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Abstract: Fault detection and localization are vital for ensuring the stability of data center networks
(DCNs). Specifically, adaptive fault diagnosis is deemed a fundamental technology in achieving the
fault tolerance of systems. The highly scalable data center network (HSDC) is a promising structure of
server-centric DCNs, as it exhibits the capacity for incremental scalability, coupled with the assurance
of low cost and energy consumption, low diameter, and high bisection width. In this paper, we
first determine that both the connectivity and diagnosability of the m-dimensional complete HSDC,
denoted by HSDCm(m), are m. Further, we propose an efficient adaptive fault diagnosis algorithm
to diagnose an HSDCm(m) within three test rounds, and at most N + 4m(m − 2) tests with m ≥ 3
(resp. at most nine tests with m = 2), where N = m · 2m is the total number of nodes in HSDCm(m).
Our experimental outcomes demonstrate that this diagnosis scheme of HSDC can achieve complete
diagnosis and significantly reduce the number of required tests.

Keywords: data center networks; diagnosability; adaptive diagnosis; hamiltonian; cycle decomposition
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1. Introduction

Cloud computing has emerged as a promising paradigm across diverse domains
within the information and communication technology (ICT) field. Notably, it has witnessed
a growing adoption in various research areas, including e-commerce, nuclear science,
agriculture, healthcare, and smart grids [1]. Data center networks (DCNs) play a pivotal role
in cloud computing infrastructure, facilitating essential cloud services like GFS, Bigtable,
and Dryad. As critical components supporting both 5G and cloud computing, DCNs have
evolved into hubs for diverse resources and business service centers. An ideal DCN should
possess exceptional scalability, optimize the utilization of switches and servers, and exhibit
robust fault tolerance. The existing data center network structures can be divided into
two categories: switch-centric DCNs and server-centric DCNs. For switch-centric DCNs,
such as Fat-tree [2] and PortLand [3], switches deal with routing and addressing, and
servers act as endpoint hosts that send and receive data. In a server-centric DCN, servers
equipped with multiple network ports (NICs) connect to several layers of mini-switches,
which function exclusively as crossbars. These servers are additionally tasked with carrying
out computationally intensive operations. The well-known server-centric DCNs include
DCell [4], BCCC [5], RCube [6], and HSDC [7].

This paper is an extended research of [8], which discusses a high scalability data center
network (HSDC for short), a server-centric DCN known for its desirable features, such as
incremental scalability, cost-efficiency, low energy consumption, short diameter, and high
bisection width. For a server-centric DCN, each switch can be considered a transparent
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device so that we can define the logic graph of the HSDC as L-HSDC concerning the
connection among servers. Since an HSDC has not been proposed for too long, there
is not much related literature available. Let us briefly introduce it below. Qin et al. [9]
treated an L-HSDC as a class of compound graphs and provided an algorithm to construct
multiple completely independent spanning trees (CISTs). Dong et al. [10] determined
the connectivity, tight super connectivity, and diameter of an L-HSDC and proposed an
algorithm to obtain the shortest path between any two distinct nodes in the HSDC. For
an n-dimensional HSDC, Yang et al. [11] showed that the L-HSDC is vertex-transitive and
designed a construction scheme for building n independent spanning trees (ISTs). As the
design scheme relies upon only the node address and tree index, such a construction can be
easily implemented in parallel. Dong et al. [12] studied the Hamiltonian properties in an
L-HSDC and proved that the n-dimensional L-HSDC is (n − 3)-fault-tolerant Hamiltonian-
connected and (n − 2)-fault-tolerant Hamiltonian for n ≥ 3. He et al. [13] constructed a
2-disjoint path cover with prescribed end nodes in an HSDC.

However, with the ongoing expansion of DCNs in terms of scale and traffic load, it
becomes evident that failures occur inevitably [14]. To ensure the network’s reliability, it is
imperative that, whenever a server is identified as faulty, it should be substituted with a
fault-free server. The method for detecting faulty processors within the system, achieved
through the testing and interpretation of test results, is called system-level faulty diagnosis [15].
Likewise, when each server in a server-centric DCN is regarded as a processor within a
multi-processor system, the diagnosis of servers in a server-centric DCN aligns with the
diagnosis of processors in a multi-processor system. Preparata, Metze, and Chien [16]
initially introduced the PMC model, a system-level diagnosis model for multiprocessor
systems. Specifically, this model assumes that a processor, acting as a tester u, sends a
test message to its neighbor, acting as a testee v, where r(u, v) represents the test. When
u is fault-free, the outcome of r(u, v) can be used to deduce the state of v. That is, if the
outcome of r(u, v) is 1 (resp. 0), v is faulty (resp. fault-free). However, if u is faulty, then
the outcome of r(u, v) becomes unreliable, rendering the state of v unreliable as well. For
the sake of easy description, r(u, v) = 1 (resp. r(u, v) = 0) is called 1-arrow (resp. 0-arrow).
Moreover, the diagnosability of a system is the maximum number of faulty processors that
the system can self-identify. A system is said to be t-diagnosable when all faulty processors
can be accurately detected, provided that the number of faulty processors does not exceed
t. For a t-diagnosable N-processor system, every processor should be tested by at least t
other processors in non-adaptive diagnosis if as many as t processors may be faulty. In
this case, it is obvious that Nt tests are necessary under the PMC model, which will lead to
inefficient diagnostics.

To overcome this shortage, an adaptive diagnosis scheme was proposed by Nake-
jima [17], in which tests can be scheduled dynamically during the diagnosis process
according to the previous test outcomes. The adaptive diagnostic process is conducted in
several rounds, and each processor is allowed at most one test participation per round.
Diagnosis time is gauged by the number of test rounds, and the diagnosis cost is deter-
mined by the quantity of tests administered. This flexibility is a key factor in significantly
enhancing diagnostic efficiency [18–20]. For example, in a completely connected system, it
has been demonstrated that the number of tests required and deemed adequate to identify
at most t faulty processors decreases from Nt to N + t − 1 under the PMC model [21]. In
addition, several well-known adaptive diagnosis algorithms for interconnected network
topologies have been investigated, such as hypercube networks [22,23], hierarchical multi-
processor systems [24], butterfly networks [25], and Hamiltonian networks [26]. However,
the existing fault diagnosis schemes for DCNs generally lack adaptability and exhibit low
diagnostic efficiency [27–29]. Simultaneously, there is a scarcity of research focused on fault
diagnosis in HSDC networks. Thus, the development of adaptive diagnostic schemes for
DCNs has emerged as a pressing research topic.

In this paper, we develop an adaptive fault diagnostic scheme to deal with the large
number of faulty servers existing in HSDC networks under the PMC model, which can
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diagnose all states of servers within three test rounds. The key contributions of this work
are listed as follows:

• We determine the connectivity and diagnosability of HSDC networks, which are
fundamental properties of the DCNs.

• Based on the Hamiltonian cycle and the technique of cycle decomposition, we design
an adaptive diagnosis algorithm to identify the exact status of all servers in HSDC
networks. This is the first study to explore adaptive diagnosis in DCNs.

• We conduct experiments to assess the performance of the proposed algorithm and
demonstrate that our scheme can significantly reduce the number of tests for improv-
ing the efficiency of fault diagnosability.

The rest of the paper is organized as follows: Section 2 gives some basic knowledge
and the formal definition of HSDC networks. In Section 3, we explore the connectivity
and diagnosability of HSDC networks. We propose an adaptive diagnosis algorithm
and analyze the maximum number of tests of our algorithm in Section 4. We verify the
performance of the proposed algorithm in Section 5. Finally, we conclude this paper in
Section 6.

2. Preliminaries

In this section, we first provide some necessary notations used in this paper, most of
which are referenced from Ref. [30]. A data center network (resp. a system) is usually
modeled as an undirected simple graph G = (V(G), E(G)), where the node set V(G) and the
edge set E(G) represent the set of servers (resp. processors) and the set of communication
channels between servers (resp. processors), respectively. Let |V(G)| denote the total
number of nodes in G. Two distinct nodes u and v are adjacent if (u, v) ∈ E(G), where
u is called a neighbor of v, and vice versa. The graphs G and R are isomorphic, denoted
by G ∼= R, if there is a bijection φ : V(G) → V(R) such that (u, v) ∈ E(G) if and only if
(φ(u), φ(v)) ∈ E(R). The connectivity of G, denoted by κ(G), is the minimum number
of nodes whose removal makes G disconnected. A path P in a graph G, denoted by
P = ⟨v0, v1, . . . , vℓ⟩, is a subgraph of G with the node set V(P) = {v0, v1, . . . , vℓ} and
edge set E(P) = {(vi, vi+1) | vi, vi+1 ∈ V(P) for 0 ≤ i ≤ ℓ − 1}, where v0 and vℓ are
two end-nodes of P. A path whose two end-nodes are identical is called a closed path.
A cycle C of length ℓ + 1 for ℓ ≥ 2 is a closed path ⟨v0, v1, . . . , vℓ, v0⟩. A Hamiltonian
path (resp. Hamiltonian cycle) is a path (resp. cycle) that contains every node of G exactly
once. A complete graph with m nodes, denoted as Km, is a graph in which arbitrarily
two distinct nodes are adjacent. An m-dimensional hypercube network, denoted by Qm,
has the node set V(Qm) = {xmxm−1 · · · x1 | xi ∈ {0, 1} for 1 ≤ i ≤ m} and edge set
E(Qm) = {(xmxm−1 · · · xi · · · x1, xmxm−1 · · · x̄i · · · x1) | xi ∈ {0, 1}, 1 ≤ i ≤ m, x̄i = 1 − xi}.
For integers m, n with n < m, let [n, m] = {n, n + 1, . . . , m} be the set of integers, and
particularly, denote [m] = [n, m] if n = 1.

2.1. HSDC Networks

An HSDC network adopts low-cost commodity m-port switches and dual-port servers.
The structure of HSDC networks can be divided into two categories: complete structure and
incomplete structure. Specifically, the ports of all servers in the complete HSDC network
are occupied, while there are idle ports of servers in the incomplete HSDC network. Two
different types of HSDC networks are defined as follows:

Definition 1 (see [7]). The m-dimensional complete HSDC network is denoted by HSDCm(m)
with the node set {xmxm−1 · · · x1; y | xi ∈ {0, 1}, i ∈ [m], y ∈ [0, m]}. For a node xmxm−1 · · · x1; y,
if y = 0, it is a switch; otherwise, it is a server. A switch xmxm−1 · · · x1; 0 is connected to a server
xmxm−1 · · · x1; y for any y ∈ [m]. Moreover, two servers xmxm−1 · · · x1; y and x′mx′m−1 · · · x′1; y′

are connected if and only if the following conditions hold:
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(1) y = y′ ∈ [m];
(2) xy = 1 − x′y and xi = x′i for any i ∈ [m] \ {y}.

Figure 1 shows that HSDC4(4) has 16 switches and 64 servers. In HSDCm(m), a
switch and its adjacent servers constitute the basic building unit called a block. Each
HSDCm(m) contains 2m blocks. For HSDCm(m), if we treat each block as a single node and
connect them through the remaining edges, we can obtain an m-dimensional hypercube
network Qm. Next, we will introduce an m-dimensional incomplete HSDC network, which
is denoted by HSDCm(n).
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Figure 1. A 4-dimensional complete HSDC network HSDC4(4).

Definition 2 (see [7]). For m > n, the network HSDCm(n) has the node set {xnxn−1 · · · x1; y |
xi ∈ {0, 1}, i ∈ [n], y ∈ [0, m]}. For a node xnxn−1 · · · x1; y, if y = 0, it is a switch; otherwise,
it is a server. A switch xnxn−1 · · · x1; 0 is connected to a server xnxn−1 · · · x1; y for any y ∈ [m].
Moreover, two servers xnxn−1 · · · x1; y and x′nx′n−1 · · · x′1; y′ are connected if and only if the
following conditions hold:

(1) y = y′ ∈ [n];
(2) xy = 1 − x′y and xi = x′i for any i ∈ [n] \ {y}.

Figure 2 shows HSDC4(2) with 4 switches and 16 servers. For HSDCm(n), each block
contains m − n servers with an idle port. Thus, the node subset {xnxn − 1 · · · x1; y | xi ∈
{0, 1}, i ∈ [n], y ∈ [n + 1, m]} of V(HSDCm(n)) is a set of servers with an idle port.
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Lemma 1 (see [7]). HSDCm(m) composed of 2m−n HSDCm(n)s.

It is clear that HSDCm(n) is a subgraph of HSDCm(m). Furthermore, if each server
with an idle port in 2m−n HSDCm(n)s is connected by Conditions (1) and (2) in Definition 1,
then we will obtain the HSDCm(m) network.

2.2. The Logic Graph of HSDC Networks

For HSDC networks, if each switch is regarded as a transparent device, then we can
define the logic graph of HSDCm(m) (resp. HSDCm(n)), denoted as L-HSDCm(m) (resp.
L-HSDCm(n)), as follows.

Definition 3 (see [9]). For m ≥ 2, the graph L-HSDCm(m) has the node set {xmxm−1 · · · x1; y |
xi ∈ {0, 1}, i, y ∈ [m]}, and two nodes xmxm−1 · · · x1; y and x′mx′m−1 · · · x′1; y′ are adjacent if and
only if one of the following conditions holds:

(1) y ̸= y′ and xi = x′i for any i ∈ [m];
(2) y = y′, xy = 1 − x′y and xi = x′i for any i ∈ [m] \ {y}.

Definition 4. For m > n ≥ 2, the graph L-HSDCm(n) has the node set {xnxn−1 · · · x1; y | xi ∈
{0, 1}, i ∈ [n], y ∈ [m]}, and two nodes xnxn−1 · · · x1; y and x′nx′n−1 · · · x′1; y′ are adjacent if and
only if one of the following conditions holds:

(1) y ̸= y′ and xi = x′i for any i ∈ [m];
(2) y = y′, y ∈ [n], xy = 1 − x′y, and xi = x′i for any i ∈ [n] \ {y}.

If the edge (u, v) satisfies Condition(1) (resp. Condition(2)) of Definitions 3 or 4, then
it is called intra-edge (resp. inter-edges). As shown in Figure 3, we can observe that one block
of L-HSDC4(4) induced by a node set {0000; 1, 0000; 2, 0000; 3, 0000; 4} is a complete graph
K4. Moreover, (1010; 4, 1010; 1) is an intra-edge and 1010; 4 is an intra-neighbor of 1010; 1.
(1000; 4, 0000; 4) is an inter-edge and 1000; 4 is an inter-neighbor of 0000; 4.
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3. The Connectivity and Diagnosability of L-HDSC

In this section, we investigate the connectivity and diagnosability of L-HSDCm(m).
For L-HSDCm(m), it is clear that each block can be regarded as a node in an m-dimensional
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hypercube network Qm. For convenience, we use the notation Bi to represent each block of
L-HSDCm(m) with i ∈ [0, 2m − 1], where Bi

∼= Km.

Lemma 2 (see [31]). For any two distinct nodes u and v, there are m node-disjoint paths connecting
u and v in an m-dimensional hypercube network Qm.

Lemma 3. For m ≥ 2, the connectivity of L-HSDCm(m) is m, i.e., κ(L-HSDCm(m)) = m.

Proof. Clearly, we have V(Qm) = {B0, B1, . . . , B2m−1}. Let u and v be any two distinct
nodes of L-HSDCm(m). We will show how to construct m node-disjoint paths joining u
and v in the following two cases.

Case 1. u ∈ V(Bi) and v ∈ V(Bj) with i ̸= j ∈ [0, 2m − 1].
For each Bs and b ∈ V(Bs), these paths between node b and b′ are node-disjoint with

b′ ∈ V(Bs) \ {b}. By Lemma 2, for Bi and Bj, we can deduce that there exist m node-disjoint
paths between Bi and Bj in Qm. From the property of Qm, we have that each node has m
neighbors in Qm. By Definition 3, each node of Bs is connected to a unique node of Bs′ in
L-HSDCm(m), where (Bs, Bs′) ∈ E(Qm) and s, s′ ∈ [0, 2m − 1]. For each node b ∈ V(Bs), it
shows that there exist m node-disjoint paths between node b and c, where c is a node of Bs′ .
Hence, for any two distinct nodes u, v ∈ V(L-HSDCm(m)), there are m node-disjoint paths
joining u and v when u ∈ V(Bi) and v ∈ V(Bj) with i ̸= j ∈ [0, 2m − 1].

Case 2. u, v ∈ V(Bi) with i ∈ [0, 2m − 1].
For each Bi

∼= Km, there are m − 1 node-disjoint paths between u and v in Bi. Without
a loss of generality, let u = xmxm−1 · · · x1; y and v = xmxm−1 · · · x1; y′, where y ̸= y′.
By Definition 3, we assume that the node z = xmxm−1 · · · xy+1x′yxy−1 · · · x1; y is an inter-
neighbor of u, where x′y = 1 − xy. By Case 1, there are m node-disjoint paths between
node z and v in L-HSDCm(m). Thus, there exists at least one path P = ⟨u, z, · · · , v⟩ such
that V(P) ∩ V(Bi) = {u, v}. Hence, there are m node-disjoint paths joining u and v when
u, v ∈ V(Bi) with i ∈ [0, 2m − 1].

Lemma 4 (see [16]). Given a system G = (V, E), two conditions are necessary for G to be
t-diagnosable: (1) |V| ≥ 2t + 1, and (2) each node is tested by at least t other nodes.

Lemma 5 (see [32]). Two conditions are sufficient for a system G with n nodes to be t-diagnosable:
(1) n ≥ 2t + 1 and (2) κ(G) ≥ t.

Theorem 1. For m ≥ 2, the diagnosability of L-HSDCm(m) is m.

Proof. For m ≥ 2, |V(L-HSDCm(m))| = m2m > 2m + 1, and κ(L-HSDCm(m)) = m.
Hence, by Lemmas 4 and 5, the diagnosability of L-HSDCm(m) is m.

Moreover, we can observe that L-HSDCm(2) contains four Km’s, and there exists
a Hamiltonian path between x2x1; 1 and x2x1; 2 in each Km, where x1, x2 ∈ {0, 1}. Since
L-HSDCm(2) contains four edges—(00; 1, 01; 1), (10; 1, 11; 1), (00; 2, 10; 2), and (01; 2, 11; 2)—
we can construct a Hamiltonian cycle with 4m nodes in L-HSDCm(2) (see Figure 4). Thus,
we have the following lemma.

Lemma 6. For m ≥ 2, there exists a Hamiltonian cycle in L-HSDCm(2).
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Figure 4. A Hamiltonian cycle of L-HSDC4(2), whose edges are colored by blue lines.

4. Adaptive Diagnosis Algorithm for HSDC

In this section, we design an efficient adaptive diagnosis scheme for L-HSDCm(m)
with at most m faulty nodes. First, we will show the skeleton of the adaptive diagnosis
algorithm for L-HSDCm(m) in Algorithm 1. Then, the details of the algorithm will be
described in the following subsections.

Algorithm 1: An adaptive diagnosis scheme for L-HSDCm(m) with at most m
faulty nodes.

Input: An L-HSDCm(m) with at most m faulty nodes.
Output: The status of all nodes in L-HSDCm(m).

1 Partition L-HSDCm(m) into 2m−2 L-HSDCm(2)s, denoted by H0, H1, . . . , H2m−2−1;
2 Construct a Hamiltonian cycle for each Hi with i ∈ [0, 2m−2 − 1];
3 For the first two rounds, conduct basic tests along each Hamiltonian cycle in

parallel;
4 Count the total number of suspicious cycles, denoted by fc;
5 if fc ≥ m − 1 then // See Section 4.2
6 Partition each suspicious cycle into path(s) by Algorithm 2 in parallel;
7 Color nodes on each path by Algorithm 3 in parallel;
8 Identify the faulty nodes of all paths.
9 else // See Section 4.3

10 For each Hi with a suspicious cycle, the fault diagnosis process is as follows:
11 (1) Each node that has an inter-neighbor u in the clean cycle is identified by u;

12 (2) The unknown nodes can be identified by valid fault-free neighbors in Bj
i

with j ∈ [0, 3] (Bj
i is defined in Section 4.3);

13 (3) Identify the remaining nodes in Hi.
14 end

4.1. Basic Tests of the First Two Rounds

By Definitions 3 and 4, L-HSDCm(m) can be divided into 2m−2 L-HSDCm(2)s with
m ≥ 2. For convenience, each L-HSDCm(2) is represented by Hi with i ∈ [0, 2m−2 − 1].
By Lemma 6, there is a Hamiltonian cycle with 4m nodes in each Hi. For a Hamiltonian
cycle ⟨v0, v1, · · · , v4m−1, v0⟩, in the first round, all even nodes test odd nodes in a clockwise
direction (i.e., v2j tests v2j+1), and in the second round, all odd nodes test even nodes in a
clockwise direction (i.e., v2j+1 tests v2j+2), where j ∈ [0, 2m − 1] and “+” means modulo
4m addition. If a Hamiltonian cycle contains 1-arrows, then we call the Hamiltonian cycle
a suspicious cycle; otherwise, it is regarded as a clean cycle. Obviously, a suspicious cycle
contains at least one faulty node and every node is fault-free in a clean cycle. Then, all faulty
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nodes should be in these suspicious cycles after Line 3 when Algorithm 1 is performed.
At this time, the nodes of these suspicious cycles need to be tested to identify their exact
status. Let fc be the total number of suspicious cycles in L-HSDCm(m). Moreover, we call
the tests in the first and second round basic tests, and the tests required by the algorithm in
the subsequent execution process are called additional tests.

4.2. Identifying Suspicious Cycles for fc ≥ m − 1

When fc ≥ m − 1, we provide two algorithms to diagnose the nodes of suspicious
cycles. Specifically, Algorithm 2 is used to partition a suspicious cycle into paths such that
each path contains at least one faulty node [16]. Algorithm 3 colors the nodes of the path
as black, white, or gray, where the black nodes are faulty, the white nodes are fault-free,
and the grey nodes are unknown nodes that need additional tests to identify their exact
statuses [33]. Figure 5a gives an example for executing Algorithm 2 in L-HSDC4(2) with
at most 4 faulty nodes, and Figure 5b gives the results of executing Algorithm 3 on the
three paths.

Algorithm 2: Cycle–partition.
Input: A suspicious cycle.
Output: One or multiple paths.

1 Step 1: Choose an arrow a0 such that it is 0-arrow and its previous arrow is
1-arrow;

2 Step 2: Let a be the next arrow of a0 in the clockwise direction;
3 Step 3: If a is 0-arrow, then a0 = a and go to Step 2; otherwise, go to Step 4;
4 Step 4: Label the next arrow a1 in the clockwise direction of a with an cross sign

“X”. If a1 was not previously marked, then a0 = a1 and go to Step 2; otherwise,
the algorithm terminates.

Algorithm 3: Path–color.
Input: Paths obtained by Algorithm 2.
Output: The color of each node.

1 Step 1: Let m be the maximum number of faulty nodes, fs be the number of the
paths obtained by Algorithm 2, and q = m − fs + 1;

2 Step 2: If a path has more than q + 1 nodes and at least one 0-arrow, then we color
the head of the path with black and q − 1 nodes from the tail with gray, and all
remaining nodes that are not colored yet are colored white;

3 Step 3: If a path has at most q + 1 nodes, then we color all nodes of the path with
gray.
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Figure 5. (a) An example of executing the algorithm cycle–partition, where a red arrow indicates
1-arrow. (b) An example of executing the algorithm path–color.
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Let fs be the total number of paths of an L-HSDCm(m). For fc ≥ m − 1, since there
are at most m faulty nodes in L-HSDCm(m), we can deduce that each suspicious cycle has
one or two faulty nodes and fc ≤ fs ≤ m. Then, we have the following two cases:

Case 1: fc = fs.
At this time, each suspicious cycle contains only one path after executing Algorithm 2.

As shown in Figure 6a, it is evident that only the black node is faulty when fs = m. Based
on Algorithm 2, there is only one gray node adjacent to the black node on each suspicious
cycle when fs = m − 1. Thus, the black node is faulty, and the gray node can be tested by
another fault-free neighbor (see Figure 6b).
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Figure 6. Four examples of additional tests for fc ≥ m − 1: (a,b) when fc = fs in Case 1; (c,d) when
fc ̸= fs in Case 2, where a red arrow indicates 1-arrow, and a green counterclockwise arrow indicates
an additional test.

Case 2: fc ̸= fs.
At this time, a suspicious cycle contains two paths after executing Algorithm 2. Thus,

we have fc = m − 1 and fs = fc + 1 = m. If both paths in this suspicious cycle contain
at least three nodes, then only the black node is faulty (see Figure 6c); otherwise, this
suspicious cycle has a path that contains a black node and a path that only contains two
gray nodes, where one gray node is adjacent to the black node and the other is adjacent to
a fault-free node (see Figure 6d). Thus, only one of these two gray nodes is faulty and can
be verified by its fault-free neighbor.

4.3. Identifying Suspicious Cycles for fc < m − 1

In this subsection, we discuss the situation of fc < m − 1. Recall that each Hi contains
four blocks, denoted by Bj

i , where i ∈ [0, 2m−2 − 1] and j ∈ [0, 3].

Theorem 2. For any Hi that has a suspicious cycle, at least one fault-free node in Hi can be
identified by its inter-neighbors when fc < m − 1.

Proof. By Definition 3, each Hi is connected to m − 2 distinct Hs’s in L-HSDCm(m), where
i ̸= s ∈ [0, 2m−2 − 1]. For i, s ∈ [0, 2m−2 − 1] and j ∈ [0, 3], each Bj

i is connected to m − 2
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distinct Hs’s in L-HSDCm(m). Since there is one suspicious cycle in Hi, we can infer that
m − 2 neighbors of Hi (i.e., m − 2 Hs’s) contain ci clean cycles and m − 2 − ci suspicious
cycles, where 1 ≤ ci ≤ m − 2. Suppose that each node in Hi that has an inter-neighbor
u in the clean cycles is identified as faulty by u. Then, all suspicious cycles have at least
(m − 2 − ci) + 4ci = m + 3ci − 2 faulty nodes. As m + 3ci − 2 > m, it contradicts that
L-HSDCm(m) has at most m faulty nodes.

For any Hi that has a suspicious cycle, the detailed diagnosis process is as follows:

• Step 1: Each node that has an inter-neighbor u in the clean cycles is identified by u.

• Step 2: If there are nodes that have been identified as fault-free in Bj
i with j ∈ [0, 3], the

remaining unknown nodes in Bj
i are identified by these fault-free nodes. In particular,

if there is no fault-free node found in Bj
i , then we call Bj

i an unknown block; otherwise, Bj
i

is a known block. It is clear that each node in the unknown block is either an identified
faulty node or an unknown node. Let ni be the total number of unknown blocks in Hi.
If ni = 0, then the process is terminated. Thus, the purpose of Step 2 is to identify all
unknown nodes in known blocks by their fault-free neighbors.

• Step 3: Count the number of faulty nodes identified in all known blocks of Hi, denoted
by fi. By Theorem 2, we can deduce that ni ≤ 3. Then, the remaining unknown nodes
in the unknown blocks can be identified by the following three cases.

Case 1. ni = 1.
At this time, Hi contains one unknown block that has at least ci identified faulty nodes.

Since Hi connects with m− 2− ci suspicious cycles, we can deduce that all suspicious cycles
have at least (m − 2 − ci) + ci = m − 2 faulty nodes. Hence, there are at least m − 2 + fi
faulty nodes in L-HSDCm(m). Thus, we have 0 ≤ fi ≤ 2 and the following three subcases.

Case 1.1. fi = 0.
It is clear that every node in the known blocks of Hi is fault-free, and there exist at most

two faulty nodes in all unknown blocks. Without loss of generality, we suppose that u and
v are two nodes in the unknown block, where u = xmxm−1 · · · x1; 1, v = xmxm−1 · · · x2x1; 2,
xi ∈ {0, 1}, and i ∈ [m]. By Definition 3, as fi = 0, both u and v have a fault-free inter-
neighbor in the unknown blocks of Hi and can be identified by this fault-free inter-neighbor.
If u and v are identified as faulty, then the remaining unknown nodes in the unknown
block are fault-free; otherwise, at least one of u and v will be identified as fault-free by their
fault-free inter-neighbor. Hence, the remaining unknown nodes in the unknown block can
be identified.

Case 1.2. fi = 1.
As fi = 1, it follows that only one node is faulty in all known blocks of Hi, and at

most one node is faulty in all unknown blocks. Suppose that u and v are two nodes in the
unknown block, where u = xmxm−1 · · · x1; 1, v = xmxm−1 · · · x1; 2, xi ∈ {0, 1} and i ∈ [m].
For fi = 1, all suspicious cycles have at least (m − 2 − ci) + ci + fi = m − 1 faulty nodes,
and at least one of u and v has a fault-free inter-neighbor. Without a loss of generality, we
assume that u has a fault-free inter-neighbor. If u is identified as faulty by its fault-free
inter-neighbor, the remaining unknown nodes in the unknown block must be fault-free;
otherwise, the remaining unknown nodes in the unknown block can be identified by u.

Case 1.3. fi = 2.
All suspicious cycles have at least (m − 2 − ci) + ci + fi = m faulty nodes, and each

unknown node in the unknown block is fault-free.
Case 2. ni = 2.
At this time, Hi contains two unknown blocks that have at least 2ci identified faulty

nodes. Since Hi connects with m − 2 − ci suspicious cycles, we can infer that all suspicious
cycles have at least (m − 2 − ci) + 2ci = m + ci − 2 faulty nodes. Further, there are at
least m − 2 + ci + fi faulty nodes in L-HSDCm(m). Thus, we have 1 ≤ ci + fi ≤ 2 and the
following two subcases.

Case 2.1. ci = 1 and fi = 0.
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It is obvious that all suspicious cycles have at least m − 1 faulty nodes, and there is at
most one faulty node in all unknown blocks of Hi. Without a loss of generality, we suppose
that u and v are two nodes in the unknown blocks and u has a fault-free inter-neighbor. If
u is identified as faulty by its fault-free inter-neighbor, the remaining unknown nodes in
the unknown block must be fault-free; otherwise, the remaining unknown nodes in the
unknown block can be identified by u.

Case 2.2. ci = 2 and fi = 0 or ci = 1 and fi = 1.
All suspicious cycles have at least m faulty nodes and the remaining unknown nodes

in the two unknown blocks are fault-free.
Case 3. ni = 3.
It is evident that Hi contains three unknown blocks that have at least 3ci faulty nodes.

As Hi connects with m − 2− ci suspicious cycles, it follows that all suspicious cycles have at
least (m− 2− ci)+ 3ci = m+ 2ci − 2 faulty nodes. Further, there are at least m− 2+ 2ci + fi
faulty nodes in L-HSDCm(m). Since ci ≥ 1 and 2ci + fi ≤ 2, we can deduce ci = 1 and
fi = 0. Thus, the remaining unknown nodes in the three unknown blocks are fault-free.

4.4. Evaluating the Number of Tests for L-HSDC

Next, we will analyze the maximum number of tests to diagnose all states of nodes in
L-HSDCm(m).

Theorem 3. For L-HSDCm(m) with at most m faulty nodes, Algorithm 1 diagnose all states of
nodes within N + 4m(m − 2) tests when m ≥ 3 (resp. 9 tests when m = 2), where N = m · 2m is
the number of nodes in L-HSDCm(m).

Proof. Recall that N = |V(L-HSDCm(m))| = m · 2m. Since the first round (resp. the
second round) involves each even node (resp. odd node) testing adjacent odd nodes (resp.
even nodes) in a clockwise direction, we can deduce that every node is tested only once
by other nodes in the first two rounds. Hence, the number of basic tests is N. When
fc = fs = m − 1, each suspicious path has one unknown node; thus, the total number
of additional tests is m − 1. If fc ≥ m − 1 and fs = m, then there exists a path that only
contains two unknown nodes that need one additional test to identify their exact statuses.
For fc ≤ m − 2, each node in suspicious cycles needs at most one additional test to identify
its actual status. Since each suspicious cycle has 4m nodes, we have that at most 4m × fc
additional tests are necessary to identify the faulty nodes in the L-HSDCm(m). Since the
maximum number of additional tests appears at fc = m − 2, we can deduce that at most
N + 4m(m − 2) additional tests. Hence, if m ≥ 3 (resp. m = 2), then Algorithm 1 takes at
most N + 4m(m − 2) (resp. 9) tests to identify all faulty nodes in L-HSDCm(m).

5. Simulation Results

Through a series of experiments in this section, we aim to validate the proficiency
of our algorithm in diagnosing the actual status of all nodes in L-HSDCm(m), and then
compare it with the traditional algorithm, focusing on the number of tests.

5.1. Experimental Setup

This simulation is performed on a personal laptop using a 3.00 GHz Intel® CoreTM i5-
9500 CPU with 24 GB RAM in a Windows 10 operating system. Our algorithm and related
experiments are implemented by using Python programs. The workflow of experiments is
presented as follows:

• Randomly generate a logic graph of L-HSDCm(m) with f faulty nodes, where 1 ≤ f ≤ m.
• Apply Algorithm 1 to diagnose faulty nodes in L-HSDCm(m).
• Calculate the related metrics (introduced in Section 5.2) and the number of required tests.

Note that all faulty nodes are uniformly distributed over the whole network. All
experiments are repeated 1000 times, and the average values are used as the final results.
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5.2. Experimental Metrics

First, some notations used in the experiment are listed in Table 1.

Table 1. Notations.

Symbol Description

V The node set of L-HSDCm(m).
Vf The set of actual faulty nodes in L-HSDCm(m).
Vg The set of actual fault-free nodes in L-HSDCm(m).
V′

f The set of faulty nodes diagnosed by Algorithm 1.
V′

g The set of fault-free nodes diagnosed by Algorithm 1.
V′

u The set of undiagnosed nodes in Algorithm 1.

For diagnostic results, we will introduce three metrics as follows:

• Precision rate (PR for short): PR is the ratio of the number of faulty nodes correctly diag-
nosed by Algorithm 1 to the total number of faulty nodes diagnosed by Algorithm 1,
which is calculated as follows:

PR =
|Vf ∩ V′

f |
|Vf ∩ V′

f |+ |Vg ∩ V′
f |

. (1)

• Recall rate (RR for short): RR is the ratio of the number of faulty nodes correctly
diagnosed by Algorithm 1 to the total number of actual faulty nodes in L-HSDCm(m),
which is calculated as follows:

RR =
|Vf ∩ V′

f |
|Vf ∩ V′

f |+ |Vf ∩ V′
g|

. (2)

• Unknown rate (UR for short): UR is the ratio of the number of nodes not diagnosed
by Algorithm 1 to the total number of nodes in L-HSDCm(m), which is calculated
as follows:

UR =
|V′

u|
|V| . (3)

5.3. Experimental Analyses

For the PMC model, the variable p is used to represent the probability that a faulty
node, when conducting a test on a neighbor, obtains a test result of 1. In order to observe
the impact of parameter p on the performance of the adaptive diagnosis strategy presented
in this paper, we set p ∈ {0, 0.2, 0.4, 0.6, 0.8} and perform experimental evaluations in
L-HSDCm(m) with m ∈ {6, 7, 8, 9}.

As shown in Table 2, we can observe that regardless of the parameter p, both PR and
RR consistently attain a value of 1, while UR remains at 0. This attests to the precision
and efficiency of our adaptive diagnostic algorithm in identifying the states of all nodes in
L-HSDCm(m). Importantly, as the network size increases, the correctness of the algorithm
remains unaltered, further substantiating the effectiveness and superiority of the diagnostic
scheme proposed in this paper.

Next, we conduct a comparison between our adaptive fault diagnostic algorithm
and traditional fault diagnosis algorithms, assessing their efficacy in terms of the number
of diagnostics tests. Our analysis encompasses data from 1000 experiments, and key
parameters are detailed in Table 3.
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Table 2. The impact of parameter p on PR, RR, and UR in L-HSDCm(m) with m ∈ [6, 9].

L-HSDCm(m) p 0.0 0.2 0.4 0.6 0.8 1.0

PR 1.0 1.0 1.0 1.0 1.0 1.0
m = 6 RR 1.0 1.0 1.0 1.0 1.0 1.0

UR 0.0 0.0 0.0 0.0 0.0 0.0

PR 1.0 1.0 1.0 1.0 1.0 1.0
m = 7 RR 1.0 1.0 1.0 1.0 1.0 1.0

UR 0.0 0.0 0.0 0.0 0.0 0.0

PR 1.0 1.0 1.0 1.0 1.0 1.0
m = 8 RR 1.0 1.0 1.0 1.0 1.0 1.0

UR 0.0 0.0 0.0 0.0 0.0 0.0

PR 1.0 1.0 1.0 1.0 1.0 1.0
m = 9 RR 1.0 1.0 1.0 1.0 1.0 1.0

UR 0.0 0.0 0.0 0.0 0.0 0.0

Table 3. A description of the related test parameters.

Symbol Description

Avg The average number of tests required for Algorithm 1.

Max The maximum number of tests required for Algorithm 1.

Add_Avg The average number of additional tests required for Algorithm 1.

Add_Max The maximum number of additional tests required for Algorithm 1.

Tra_Test The number of tests required for the traditional diagnosis algorithm.

FR_Test The number of tests required for the five-round diagnosis algorithm in Ref. [26].

New_Test The number of tests required for the local diagnosis algorithm in Ref. [34].

From Ref. [21], we have that the number of tests for the traditional diagnosis algorithm
is usually Nt, where N is the total number of nodes in a system, and t is the diagnosability
of the system. Thus, we can deduce Tra_Test = m2 · 2m. In addition, Ye and Liang [26]
proposed a five-round adaptive diagnosis scheme for networks containing the Hamilto-
nian cycle under the PMC model. Based on Theorem 3.1 in Ref. [26], we can infer that
FR_Test = 2N + 2(m − 2) = m · 2m+1 + 2(m − 2) if the number of faults does not exceed m
in HSDCm(m). Later, Chen et al. [34] introduced a local diagnosis algorithm to diagnose a
node under the PMC model, which needs at most m tests when the number of faults does
not surpass the degree of this node. Note that m is the degree of a node in networks. If we
apply this method to diagnose all servers in HSDCm(m), then the number of tests required
is mN (i.e, New_Test = m2 · 2m). At that time, we set p = 0.5 and m ∈ [5, 10].

Figure 7 showcases a noteworthy trend: Max is significantly smaller than FR_Test,
Tra_Test, and New_Test in the same scale of networks. This observation emphasizes that
our method drastically reduces the number of required tests and improves diagnostic
efficiency compared to other diagnosis algorithms. Our approach is advisable when the
number of faults in HSDCm(m) is less than m, despite the more permissive fault constraints
of the five-round diagnosis algorithm. Moreover, with an increase in the parameter m,
every diagnosis scheme experiences an augmentation in the number of tests. In particular,
when extending the local diagnosis scheme to global diagnosis, the number of tests remains
consistent with that of the traditional diagnosis algorithm (i.e., Tra_Test=New_Test). From
Figure 8, as the scale of the network expands, we observe an ascending trend in the values
of Add_Avg, Add_Max, Avg, and Max, where Add_Avg maintains an approximate half
of Add_Max. This phenomenon stems from the fact that the number of additional tests
is 4m · fc when fc ≤ m − 2 (resp. either 0 or m − 1 when fc ≥ m − 1). In each experiment,
fc is influenced by the real count of faulty nodes f , randomly chosen from the interval
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[1, m]. The anticipated value of Add_Avg is in close proximity to 2m(m − 2) based on the
probability estimate derived from a uniform distribution.
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Figure 7. Comparison of Max, FR_Test, Tra_Test, and New_Test in L-HSDCm(m) with m ∈ [5, 10].
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Figure 8. Comparison of Add_Avg, Add_Max, Avg, and Max in L-HSDCm(m) with m ∈ [5, 10].

6. Conclusions

Inevitable network faults frequently result in packet loss, potential downtime, and
service disruption. By implementing efficient fault diagnosis algorithms and localizing
faulty nodes, it becomes possible to replace faulty servers quickly, thereby reducing the risk
of substantial adverse consequences. In this paper, we first prove that both the connectivity
and diagnosability of an m-dimensional HSDC network are m. Further, an adaptive fault
diagnosis algorithm is proposed, which can completely diagnose the actual status of all
servers in the HSDC network within at most m2m + 4m(m − 2) tests if m ≥ 3 (resp. 9 if
m = 2). The experimental results affirm that our algorithm significantly decreases the
required number of tests, surpassing the efficiency of traditional diagnosis algorithms.

Moreover, our approach offers a promising direction for devising adaptive fault
diagnosis schemes in other data center networks, such as BCCC, BCube, and AQDN. It is
evident that our strategy has certain limitations, proving effective in identifying the status
of all servers only when the number of faulty servers in HSDCm(m) networks does not
exceed m. In future research, we will try to further address this shortcoming by increasing
the number of test rounds, e.g., five rounds of testing [26], or based on other fault diagnosis
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models, such as the comparison model and the BGM model. Meanwhile, the objective
of this paper is to target permanent fault scenarios, and its diagnostic scope is a global
system. For this reason, we may explore other types of faults, including link failures, switch
failures, intermittent fault scenarios, and local fault diagnosis strategies for DCNs in the
future. These areas of study may help to provide a more comprehensive approach to fault
diagnosis and improve the overall performance of the system. Finally, before concluding
this article, we provide some valuable references related to system diagnosis for further
exploration [35–37].
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