
Citation: Zhang, Z.; Feng, K.; Chen,

X.; Liu, X.; Sun, H. RHCA: Robust

HCA via Consistent Revoting.

Mathematics 2024, 12, 593. https://

doi.org/10.3390/math12040593

Academic Editor: Maurizio Naldi

Received: 5 January 2024

Revised: 5 February 2024

Accepted: 13 February 2024

Published: 17 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

RHCA: Robust HCA via Consistent Revoting
Zijian Zhang, Kaiyu Feng, Xi Chen *, Xuyang Liu * and Haibo Sun

School of Cyberspace Science & Technology, Beijing Institute of Technology, Beijing 100081, China;
zhangzijian@bit.edu.cn (Z.Z.); fengkaiyu@bit.edu.cn (K.F.); sunhypper@bit.edu.cn (H.S.)
* Correspondence: chenxibit@bit.edu.cn (X.C.); liuxuyang@bit.edu.cn (X.L.)

Abstract: Since the emergence of blockchain, how to improve its transaction throughput and reduce
transaction latency has always been an important issue. Hostuff has introduced a pipeline mechanism
and combined it with a chain structure to improve the performance of blockchain networks. HCA
has introduced a revoting mechanism on the basis of Hostuff, further reducing transaction latency,
but it has also brought some problems. In HCA, if the leader is malicious, it would be possible to
continuously call on the replica nodes to revote, which can lead to network congestion. This paper
employs the global perfect coin technology to guarantee that every replica can obtain a globally
consistent and the freshest candidate proposal during the Revote phase, thereby improving the
robustness of the HCA protocol. The performance improvement of RHCA in attack scenarios has
been verified through experiments.
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1. Introduction

Blockchain is a unique data structure in which each subsequent block stores the hash
value of the previous block, and every block references its predecessor, with the reference
in the genesis block being null. Due to the properties of hash functions, this data struc-
ture ensures that data stored within the blocks, such as transaction information, remains
immutable. This enables the creation of a trustworthy and decentralized digital world.

However, since the emergence of blockchain, a low transaction throughput has been a
persistent bottleneck limiting the application of blockchain technology. The throughput
of Bitcoin [1], the first successful application of blockchain technology, is approximately
7 transactions per second (TPS), and Ethereum [2] achieves around 20 TPS. In contrast,
the widely used centralized payment system VISA currently offers TPS rates of around
76,000 [3]. Additionally, transaction latency presents a significant challenge to blockchain
applications. In the blockchain network, the confirmation of a transaction involves pro-
cesses such as transaction broadcasting, block packaging, and the execution of consensus
algorithms, resulting in generally prolonged transaction latency within blockchain systems.
Consensus mechanisms are the core of blockchain technology, determining both its per-
formance and security. Many research teams [4–6] have focused on improving blockchain
system performance and efficiency by improving consensus mechanisms.

Numerous research teams have made groundbreaking contributions in the field of
consensus mechanisms. In the permissionless blockchain domain, Bitcoin employs the
Proof of Work (PoW) consensus mechanism [1], where miners gain the right to record
transactions by solving a mathematical problem. However, this approach is plagued by
issues such as computational waste and low transaction throughput. Subsequent Proof of
Stake (PoS) [7] mechanisms have addressed computational waste but still face the “nothing
at stake attack” issue [8]. In the realm of consortium blockchains, Practical Byzantine
Fault Tolerance (PBFT) [9] relies on messages exchange to eliminate computational waste.
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Nonetheless, the voting process between nodes entails substantial communication over-
head, leading to scalability challenges within the entire system. Hostuff [10] introduced a
pipeline mechanism while simultaneously considering the blockchain structure, enhancing
the performance of the blockchain network. Building upon Hostuff, HCA [11] introduced a
revoting mechanism, further reducing transaction latency but also creating some issues.

The authors of HCA contend that conducting revoting for disputed proposals is more
efficient than awaiting new votes. Therefore, they employed the revoting method in the de-
sign of HCA, reducing transaction latency and enhancing system responsiveness. However,
with the introduction of revoting, if the leader acts maliciously, it can continuously send
recall messages to 2 f replicas as long as the timer does not expire, as shown in Figure 1. This
behavior, akin to a DDoS attack, can lead to network congestion, causing the blockchain to
be unable to expand until the timer expires.

Figure 1. Malicious leader can continuously send recall messages to 2 f replicas, and these replicas
continuously vote on new proposals, which can lead to network congestion.

In this research, we leverage the global perfect coin technology [12–15] to share a glob-
ally consistent candidate proposal across multiple replicas. By employing this technology to
share candidate proposals, our approach can reduce the impact of the aforementioned at-
tacks. All in all, this paper focuses on enhancing the Revote phase within the context of HCA,
aiming to bolster its robustness against malicious leader attacks. The main contributions of
this paper are as follows:

• To the extent of our knowledge, our work pioneers the integration of the global perfect
coin into the Revote phase, enabling each participating replica to access a globally
consistent and up-to-date candidate proposal. The integration addresses a critical issue
in HCA, where replicas heavily rely on the primary node during the Revote phase.

• We propose the RHCA protocol, which exhibits slightly lower performance than HCA
in normal conditions but significantly outperforms HCA in scenarios involving attacks
from malicious primary nodes.

• The paper provides theoretical proofs for the safety, liveness, and responsiveness of
RHCA. Additionally, RHCA is implemented in Java, and experimental results confirm
that it can effectively enhance the robustness of blockchain systems.

The rest of the paper proceeds as follows. The related works are presented in Section 2.
Section 3 first recalls the basic content and data structure of HCA; then, it briefly introduces
the concept and properties of the global perfect coin technology. In Section 4, the system
model, threat model, goals, and message structures are defined. In Section 5, we propose
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the RHCA protocol and prove the safety, liveness, and responsiveness of RHCA. Then,
Sections 6 and 7 provide the theoretical and experimental analyses for the performance,
respectively. Finally, the paper is concluded in Section 8.

2. Related Works

In distributed systems, scenarios such as node crashes leading to unresponsiveness or
malicious nodes forging messages for malicious responses may occur. We refer to situations
where nodes do not respond but do not maliciously forge messages as a “Crash Fault”,
and situations where malicious nodes forge messages as a “Byzantine Fault”. Therefore,
consensus algorithms suitable for these two scenarios are, respectively, termed Crash Fault
Tolerance (CFT) and Byzantine Fault Tolerance (BFT) algorithms. This paper primarily
focuses on BFT consensus algorithms.

Some algorithms are based on proof and use the longest chain principle to converge
forks, such as PoW and PoS. PoW consensus leverages the characteristics of hash functions
and designs a computationally challenging but easily verifiable mathematical problem.
The node that first solves this problem gains the right to record transactions; while the
computational intensity of PoW provides security, it also results in significant resource
wastage. The Peercoin project pioneered the implementation of the Proof of Stake algorithm,
introducing Coin Age as a form of stake to replace the computational competition of
PoW with stake competition, while this conserves computational resources, it introduces
issues such as the “nothing at stake attack” [8]. Delegated Proof of Stake (DPoS) [16],
an improvement over PoS, can address the “nothing at stake attack” issue, but it falls short
in terms of decentralization.

A study was based on a messages exchange, resulting in algorithms with deterministic
finality [17]. The classical Byzantine Fault Tolerant algorithm (BFT) [18], proposed by
Leslie Lamport et al., assumes a total number of n replicas, with f being the number
of Byzantine replicas. BFT can ensure consensus among honest nodes in a Byzantine
system only when n ≥ 3 f + 1. However, the voting between nodes involves substantial
communication overhead, and the communication complexity of the system is O(n f+1).
PBFT is an improvement over BFT. By employing a master–slave backup design, PBFT
reduces the communication complexity of the entire system in normal states to O(n2).
However, its introduced view-change process is relatively complex, and improvements can
be made in terms of transaction latency and system throughput.

In recent years, the idea of a pipeline has inspired advancements, which refers to
breaking down a task into several fixed stages so that each stage can be executed in parallel,
thereby improving the efficiency and performance of the system. Some approaches utilize
a pipeline strategy to simplify the voting phases, reducing transaction latency. The earliest
integration of the pipeline concept was in the Paxos algorithm [19] proposed in 1990,
but Paxos is only effective for Crash Fault Tolerance (CFT) problems. In 2019, Maofan
Yin et al. [10] simplified the voting phases of HotStuff using a pipeline approach. In HotStuff,
the prepare phase of view v + 2 serves as both the pre-commit phase for view v + 1 and the
commit phase for view v. HotStuff not only simplifies the voting phases but also seamlessly
incorporates view changes into the normal consensus process. Giridharan et al. [20]
focused on the liveness degradation issue introduced by the pipeline, pointing out that
in pipeline mode, block submissions span three or four leaders. If malicious leaders exist,
it could lead to a reduction in system liveness. They proposed BeeGees [20], which can
successfully submit blocks even in the presence of discontinuous honest leaders. TSBFT [21]
synchronously optimizes the consensus layer and network layer of the protocol. It separates
the transmission of block headers and block bodies, initiating the voting stages after the
transmission of the block header. The first round of voting occurs simultaneously with the
transmission of the block body, implementing a unique pipeline mode. In the context of a
sharding blockchain, Liu et al. proposed FBFT [22], which combines the pipeline concept
to enhance the efficiency of intra-shard consensus.
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3. Preliminaries
3.1. The Basic Content of HCA

In the partial synchronous network assumption, HCA addresses the Byzantine Gener-
als Problem in the context of a consortium blockchain. The original HCA consists of the
normal state protocol and view-change protocol. In HCA, each participating blockchain
node in the consensus is referred to as a replica, with a special replica known as the
leader. When the view needs to be switched, the system selects a new leader through the
view-change protocol. Under normal circumstances, each node in the system operates the
normal state protocol. The primary node is responsible for proposing a new block, and it
collects votes from replicas for this proposal. If the vote count reaches a threshold, a new
block is proposed afterward to extend the blockchain. Additionally, to enhance system
responsiveness, HCA introduces the Revote phase. When the primary node cannot obtain
sufficient votes for the current proposal, it can issue recall messages to summon votes from
replicas for the proposal. If the primary node fails to extend the blockchain before the
timer expires, ensuring system liveness, each replica enters the view-change protocol and
initiates a new primary node election after the timer expires.

The optimized HCA combines the normal state protocol and view-change protocol in
a rolling manner. Each primary node can put forward at most one block in its view. After
a replica node votes, its local view grows. Therefore, the votes of replica nodes for the
current proposal are sent to the leader of the next view. Each proposal includes a proof of
the legitimacy of its predecessor proposal (i.e., aggregate signature). Consequently, each
vote for a new proposal simultaneously confirms the previous block. Once the block at
height k is voted on, the block at height k − 2 can be committed. HCA utilizes this approach
to streamline block generation and confirmation, enhancing the efficiency of the consensus
protocol. Theoretical analysis indicates that the communication complexity of the HCA
mechanism is O(n).

3.2. The Data Structure of HCA

HCA achieves consensus among nodes through a messages exchange, and messages
emitted by each node are signed using their respective private keys. Digital signature
technology [23] serves to prevent message forgery and tampering. In HCA, ⟨message⟩r
denotes a message message signed by a replica node r. In the optimized HCA, three types
of message structures are involved:

1. Proposal message. In the HCA protocol, Bk represents a block with height k. A pro-
posal message essentially corresponds to a block that has not yet been confirmed.
Consequently, only the primary node can send a proposal message. Bk has the follow-
ing format:

Bk = ⟨PROPOSE, transactions, view, previous_hash, aggregate_signature⟩L

where transactions denotes the batch of transactions to be included in the block, view
represents the view at the time of proposing the block, previous_hash denotes the hash
value of the preceding block, and aggregate_signature is derived from the aggregated
votes on the preceding block.

2. Vote message. Vote messages are emitted by replica nodes. Upon receiving a proposal
message, each replica node verifies the legitimacy of the proposal, checking factors
such as digital signatures and the correctness of the hash of the preceding block. Once
the verification is successful, the replica node generates the hash value hashk of Bk,
adds the view number view + 1 for the next view, creates a vote message, signs it,
and subsequently sends it to the primary node of the next view. A vote for Bk has the
following format:

⟨VOTE, view + 1, hashk⟩r

3. Recall message. A recall message is used in the Revote phase. When the proposal
put forward by the leader L fails to garner sufficient votes, the leader L sends a
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Recall message, summoning some replicas to vote for the candidate proposal message.
The Recall message has the following format:

⟨RECALL, view, message⟩L

where view represents the current view number, and message is the candidate proposal.

3.3. Global Perfect Coin

We employ a global perfect coin to enable each replica to obtain a globally consistent
proposal, thereby avoiding the potential malicious behavior of the primary node in the
Revote phase. Specifically, we design two functions: vote_counter() and pick_proposal().
Replicas invoke these functions to interact with an instance of the coin. All honest replicas,
after voting for proposal m, call vote_counter(m) once. vote_counter() validates the input,
only accepting valid proposal m. Assuming that after the Vote phase, n − 1 replicas
separately vote for r different proposals. P = {m1, m2, . . . , mr} can be used to represent the
set of proposals that have been voted on. The Coin sorts these candidate proposals based on
their block heights, view numbers, and hash values. For any two candidate proposals, we
consider the block with a higher height to be fresher. If their block heights are the same, we
consider the block with a larger view number to be fresher. If their block heights and view
numbers are also the same, we consider the one with the larger hash value to be fresher.
In the Revote phase, after replica i receives a recall message from the primary node, calling
pick_proposal() returns a globally consistent and the freshest proposal mi ∈ P. Replica i
can then send a vote message for proposal mi.

Global perfect coin exhibits the following properties:

• Termination. pick_proposal() can return a globally consistent proposal only after at
least f + 1 replicas have called vote_counter().

• Unpredictability. As long as fewer than f + 1 replicas call vote_counter(), the return
value of pick_proposal() will be indistinguishable from a random number.

• Agreement. Assuming replica i calls pick_proposal() and gets proposal mi, and replica
j calls pick_proposal() and gets proposal mj, then mi = mj.

• Freshness. The Coin sorts candidate proposals based on block height, view number,
and hash value. pick_proposal() will always return the freshest candidate proposal.

4. Overview
4.1. System Model

We assume the system is a distributed system composed of n replicas. We consider
these replicas to satisfy the requirements of state machine replication (SMR) [24,25]: (i) all
replicas have the same initial state; (ii) replicas with the same state, after executing a
series of identical operations in the same order, will still have the same state. Based on
the assumption of SMR, we only need to ensure that all honest replicas have the same
order of proposals to guarantee the safety of the consensus algorithm. Each replica has a
public/private key pair (pkr, skr), and messages m emitted by replicas are signed using
their private keys. ⟨message⟩r denotes a message message signed by a replica node r.
Upon receiving a message, other replicas verify it using the sender’s public key. At the
network level, we assume the network in the system is partially synchronous, meaning
that after an unknown but finite global stabilization time (GST), messages between two
honest replicas can be transmitted within a known communication delay ∆t.

4.2. Threat Model

Our consensus algorithm can tolerate up to f = ⌊(n − 1)/3⌋ Byzantine nodes. For sim-
plicity, let us set n = 3 f + 1. This configuration maximizes the proportion of potential
malicious nodes and can simplify the description. Byzantine nodes are controlled by
adversaries and can exhibit arbitrary behavior, such as stopping responses or perform-
ing malicious actions. Additionally, we assume that the computational power of these
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Byzantine nodes is limited. Therefore, they cannot break existing cryptographic techniques.
For example, they cannot forge the digital signatures of honest nodes or infer the original
information from hash values.

4.3. System Goal

All replicas in the system will execute the consensus algorithm to agree on the ex-
ecution order of transactions. The consensus algorithm needs to satisfy the following
three properties:

• Safety. All honest nodes have a consistent order of transaction execution.
• Liveness. Transactions submitted to the system will eventually be executed by all

honest nodes.
• Responsiveness. Honest primary nodes can drive the system to the next view as soon

as they receive 2 f + 1 votes for a new proposal.

The liveness of the system relies on the partial synchronous network assumption. However,
even in an asynchronous network environment, the safety of the system is guaranteed.

4.4. Message Structure

The message types for communication between replica nodes include the following:
Proposal message, Vote message, and Recall message. The structures of the Proposal and
Vote messages are consistent with HCA, as detailed in Section 3.2. The Recall message
used in this algorithm differs from HCA. The Recall message’s structure is ⟨Recall, view⟩L.
The Recall message is employed during the Revote phase. Here, view represents the current
view number. When the candidate proposal put forward by the leader fails to garner
sufficient votes, the leader sends a Recall message, summoning some replicas to vote again.
Upon receiving a Recall message, replicas use pick_proposal() to obtain the proposal that
needs to be voted on.

5. RHCA: Robust HCA via Consistent Revoting

The fundamental idea of RHCA is to coordinate various replicas, utilizing a peer-
to-peer approach to the dual confirmation of proposals before committing. The protocol
incorporates a pipeline technique, where the Vote phase of the proposal in view v + 1 can
simultaneously be regarded as the second confirmation of proposal in view v. Each proposal
message in RHCA corresponds to a block containing the hash value of the preceding block
and an aggregate signature. This aggregate signature results from the aggregation of
votes on the previous block, signifying the confirmation of the preceding block by various
replicas. As RHCA operates in a rolling manner, with a change of views and primary nodes
in each round, it does not have a view-change phase akin to PBFT.

5.1. Rolling State Protocol

We denote n as the total number of replicas in the entire system and f ≤ ⌊(n − 1)/3⌋
as the number of Byzantine nodes. The rolling state protocol continuously operates in
rounds across all replicas. We use an integer view to represent rounds, and in each round,
a specific replica is chosen as the primary node. For simplicity, RHCA uses (view mod n)
to determine the primary node for a given view.

• Propose. Under normal conditions, the primary node L1 collects no fewer than
2 f + 1 votes for the preceding block and aggregates them into a single aggregate
signature aggregate_signature. Then, the primary node packs the transactions await-
ing confirmation into transactions and calculates the hash value of the preceding block
previous_hash. Finally, the leader assembles these data into a block Bk, signs it, and broad-
casts Bk = ⟨PROPOSE, transactions, view, previous_hash, aggregate_signature⟩L to all
replicas via P2P.

• Vote. All replica nodes (including the primary node) maintain a timer that starts when
entering a new view. If replica node r can receive a valid block Bk before the timer
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times out, it will first verify this block and then send ⟨VOTE, view + 1, hashk⟩r to the
next primary node, indicating its confirmation of the block. Here, hashk is the hash
value of block Bk. If the timer times out and r has not received a block, it will send
its vote for the preceding block ⟨VOTE, view + 1, hashk−1⟩r to the next primary node.
Regardless, after replica r sends the vote message, it calls vote_counter(), invoking an
instance of the coin and then enters the next view while resetting the timer.

• Revote. Let L2 be the primary node for view view + 1. If L2 collates votes from the
previous view and finds that no proposal has received votes not less than 2 f + 1,
the protocol proceeds to the Revote phase. L1 sends ⟨RECALL, view + 1⟩L1 to some
replica nodes, urging them to initiate the Revote phase. Upon receiving the Recall
message, each replica node calls pick_proposal(), obtaining a globally consistent and
the freshest proposal m∗. Subsequently, each replica can send a vote ⟨VOTE, view +
1, hashm∗⟩r to L2.

• Commit. As each block contains an aggregate signature regarding the preceding block,
the generation of a valid block Bk signifies that some primary node has collected at
least 2 f + 1 valid votes for block Bk−1. This also implies that block Bk−2 has been
confirmed twice by the majority of replica nodes. Therefore, upon receiving a valid
block Bk for the first time, the replica node can commit block Bk−2.

5.2. Attack and Solution

The HCA protocol introduces the concept of revoting, and while it effectively enhances
the speed of block generation, it also creates certain issues. Consider the following scenario
with four replica nodes, namely, r1, r2, r3, r4, where r4 is the leader of the current view
vs., and r1 is the leader of view v + 1. As shown in Figure 2, if r4 acts maliciously, in the
HCA protocol, it can continuously send ⟨RECALL, v, message⟩L1 messages to other replicas,
urging them to revote on multiple proposals from r4. This malicious revoting behavior
can lead to network congestion and increase system latency. We believe that the reason
why this attack is successful is that replica nodes trust the recall message sent by the leader
too much, while neglecting the potential for malicious behavior by the primary node.
Therefore, in RHCA, we modify the format of recall messages by not including candidate
proposals within them. In RHCA, upon receiving a recall message, replica nodes invoke
pick_proposal() to obtain a globally consistent proposal m∗. Honest replicas subsequently
compare m∗ with the proposal m′ they voted for in the previous round. If m∗ is deemed
fresher, the replicas send votes for the proposal m∗. Consequently, in RHCA, revoting can
only be conducted entirely once in a view, thus addressing the issue of malicious primary
nodes exploiting revoting for attacks.

Figure 2. Malicious leader continuously initiates revoting, resulting in the inability to expand the
blockchain in this round.
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5.3. Safety, Liveness, and Responsiveness of the RHCA Protocol

This subsection gradually proves the safety, liveness, and responsiveness of RHCA.
As described in the threat model, in the following proofs, we set n = 3 f + 1. In this
configuration, the proportion of malicious nodes is maximized, and the description can
be simplified.

Lemma 1. If a valid block Bk with height k is proposed in view v, then subsequent primary nodes
no longer need to collect votes for blocks before height k − 1.

Proof. Upon entering view v, we have at least 2 f + 1 replicas that have voted for block
Bk−1. Therefore, at least f + 1 honest nodes have already verified block Bk−1. According to
the Revote phase, honest nodes that have voted for a block at height k − 1 are not allowed
to revote for blocks below height k − 1. Therefore, the other replicas (up to 2 f ) cannot
gather at least 2 f + 1 votes for blocks with a height not greater than k − 2.

Lemma 2. The blockchain has only one main chain, and the length of any fork on the main chain is
less than 2.

Proof. For a primary node L1 in view v, within this view, either primary node L1 does
nothing or proposes a block. If it is the former, each replica waits for the proposed message
from leader L1 until the local timer times out. Eventually, each replica sends a vote message
for the previous block (i.e., Bk−1) to the next view’s primary node L2. If it is the latter,
primary node L1 collects vote messages from each replica and proposes a new block.
Assuming the height of this block is k, we use Bk to represent the proposed block. For the
primary node L2 in view v+ 1, by lemma 1, L2 can only collect votes for blocks with heights
k − 1 or k, i.e., Bk−1 and Bk. If L2 proposes a new block B′

k after Bk−1, a fork will occur in the
blockchain, as shown in Figure 3. B′

k and Bk are at the same height, but the view number of
B′

k is greater than that of Bk.

Figure 3. The leader of view v + 1 directly collects votes for Bk−1 and extends the blockchain after
the block Bk−1, leading to a fork.

Subsequent primary nodes cannot collect enough votes for Bk and B′
k. This will lead

to revoting. Based on the Revote phase, honest nodes will call pick_proposal() to get a
globally consistent and the freshest proposal, namely, B′

k. Replicas then send their vote
messages for proposal B′

k. Therefore, the block Bk is discarded, and subsequent blocks can
only be extended from the main chain. Thus, the length of any fork on the main chain will
be less than 2.

Theorem 1 (Safety). No two nodes will commit distinct blocks at the same height.

Proof. A block is only committed after being confirmed twice. This implies that when
a block is committed, there should be two blocks following it. Therefore, attempting to
commit two distinct blocks at the same height would require the existence of a fork with a
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length of 3. However, according to lemma 2, this is impossible. Thus, it can be ensured that
replicas in the system commit the same block at the same height.

Lemma 3. After GST, there exists a period during which all honest replicas are in the same view.
In this view, an honest leader can always broadcast a new block at a new height.

Proof. Due to the use of both the revoting protocol and global perfect coin, the leader can
synchronize the current voting status with the replica nodes. Replica nodes only change
their votes to the freshest block. This ensures the existence of a single main chain in the
blockchain. Even if the leader of the previous view behaves maliciously by proposing
multiple blocks to create a fork, honest nodes will change their votes to the freshest block
according to the Revote phase. Therefore, after GST, as long as the primary node is honest,
it can always collect 2 f + 1 votes for the previous block and propose a new block at the
current height.

Theorem 2 (Liveness). All honest replicas continuously commit blocks that have been con-
firmed twice.

Proof. The protocol operates continuously on each replica, selecting a new replica as the
leader in a round-robin manner. In a new view, the leader proposes a new block to drive
the protocol at a new height. When entering a new view, each replica starts a local timer.
After voting for the proposed block or when the timer expires, each replica enters a new
view and runs the protocol in the new view.

Building upon lemma 3, an honest primary node can always broadcast a new block
at a new height. Even if a malicious leader causes a fork, the revoting protocol ensures
that the next leader extends the chain after the freshest block. Therefore, new blocks can
continue to be generated at a higher height, and replicas can consistently commit new
blocks.

Theorem 3 (Responsiveness). After GST, when the network becomes synchronous, an honest
leader can drive replicas to agree on a block within the real network delay time, without waiting for
the timer to timeout.

Proof. If the leader fails to collect sufficient votes for any block, it cannot propose a
new block, and the system cannot extend. However, due to the introduction of revoting,
the leader can summon replicas to revote and reach consensus before the timer times out,
achieving an Optimistically Responsive outcome.

6. Theoretical Analysis of the Performance

We compare the communication complexity of HCA and RHCA and analyze the
performance improvement of RHCA in specific attack scenarios within this section.

The HCA protocol consists of two phases: Propose and Vote. Suppose there are n repli-
cas running this protocol, in the Propose phase, the leader broadcasts the proposed block
to all replicas, and the communication complexity of this phase is O(n). In the Vote phase,
each replica sends a vote message to the next leader, and the communication complexity
of this phase is also O(n). Therefore, under normal circumstances, the communication
complexity of the HCA protocol is 2 · O(n).

Considering the case of a malicious leader, assuming the malicious leader conducts j
rounds of revoting before the timer expires, with a maximum of 2 f replicas participating
in each round of revoting, the attack will add a communication overhead of 2j · O( 2

3 n).
Therefore, under attack, the communication complexity of the HCA protocol becomes
( 4

3 j + 2) · O(n).
The RHCA protocol, like HCA, consists of two phases: Propose and Vote. Assuming

there are n replicas in the entire system, in the Propose phase, the communication overhead
caused by the leader’s broadcast is O(n). In the Vote phase, each node sends vote mes-
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sages to the leader of the next view and calls the coin instance once. The communication
complexity of this phase is O(n) + Q (where Q is the overhead of calling the coin; if im-
plementing a global perfect coin using broadcasting, Q = O(n)). In normal circumstances,
the communication complexity of the RHCA protocol is 2 · O(n) + Q.

Considering the case of a malicious leader, assuming the malicious leader conducts j
rounds of revoting before the timer expires, with a maximum of 2 f replicas participating
in each round of revoting. The distinction from HCA lies in the fact that, in RHCA,
each invocation of pick_proposal() returns the same proposal. Therefore, replicas only
invoke pick_proposal() once and conduct revoting only once when receiving multiple
recall messages in the same view in RHCA.

In the best-case scenario (also typical scenario), the leader of the next view can collect
2 f + 1 votes after two rounds of revoting. The malicious leader broadcasts two rounds
of recall messages to 2 f replicas, resulting in a communication cost of 4

3 · O(n). The
2 f + 1 replicas invoke the coin and vote, incurring a communication cost of 2

3 · O(n) + Q.
Therefore, the additional communication cost introduced by the attack is approximately
2 ·O(n) + Q. The overall communication complexity in the attack scenario is 4 ·O(n) + 2Q.

In the worst-case scenario, where the 2 f replicas participating in each round of revoting
are the same, the next leader consistently fails to collect a sufficient number of votes.
In this case, the attack increases the communication overhead by 2

3 (j + 1) · O(n) + Q.
Therefore, the communication complexity of the RHCA protocol in the attack scenario is
2
3 (j + 4) · O(n) + 2Q.

In summary, under normal circumstances, RHCA’s communication complexity is
slightly higher than HCA due to the added overhead of invoking the coin. However,
in the scenario of malicious leaders, RHCA significantly reduces communication overhead
compared to HCA. In extreme attack scenarios (large values of j ), the communication cost
of RHCA can be achieved independently of j. Even in the worst-case scenario, the commu-
nication cost is only half of that in HCA.

7. Experimental Analysis of the Performance

We implemented RHCA and HCA, and conducted a comparative analysis of their
latency, throughput, scalability, and robustness. BFT-SMaRt is an open-source library
written in Java that implements the PBFT consensus algorithm [26]. We forked the code
of BFT-SMaRt from its GitHub repository and rewrote the consensus module based on
the specific logic of RHCA and HCA, thereby realizing the RHCA and HCA protocols.
Using identical parameters, we executed the RHCA and HCA protocols multiple times to
illustrate the significant advantages of RHCA in terms of robustness.

7.1. Setup

We rented three compute service instances from Alibaba Cloud and Baidu Cloud for
our experiments. These instances were equipped with the Ubuntu 18.04.6 operating system
and the JRE 1.8 runtime environment, with specific parameters detailed in Table 1. We
installed a virtual machine environment on each instance and ran a replica node within
each virtual machine. The replicas exchanged messages in a peer-to-peer fashion, forming
a blockchain network. Specifically, we designated one virtual machine to host a client that
created multiple threads to concurrently send requests to the blockchain network.

Table 1. The specifications of the instances.

Instance CPU vCPU Base Frequency Memory

ecs.s6-c1m4.large Platinum 8269CY 2 2.5 GHz 8 GB
ecs.hfg6.xlarge Platinum 8269CY 4 2.5 GHz 16 GB
bcc.g5.c4m16 Platinum 8350C 4 2.6 GHz 16 GB
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The BFT-SMaRt library comprises two micro-benchmark programs: ThroughputLa-
tencyServer and ThroughputLatencyClient. The former is designed to measure the time
expenses of various phases of the consensus protocol, and we utilized it to calculate the
consensus latency results. The latter is employed to gauge the average response time of
requests, enabling us to assess the request throughput of the blockchain network.

7.2. Base Performance

We concurrently operated four replica nodes on different virtual machines, with the
batch size set to 50. Under this configuration, RHCA and HCA support at most one
Byzantine node in the network. We had the client continuously send requests while varying
the payload size for multiple experiments. Figure 4a illustrates the consensus latency in
milliseconds, while Figure 4b displays the request throughput in thousand operations
per second. Additionally, to explore the impact of network latency on both consensus
latency and request throughput, we used the traffic control tool tc in Linux to simulate
network delay. Lines corresponding to different network delays are labeled as “d0”, “d5”,
“d10”. For example, “RHCA-d0” represents data obtained for the RHCA algorithm without
additional network delay.

(a) Latency (b) Throughput

Figure 4. Performance with various payload sizes while restricting the batch size to 50 under
4 replicas.

Figure 4 indicates that under normal conditions, the consensus latency of RHCA is
slightly higher than that of HCA, and the throughput is slightly lower than HCA. This is
primarily because RHCA introduces an additional step in the Vote phase to invoke the
global perfect coin. In fact, this reflects a trade-off between performance and robustness
in RHCA.

In addition, we also varied the batch size for multiple experiments and observed how
the performance of RHCA and HCA changed. Figure 5a illustrates the consensus latency
in milliseconds, while Figure 5b displays the request throughput in thousand operations
per second. Figure 5 indicates that as the batch size increases, the consensus latency of
both RHCA and HCA slightly increases, while the request throughput has a significant
improvement relatively. For example, in the scenarios where the simulated network delay
was 5 ms, the throughput of the RHCA protocol tripled when the batch size increased from
50 to 200, while the consensus latency only increased by approximately one-third. This
suggests that in practical scenarios, as long as the consensus latency remains within an
acceptable range, effectively enhancing the request throughput of the RHCA protocol can
be achieved by appropriately increasing the batch size.
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(a) Latency (b) Throughput

Figure 5. Performance for various batch sizes while restricting the payload size to 128 bytes under
4 replicas.

7.3. Scalability

Next, we varied the number of replicas in the system to observe the changes in
consensus latency and request throughput, examining the scalability of RHCA and HCA.
We take the total number of nodes n as 4, 8, 16, 32, and 64, and the corresponding number
f of tolerable Byzantine nodes as 1, 2, 5, 10, and 21. Under these configurations, we further
adjusted the network latency and request payload size to observe the performance of the
blockchain system.

In Figure 6, we used the traffic control tool tc to simulate network delays, setting
network delays to 5 ms and 10 ms to run the blockchain network. The experimental results
indicate that as the number of nodes increases, the performance trends of RHCA and HCA
are similar. Both RHCA and HCA exhibit a slight increase in consensus latency, and the
request throughput slightly decreases.

(a) Latency (b) Throughput

Figure 6. Scalability under various numbers of replicas, restricting the batch size to 50 and setting
payload size to 0.
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In Figure 7, we set the network latency to 0 and set the size of the request payload
to 128 bytes and 1024 bytes, respectively, for the experiment. The results indicate that as
the number of nodes increases, the consensus latency of both RHCA and HCA gradually
increases, while the request throughput gradually decreases. Additionally, with a payload
size of 1024 bytes, the performance of RHCA and HCA deteriorates more rapidly as the
number of nodes increases.

In Figures 6 and 7, the performance of RHCA is always slightly lower than that of
HCA due to the need for consistent revoting, resulting in a slight decrease in RHCA’s
performance. However, according to the experimental results, we observed that under
normal conditions, the reduction in performance for RHCA compared to HCA is limited.

(a) Latency (b) Throughput

Figure 7. Scalability under various numbers of replicas, restricting the batch size to 50 and setting
network delay to 0.

7.4. Robustness

To compare the robustness of RHCA and HCA, we set up an unconventional adversary.
In both RHCA and HCA, the round-robin method is used to elect the primary node.
When the adversary becomes the primary node, it continuously initiates several rounds of
revoting. In each round of revoting, it calls on 2 f nodes to revote. As the votes never reach
the threshold (i.e., 2 f + 1), this adversary can persist in revoting until the timer expires.

We conducted experiments with node counts of 4, 7, 10, and 13, each involving 1, 2,
3, and 4 unconventional adversaries, respectively. The experimental results, depicted in
Figure 8, clearly illustrate that under attack conditions, the latency of HCA is significantly
higher than that of RHCA, and its throughput is considerably lower than that of RHCA.
Taking the example of four nodes with a network latency of 10 ms, we specifically illustrate
the impact of the attack. In comparison to Figure 6, it is evident that under attack conditions,
the latency of HCA increases approximately 20 times, while RHCA increases by only 70%.
In terms of throughput, HCA’s throughput drops to 1/19th of the normal scenario, while
RHCA maintains a throughput at around 60% of the normal scenario.
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(a) Latency (b) Throughput

Figure 8. Performance in attack scenarios.

In summary, while the use of consistent revoting may slightly impact the performance
of the protocol under normal scenarios, it significantly ensures the system’s performance in
attack scenarios, effectively enhancing the system’s robustness.

8. Conclusions

This paper introduces the RHCA protocol, which achieves consensus through a mes-
sages exchange. To expedite the voting process, we employ the pipeline technique. Each
block in RHCA includes an aggregate signature, formed by aggregating votes on the pre-
ceding block. Consequently, the votes on the proposal for view v + 1 can be simultaneously
considered as the second confirmation of the proposal for view v. Additionally, we utilize
the global perfect coin technology to implement consistent revoting. Through consistent
revoting, each replica node participating in revoting can obtain a globally consistent and
the freshest candidate proposal, facilitating rapid convergence of forks. Most importantly,
consistent revoting can prevent special attacks from adversaries that may arise in HCA.
We demonstrate the safety, liveness, and responsiveness of RHCA through a theoretical
analysis. Additionally, an experimental analysis was conducted to evaluate the consensus
latency, request throughput, and improvements in robustness. We confirmed that our
algorithm slightly sacrifices performance in regular scenarios but significantly enhances
robustness in special situations.
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