unit shortage cost
ch Unit holding cost
d f Demand forecasting using machine learning methods
d fi

Demand for the i-th LTC predicted using machine learning methods
q∗i Optimal inventory quantity of the i-th LTC
ci

l Unit shortage cost of i-th LTC
ci

h Unit holding cost of i-th LTC
DR Total demand of RDC
q∗R Optimal inventory quantity of RDC
cR

l Unit shortage cost of RDC
cR

h Unit holding cost of RDC
Si Transshipment quantity distribution function of the i-th LTC
λi The proportion of cargo transshipped by the i-th LTC from other LTCs
qi The inventory quantity of the i-th LTC
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ci
t The transshipment cost of replenishing the i-th LTC from other LCTs
(x)+ An operation;when x is greater than 0, take x; otherwise, take 0
a Cost proportionality coefficient between LTC and RDC
F(p) Demand distribution function
F̄(p) Error distribution function between forecast demand and actual demand
FR(p) Total demand forecast distribution function of RDC
Fi(p) Total demand forecast distribution function of the i-th LTC
F̄i(p) Error distribution function of the i-th LTC
F̄R(p) Replenishment distribution function of RDC

Appendix A

Table A1. Comparison of inventory quantities under different methods and supply chain structures.

Method LTC5 LTC6 LTC7 LTC8 RDC2

ORGNUM 13,989 11,966 19,714 26,213 71,882
PRENUM 10,804 8600 18,896 21,344 59,644
PRE + OPT (IND, SL = 0.8) 16,939 13,970 25,421 33,149 120,124
PRE + OPT (IND, SL = 0.85) 17,689 15,035 27,326 33,877 129,440
PRE + OPT (IND, SL = 0.9) 19,339 16,160 27,881 37,109 137,254
PRE + OPT (IND, SL = 0.95) 21,259 17,803 30,941 41,639 161,285
PRE + OPT (D, SL = 0.8) 15,137 13,129 25,748 28,610 113,269
PRE + OPT (D, SL = 0.85) 17,149 13,138 26,147 28,609 120,585
PRE + OPT (D, SL = 0.9) 15,234 19,488 26,901 27,526 125,914
PRE + OPT (D, SL = 0.95) 19,009 14,655 25,235 39,753 148,294
TRA (IND, SL = 0.8) 17,479 12,658 29,573 35,252 115,755
TRA (IND, SL = 0.85) 18,676 13,480 31,490 37,640 128,821
TRA (IND, SL = 0.9) 20,182 14,514 33,901 40,645 145,260
TRA (IND, SL = 0.95) 22,413 16,046 37,476 45,099 169,625
TRA (D, SL = 0.8) 13,568 12,752 27,875 34,088 109,076
TRA (D, SL = 0.85) 17,235 13,511 26,232 35,862 120,415
TRA (D, SL = 0.9) 13,770 14,524 31,865 34,263 130,440
TRA (D, SL = 0.9) 18,833 14,831 32,683 39,234 154,172

Table A2. Comparison of total costs under different methods and supply chain structures.

Method SL = 0.8 SL = 0.85 SL = 0.9 SL = 0.95

PRE (a = 0.5) 78,828 111,673 177,363 374,433
PRE (a = 1) 108,704 153,997.3 244,584 516,344
PRE (a = 2) 168,456 238,646 379,026 800,166
PRE + OPT (IND, a = 0.5) 41,718 51,094 61,293 84,461.5
PRE + OPT (IND, a = 1) 65,839 79,873 93,979 129,163
PRE + OPT (IND, a = 2) 114,081 137,431 159,351 218,566
TRA (IND, a = 0.5) 45,116.5 57,873.5 74,049 98,023.5
TRA (IND, a = 1) 67,053 86,343 110,738 146,895
TRA (IND, a = 2) 110,926 143,282 184,116 244,638
PRE + OPT (D, a = 0.5) 31,435.5 37,362.5 44,283 64,976
PRE + OPT (D, a = 1) 52,129 61,564 71,299 103,182
PRE + OPT (D, a = 2) 93,516 109,967 125,331 179,594
TRA (D, a = 0.5) 35,371.8 38,772.5 52,257 65,156
TRA (D, a = 1) 53,968.8 63,039 81,536 106,301
TRA (D, a = 2) 91,162.8 111,572 140,094 188,591
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