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Abstract: Entropy measures the randomness or uncertainty of a stochastic process, and the entropy
rate refers to the limit of the time average of entropy. The generalized entropy rate in the form of
delayed averages can overcome the redundancy of initial information while ensuring stationarity.
Therefore, it has better practical value. A Hidden Markov Model (HMM) contains two stochastic
processes, a stochastic process in which all states can be observed and a Markov chain in which all
states cannot be observed. The entropy rate is an important characteristic of HMMs. The transition
matrix of a homogeneous HMM is unique, while a Nonhomogeneous Hidden Markov Model
(NHMM) requires the transition matrices to be dependent on time variables. From the perspective of
model structure, NHMMs are novel extensions of homogeneous HMMs. In this paper, the concepts
of the generalized entropy rate and NHMMs are defined and fully explained, a strong limit theorem
and limit properties of a norm are presented, and then generalized entropy ergodic theorems with an
almost surely convergence for NHMMs are obtained. These results provide concise formulas for the
computation and estimation of the generalized entropy rate for NHMMs.

Keywords: entropy rate; nonhomogeneous hidden Markov models; generalized entropy ergodic
theorem; delayed averages

MSC: 60F15; 94A17

1. Introduction

Shannon introduced entropy, originally a thermodynamic function, into information
theory to measure the uncertainty of random phenomena [1]. Shannon’s entropy in in-
formation theory has been successfully applied in many engineering fields, including
vibration-signal feature extraction [2], chaotic image encryption [3], groundwater quality
evaluation [4], etc. In order to accurately compute the average uncertainty of a stochastic
process, the existence and properties of the entropy rate should be estimated [5,6]. Many
approaches have been adopted to improve the theoretical integrity of the entropy rate. One
of the famous works is the Shannon–McMillan–Breiman theorem or entropy ergodic theo-
rem, or the asymptotic equipartition property (AEP), which reflects the almost surely (a.s.)
convergence of the entropy rate to a constant. Liu ang Yang [7] proposed an extension of
the Shannon–McMillan–Breiman theorem and some limit properties for nonhomogeneous
Markov chains. Yang [8] proved the AEP for a nonhomogeneous Markov information
source. Ordentlich et al. [9] used the Blackwell measure to compute the entropy rate.
The entropy rate for Hidden Markov Models (HMMs) has been expressed in terms of upper
and lower bounds [10]. However, even if states of HMMs are finite, the finite expression of
the entropy rate does not exist, which is mainly because the set of their predictive features
is generically infinite. To solve this problem, Jurgens et al. [11] evolved the mixed state
according to the iterated function system and sampled the entropy of the place-dependent
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probability distribution at each step sequentially. Using an arbitrarily long word, the mean
of these entropies can converge to the entropy rate.

The entropy rate is defined by the average of random variables throughout the entire
process. In fact, we often encounter time series that appear to be “locally stationary”,
so we can take an average of what has happened in some window of the recent past.
The generalized entropy rate in the form of delayed averages can overcome the redundancy
of initial information while ensuring stationarity and, therefore, has better practical value.
Essentially, the generalized entropies are nonnegative functions defined on probability
distributions that satisfy continuity, maximality, and expansibility. Delayed averages of
random variables were first discussed by Zygmund [12]. Using the limiting behavior
of delayed averages, Chow [13] proposed necessary and sufficient conditions for the
Borel summability of independent identically distributed random variables. Lai [14]
studied analogues of the law of the iterated logarithm for delayed averages of independent
random variables. On this basis, Gut and Stradtmüller [15] studied the strong law of large
numbers on delayed averages of random fields. Wang [16] discussed the limit theorems of
delayed averages for row-wise conditionally independent stochastic arrays and a class of
asymptotic properties of moving averages for Markov chains in Markovian environments.
From these studies, it can be seen that the limit of delayed averages has laid a solid
theoretical foundation and is naturally applied to the entropy rate.

Combining the generalized entropy rate and nonhomogeneous Markov chains, Wang
and Yang [17,18] studied generalized entropy ergodic theorems with a.s. and L1 con-
vergence for time nonhomogeneous Markov chains, and they obtained generalized en-
tropy ergodic theorems for non-null stationary processes using Markov approximation.
Shi et al. [19] studied the generalized AEP of higher-order nonhomogeneous Markov in-
formation sources by establishing several strong deviation theorems. The entropy rate is
an important characteristic of HMMs, and the entropy rate of HMMs plays an important
role in applications such as communication decoding, compression, and sorting. There-
fore, theoretical research on the entropy rate of HMMs is very necessary. The classical
HMMs were first introduced by Baum and Petrie, and they have been widely applied in
various fields, including speech recognition, facial expression recognition, gene prediction,
gesture recognition, musical composition, bio-informatics, and big data ranking [20–23].
The power of these models is that they can be very efficiently implemented and simu-
lated. A homogeneous HMM contains two stochastic processes: the observed process
is assumed to be conditionally temporally independent given the hidden process, and
the hidden process is assumed to evolve according to a first-order Markov chain. A Non-
homogeneous Hidden Markov Model (NHMM) provides the idea by allowing for the
transition matrices of the hidden states to be related to a set of observed covariates, that
is, the transition matrix of a homogeneous HMM is unique, while an NHMM requires
the transition matrices to be dependent on time variables. From the perspective of model
structure, NHMMs are novel extensions of homogeneous HMMs. In the last ten years, new
theories on NHMMs have emerged. Yang et al. [24] stated the law of large numbers for
countable NHMMs. Zhang et al. [25] studied the stability analysis and controller design for
a family of nonhomogeneous hidden semi-Markov jump systems with limited information
of sojourn-time probability density functions. Shahzadi et al. [26] proposed a class of Non-
homogeneous Hidden Semi-Markov Models for modelling partially observed processes
that do not necessarily behave in a stationary and memoryless manner.

Although there have been fruitful achievements in the two fields of generalized
entropy ergodic theorems and NHMMs, research on generalized entropy ergodic theorems
for NHMMs is limited. Therefore, we consider extending the application scenarios of the
generalized entropy rate. Motivated by the above work, the main focus of this paper is to
obtain a strong limit theorem of delayed averages of real-number functions and generalized
entropy ergodic theorems with an almost surely convergence for NHMMs. These results
provide a general idea for the relevant theoretical proof and concise formulas for the
computation and estimation of the generalized entropy rate for NHMMs, and they lay the
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necessary mathematical, theoretical foundation for the reliability of model applications.
The rest of this paper is organized as follows: in Section 2, a detailed description of NHMMs
and related definitions are introduced. Section 3 presents some limit properties that are used
in Section 4. In Section 4, the main results and the proofs are given. Section 5 summarizes
the important content and discusses the significance of the research.

2. Preliminaries

This section provides preliminaries for the subsequent important contents. Continuing
with the introduction, we state basic concepts and properties of NHMMs, point out the
relationship between NHMMs and homogeneous HMMs, and define the generalized
entropy, the generalized entropy rate, and other commonly used symbols on this basis.

Firstly, we give the definition and properties of NHMMs. Let X = {Xn, n ≥ 0} be a
nonhomogeneous Markov chain defined on the probability space {Ω,F ,P} taking values
in a finite state space S = {s1, s2, ..., sN}, and Y = {Yn, n ≥ 0} a stochastic process defined
on the probability space {Ω,F ,P} taking values in a finite state space L = {l1, l2, ..., lM}.
{X, Y} = {(Xn, Yn), n ≥ 0} is called an NHMM if and only if it meets the following forms
and conditions:

1. The initial distribution of the nonhomogeneous Markov chain X = {Xn, n ≥ 0} is

q(0) = (q0(s1), q0(s2), · · · , q0(sN)), q0(si) = P(X0 = si), 0 ≤ i ≤ N (1)

and the transition matrices are

Qn = [qn(si; sj)], (2)

where

qn(si; sj) = P(Xn = sj|Xn−1 = si), n ≥ 1, si, sj ∈ S , 1 ≤ i, j ≤ N. (3)

2. For any n

P{(Y0, Y1, ..., Yn) = (y0, y1, ..., yn)|X} =
n

∏
i=0

P{Yi = yi|Xi}, a.s. (4)

where (y0, y1, ..., yn) are the realizations of (Y0, Y1, ..., Yn).

If for any n, Qn = Q,, and the conditional probabilities P(Yn = yn|Xn = xn) are
independent on n, where Q is a stochastic matrix, xn and yn are realizations of Xn and Yn,
then X = {Xn, n ≥ 0} is a homogeneous Markov chain and {X, Y} = {(Xn, Yn), n ≥ 0} is
a homogeneous HMM.

Next, we list some properties for NHMMs, which are also equivalent definitions
of the model and play a role in proving the theorems. For any 0 ≤ m < k, let
Xk

m = (Xm, Xm+1, ..., Xk), Yk
m = (Ym, Ym+1, ..., Yk), and let xk

m and yk
m be the realizations of

Xk
m and Yk

m, respectively. In addition, For any m, k ≥ 0, let Xm,k = (Xm, Xm+1, ..., Xm+k),
Ym,k = (Ym, Ym+1, ..., Ym+k).

• {X, Y} = {(Xn, Yn), n ≥ 0} is an NHMM if and only if for any n,

P{Yn
0 = yn

0 |Xn
0 = xn

0} =
n

∏
i=1

P{Yi = yi|Xi = xi}. (5)



Mathematics 2024, 12, 605 4 of 15

• {X, Y} = {(Xn, Yn), n ≥ 0} is an NHMM if and only if for any n,

P{Xn
0 = xn

0 , Yn
0 = yn

0}

=P{X0 = x0}P{Y0 = y0|X0 = x0}
n

∏
i=1

P{Xi = xi|Xi−1 = xi−1}P{Yi = yi|Xi = xi}. (6)

• {X, Y} = {(Xn, Yn), n ≥ 0} is an NHMM if and only if for any n,

P{Xn = xn|Xn−1
0 = xn−1

0 , Yn−1
0 = yn−1

0 } = P{Xn = xn|Xn−1 = xn−1} (7)

and

P{Yn = yn|Xn
0 = xn

0 , Yn−1
0 = yn−1

0 } = P{Yn = yn|Xn = xn}. (8)

By Equations (7) and (8), we have

P{Xn+1 = xn+1, Yn+1 = yn+1|Xn
0 = xn

0 , Yn
0 = yn

0}
=P{Xn+1 = xn+1, Yn+1 = yn+1|Xn = xn}. (9)

In the following text, probability measures are widely used. Therefore, for any k ≥ 1,
denote

pk(xk; yk) = P(Yk = yk|Xk = xk), (10)

pk(xk−1; xk, yk) = P(Yk = yk, Xk = xk|Xk−1 = xk−1), (11)

p(x0, y0, · · · , xk, yk) = P(X0 = x0, Y0 = y0, · · · , Xk = xk, Yk = yk), (12)

and

p(x0, y0 · · · , xk−1, yk−1; xk, yk)

=P(Xk = xk, Yk = yk|X0 = x0, Y0 = y0, · · · , Xk−1 = xk−1, Yk−1 = yk−1). (13)

A delayed average is one of the widely known technical indicators used to predict
future data in time series analysis, and we define the entropy and the entropy rate in the
form of delayed averages. Let ( f (n))∞

n=0 be a sequence of non-negative integers such that
f (n) → ∞ as n → ∞.

For simplicity, we use the natural logarithm here; thus, the generalized entropy can be
measured. According to information theory, the definition of the entropy of an NHMM
{X, Y} = {(Xn, Yn), n ≥ 0} is

H(X0, Y0, X1, Y1, . . . , Xn, Yn) = E[− logP(X0, Y0, X1, Y1, . . . , Xn, Yn, )], (14)

where E[·] represents the expectation, and the definition of the entropy rate of an NHMM
{X, Y} = {(Xn, Yn), n ≥ 0} is

lim
n→∞

1
n

H(X0, Y0, X1, Y1, . . . , Xn, Yn). (15)

Combining the concept of the generalized entropy with the properties of NHMMs,
we have
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H(Xn, f (n), Yn, f (n))

=H(Xn, Yn, · · · , Xn+ f (n), Yn+ f (n))

=H(Xn, Yn) +
n+ f (n)

∑
k=n+1

H(Xk, Yk|Xn, Yn, · · · , Xk−1, Yk−1)

=H(Xn, Yn)−
n+ f (n)

∑
k=n+1

∑
xn ,··· ,xk∈S

∑
yn ,··· ,yk∈L

p(xn, yn, · · · , xk, yk) log p(xn, yn, · · · , xk−1, yk−1; xk, yk)

=H(Xn, Yn)−
n+ f (n)

∑
k=n+1

∑
xk−1∈S

qk(xk−1) ∑
xk∈S

∑
yk∈L

pk(xk−1; xk, yk) log pk(xk−1; xk, yk)

=H(Xn, Yn)−
n+ f (n)

∑
k=n+1

∑
xk−1∈S

qk(xk−1) ∑
xk∈S

∑
yk∈L

qk(xk−1; xk)pk(xk; yk) log qk(xk−1; xk)pk(xk; yk)

=H(Xn, Yn) +
n+ f (n)

∑
k=n+1

H(Xk, Yk|Xk−1), (16)

where Xn, f (n) and Yn, f (n) denotes (Xn, Xn+1, · · · , Xn+ f (n)) and (Yn, Yn+1, · · · , Yn+ f (n)), re-
spectively, and we use the distribution

q(k) = (qk(s1), qk(s2), · · · , qk(sN)), qk(si) = P(Xk = si), 0 ≤ i ≤ N, (17)

which is the same below.
To prepare for the following text, we introduce concepts that may frequently appear.

Definition 1. Let {X, Y} = {(Xn, Yn), n ≥ 0} be an NHMM defined as above. Define the
generalized entropy density as

Fn, f (n)(ω) = − 1
f (n)

logP(Xn, f (n), Yn, f (n))

=− 1
f (n)

{logP(Xn, Yn) +
n+ f (n)

∑
k=n+1

logP(Xk, Yk|Xk−1, Yk−1)}, (18)

where ω ∈ Ω.

In the following text, we prove that the limit of the entropy density is the entropy rate.

Definition 2 ([21]). Let X = {Xn, n ≥ 0} be a homogeneous Markov chain. Let Q be a transition
matrix of X = {Xn, n ≥ 0}. Q is called strongly ergodic if there exists a probability distribution
π = (π1, π2, · · · , πN) in S satisfying

sup
q(0)

∥q(0)Qn − π∥ → 0, as n → ∞ (19)

where q(0) is a starting vector. Obviously, Equation (19) implies πQ = π, and π is called the
stationary distribution determined by Q.

Definition 3. Let α = (α1, α2, · · · , αN) be a vector, and then the norm of α is defined by

∥α∥ =
N

∑
i=1

|αi|. (20)
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Let A = (aij)N×N be a square matrix, and then the norm of A is defined by

∥A∥ = max
i

N

∑
j=1

|aij|. (21)

3. Some Limit Properties

In this section, we give some lemmas, which are used to prove the main conclusions.
These lemmas include a strong limit theorem for NHMMs and limit properties of a norm.
Lemma 1 provides a strong limit theorem for bounded functions of NHMMs. Lemma 2
gives the convergence of bounded functions of real sequences on averages. Lemma 3 points
out that under the condition of the convergence of the transition matrices of NHMMs,
the counting averages of Markov chains converge to a stationary distribution of irreducible
matrices. Lemma 4 points out the convergence of the transition matrix multiplication
average. Lemma 5 proves the relationship between the convergence of vector sequences on
averages and the convergence of subsequences.

Lemma 1. Let {X, Y} = {(Xn, Yn), n ≥ 0} be an NHMM. Let gn(·, ·, ·) be a sequence of bounded
real number functions defined on S2 ×L. If for any ϵ > 0,

∞

∑
n=1

exp{−ϵ f (n)} < ∞, (22)

and there exists a positive number γ such that for any s ∈ S , l ∈ L,

lim sup
n→∞

max
t∈S

1
f (n)

n+ f (n)

∑
k=n+1

gk(t, s, l)pk(t; s, l) exp{γ|gk(t, s, l)|} = Cγ(s, l) < ∞, (23)

then

lim
n→∞

1
f (n)

n+ f (n)

∑
k=n+1

{gk(Xk−1, Xk, Yk)− E[gk(Xk−1, Xk, Yk)|Xk−1]} = 0, a.s. (24)

where E[·|·] represents conditional expectation.

Proof. Let u be a nonzero real number, and define

Λn, f (n)(u, ω) =

exp{u
n+ f (n)

∑
k=n+1

gk(Xk−1, Xk, Yk)}

n+ f (n)
∏

k=n+1
E[egk(Xk−1,Xk ,Yk)|Xk−1]

, n = 1, 2, ... (25)

where ω ∈ Ω and E[·|·] represents conditional expectation. By the properties of conditional
expectations, we have

EΛn, f (n)(u, ω)

=E[E[Λn, f (n)(u, ω)|X0,n+ f (n)−1]]

=E[E[Λn, f (n)−1(u, ω)
eugn+ f (n)−1(Xn+ f (n)−1,Xn+ f (n),Yn+ f (n))

E[egn+ f (n)−1(Xn+ f (n)−1, Xn+ f (n), Yn+ f (n))|Xn+ f (n)−1]
|X0,n+ f (n)−1]]

=E[
Λn, f (n)−1(u, ω)E[eugn+ f (n)−1(Xn+ f (n)−1,Xn+ f (n),Yn+ f (n))]|Xn+ f (n)−1]

E[egn+ f (n)−1(Xn+ f (n)−1, Xn+ f (n), Yn+ f (n))|Xn+ f (n)−1]
]

=EΛn, f (n)−1(u, ω) = · · · = EΛn,1(u, ω) = 1. (26)
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For any ϵ > 0, by Markov inequality and Equation (25), we have

∞

∑
n=1

P[ f−1(n) log Λn, f (n)(u, ω) ≥ ϵ] =
∞

∑
n=1

P[Λn, f (n)(u, ω) ≥ exp(ϵ f (n))]

≤
∞

∑
n=1

1 · exp{−ϵ f (n)} < ∞. (27)

Combining the Borel–Cantelli Lemma and the arbitrariness of ϵ, we have

lim sup
n→∞

1
f (n)

log Λn, f (n)(u, ω) ≤ 0. a.s. (28)

Expanding Equation (28), we have

lim sup
n→∞

1
f (n)

n+ f (n)

∑
k=n+1

{ugk(Xk−1, Xk, Yk)− log E[gk(Xk−1, Xk, Yk)|Xk−1]} ≤ 0. a.s. (29)

Let 0 < u < γ. Using the inequalities log x ≤ x − 1(x > 0) and 0 ≤ ex − 1 − x ≤
1
2 x2e|x|(x ∈ R), we have

lim sup
n→∞

1
f (n)

n+ f (n)

∑
k=n+1

{gk(Xk−1, Xk, Yk)− E[gk(Xk−1, Xk, Yk)|Xk−1]}

≤ lim sup
n→∞

1
f (n)

n+ f (n)

∑
k=n+1

{ 1
u

log E[eugk(Xk−1,Xk ,Yk)|Xk−1]− E[gk(Xk−1, Xk, Yk)|Xk−1]}

≤ lim sup
n→∞

1
f (n)

n+ f (n)

∑
k=n+1

{E[eugk(Xk−1,Xk ,Yk) − 1 − ugk(Xk−1, Xk, Yk)|Xk−1]

u
}

≤ lim sup
n→∞

1
f (n)

n+ f (n)

∑
k=n+1

E[g2
k(Xk−1, Xk, Yk)eu|gk(Xk−1,Xk ,Yk)||Xk−1]

≤1
2

uCγ(s, l) < ∞. a.s. (30)

Let u ↓ 0 in Equation (30), then

lim sup
n→∞

1
f (n)

n+ f (n)

∑
k=n+1

{gk(Xk−1, Xk, Yk)− E[gk(Xk−1, Xk, Yk)|Xk−1]} ≤ 0. a.s. (31)

Similarly, let −γ < u < 0, we have

lim inf
n→∞

1
f (n)

n+ f (n)

∑
k=n+1

{gk(Xk−1, Xk, Yk)− E[gk(Xk−1, Xk, Yk)|Xk−1]} ≥ 0. a.s. (32)

Equation (24) follows immediately from inequalities (31) and (32).

The key to prove Lemma 1 is to construct the likelihood ratio. By using the approxi-
mation of the upper and lower limits, it is possible to obtain an almost surely convergence
of bounded functions. This lemma is used to prove Theorem 1.
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Lemma 2 ([17]). Let h(z) be a bounded function defined on an real-number interval D and {zn}∞
n=0

a sequence in D. If lim
n→∞

1
f (n)

n+ f (n)
∑

k=n+1
|zk − z| = 0, h(z) is continuous at point z, and Equation (22)

holds, then

lim
n→∞

1
f (n)

n+ f (n)

∑
k=n+1

|h(zk)− h(z)| = 0. (33)

Lemma 3 ([17]). Let Q be an irreducible transition matrix. If Equation (22) holds, and for any
t, s ∈ S ,

lim
n→∞

1
f (n)

n+ f (n)

∑
k=n+1

|qk(s; t)− q(s; t)| = 0, (34)

then

lim
n→∞

1
f (n)

n+ f (n)−1

∑
k=n

1{si}(Xk) = πi a.s. (35)

holds for any si ∈ S , 1 ≤ i ≤ N, where 1{si}(Xk) is an indicative function and π = (π1, π2, . . . , πN)
is the unique stationary distribution determined by Q.

These two lemmas serve as support for theorem 2. It should be emphasized that Q in
Lemma 3 is irreducible, so this lemma still holds for ergodic matrices.

Lemma 4. Let X = {Xn, n ≥ 0} be a nonhomogeneous Markov chain with transition matrices
{Qn, n ≥ 1}. Let Q be a periodic strong ergodic stochastic matrix. Assume that c = (c1, c2, . . . , cN)
is a left eigenvector of Q, the unique solution of equations cQ = c. Let B be a constant random
matrix, where each row of B is c. If Equation (22) holds and

lim
n→∞

1
f (n)

n+ f (n)

∑
k=n+1

||Qk − Q|| = 0, (36)

then

lim
n→∞

|| 1
f (n)

n+ f (n)

∑
k=n+1

Q(m,m+k−1) − B|| = 0 (37)

holds for any m ∈ N, where Q(m,m+k−1) = Qm . . . Qm+k−1, Q(m,m) = Qm, Q0 = I (I is the
identical matrix).

The proof process of Lemma 4 is similar to theorem 1 of [27]. It should be emphasized
that the matrices appearing in Lemma 4 are composed of constants, so the norm can be
calculated. Lemma 4 is one of the prerequisites for Theorem 3.

Lemma 5. Let {βn}∞
n=1 and β be column vectors with real entries. If Equation (22) holds and

lim
n→∞

1
f (n)

n+ f (n)

∑
k=n+1

||βk − β|| = 0, (38)

then there exists a subsequence {βnk}∞
k=1 of {βn}∞

n=1 such that

lim
k→∞

||βnk − β|| = 0. (39)
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Proof. Constructing an inequality, there exists m ∈ N

1
f (n)

n+ f (n)

∑
k=n+1

||βm+k − β|| ≤ m + f (n)
f (n)

· 1
m + f (n)

n+ f (n)

∑
k=n+1

||βk − β||. (40)

From Equation (40), it can be concluded that there exists m ∈ N, such that

lim
n→∞

1
f (n)

n+ f (n)

∑
k=n+1

||βm+k − β|| = 0. (41)

holds. Choose a positive sequence {bk} ↓ 0, and by Equation (41), ∃u, v ∈ N,

1
v

u+v

∑
k=u+1

||βm+k − β|| ≤ b1. (42)

Therefore, there exists u ≤ n1 ≤ u + v such that ||gn1 − g|| ≤ b1. By (40), we have

lim
n→∞

1
f (n)

n+ f (n)

∑
k=n+1

||βn1+k − β|| = 0. (43)

Similarly, there exists n2 ≥ n1 such that ||βn2 − β|| ≤ a1. Generally, we can get a
subsequence {βnk}∞

k=1 of {βn}∞
n=1 such that ||βnk − β|| ≤ bk, k = 1, 2, 3, · · · . Equation (39)

follows immediately.

The key to the proof of Lemma 5 is to construct inequality (40). According to the
properties of the convergent sequence, even if the sequence is not monotonic, there exists
m ∈ N, and inequality (40) holds. Lemma 5 is also one of the prerequisites for Theorem 3.

4. Generalized Entropy Ergodic Theorems

In this section, we give the main results and their proofs. Generalized entropy ergodic
theorems with an almost surely convergence for NHMMs are presented. These results
provide concise formulas for the computation and estimation of the generalized entropy
rate for NHMMs.

Theorem 1. Let {X, Y} = {(Xn, Yn), n ≥ 0} be an NHMM. If for any ϵ > 0,

∞

∑
n=1

exp{−ϵ f (n)} < ∞, (44)

and there exists a positive number γ, such that for any s ∈ S , l ∈ L,

lim sup
n→∞

max
t∈S

1
f (n)

n+ f (n)

∑
k=n+1

gk(t, s, l)pk(t; s, l) exp{γ|gk(t, s, l)|} = Cγ(s, l) < ∞, (45)

then

lim
n→∞

Fn, f (n)(ω) = lim
n→∞

− 1
f (n)

n+ f (n)

∑
k=n+1

∑
s∈S

∑
l∈L

pk(Xk−1; s, l) log pk(Xk−1; s, l). a.s. (46)
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Proof. Set gk(Xk−1; s, l) = − log pk(Xk−1; s, l) and γ = 1
2 in Lemma 3. Using the inequality

(log x)2x
1
2 ≤ e−2(0 ≤ x ≤ 1), we can conclude that for any s ∈ S , l ∈ L,

C 1
2
(s, l)

= lim sup
n→∞

max
t∈S

1
f (n)

n+ f (n)

∑
k=n+1

[log pk(t; s, l)]2 pk(t; s, l) exp{1
2
|pk(t; s, l)|}

≤16 exp{−2}. (47)

It is not hard to verify that

1
f (n)

n+ f (n)

∑
k=n+1

{gk(Xk−1, Xk, Yk)− ∑
s∈S

∑
l∈L

gk(Xk−1, s, l)pk(Xk−1; s, l)}

=− 1
f (n)

n+ f (n)

∑
k=n+1

{log pk(Xk−1; Xk, Yk)− ∑
s∈S

∑
l∈L

pk(Xk−1; s, l) log pk(Xk−1; s, l)}

=− 1
f (n)

n+ f (n)

∑
k=n+1

{log pk(Xk−1; Xk, Yk)− ∑
s∈S

∑
l∈L

pk(Xk−1; s, l) log pk(Xk−1; s, l)}

=− 1
f (n)

logP(Xn, Yn) + Fn, f (n)(ω)

+
1

f (n)

n+ f (n)

∑
k=n+1

∑
s∈S

∑
l∈L

pk(Xk−1; s, l) log pk(Xk−1; s, l). (48)

The transition probability falls within the interval [0,1], so its logarithm is bounded.
In addition, infinitesimal multiplication by a bounded quantity is still infinitesimal, so
the initial distribution is erased. Hence the conclusion can be deduced immediately from
Lemma 1.

Theorem 2. Let {X, Y} = {(Xn, Yn), n ≥ 0} be an NHMM. Assume that for any ϵ > 0,

∞

∑
n=1

exp{−ϵ f (n)} < ∞, (49)

and there exists a positive number γ, such that for any s ∈ S , l ∈ L,

lim sup
n→∞

max
t∈S

1
f (n)

n+ f (n)

∑
k=n+1

gk(t, s, l)pk(t; s, l) exp{γ|gk(t, s, l)|} = Cγ(s, l) < ∞. (50)

If for any (t, s, l) ∈ S2 ×L,

lim
n→∞

1
f (n)

n+ f (n)

∑
k=n+1

|pk(t; s, l)− p(t; s, l)|

= lim
n→∞

1
f (n)

n+ f (n)

∑
k=n+1

|qk(t; s)pk(s; l)− q(t; s)p(s; l)| = 0 (51)

holds, where q represents terms of an irreducible transition matrix Q, then

lim
n→∞

Fn, f (n)(ω) = − ∑
t∈S

π(t) ∑
s∈S

∑
l∈L

p(t; s, l) log p(t; s, l), (52)

where π(t), t ∈ S belongs to π = (π1, π2, ..., πN), which is a stationary distribution of Q.
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Proof. Set h(z) = z log z in Lemma 2; then, for any (t, s, l) ∈ S2 ×L,

lim
n→∞

1
f (n)

n+ f (n)

∑
k=n+1

|pk(t; s, l) log pk(t; s, l)− p(t; s, l) log p(t; s, l)| = 0. (53)

Using absolute inequality, we have

|Fn, f (n)(ω) + ∑
t∈S

π(t) ∑
s∈S

∑
l∈L

p(t; s, l) log p(t; s, l)|

≤|Fn, f (n)(ω) +
1

f (n)

n+ f (n)

∑
k=n+1

∑
t∈S

∑
s∈S

∑
l∈L

1{t}(Xk−1)pk(t; s, l) log pk(t; s, l)|

+| 1
f (n)

n+ f (n)

∑
k=n+1

∑
t∈S

∑
s∈S

∑
l∈L

1{t}(Xk−1)[pk(t; s, l) log pk(t; s, l)− p(t; s, l) log p(t; s, l)]|

+| 1
f (n)

n+ f (n)

∑
k=n+1

∑
t∈S

[π(t)− 1{t}(Xk−1)] ∑
s∈S

∑
l∈L

p(t; s, l) log p(t; s, l)|

≤|Fn, f (n)(ω) +
1

f (n)

n+ f (n)

∑
k=n+1

∑
t∈S

∑
s∈S

∑
l∈L

1{t}(Xk−1)pk(t; s, l) log pk(t; s, l)|

+ ∑
t∈S

∑
s∈S

∑
l∈L

1
f (n)

n+ f (n)

∑
k=n+1

|pk(t; s, l) log pk(t; s, l)− p(t; s, l) log p(t; s, l)|

+ ∑
t∈S

|π(t)− 1
f (n)

n+ f (n)

∑
k=n+1

1{t}(Xk−1)|| ∑
s∈S

∑
l∈L

p(t; s, l) log p(t; s, l)| (54)

where π(t), t ∈ S belongs to π = (π1, π2, ..., πN), which is a stationary distribution of Q.
By Lemma 3, Equation (52) follows from Equation (54).

The proof of Theorem 1 mainly relies on the construction of inequalities, and the proof
of Theorem 2 utilizes the properties of norms. The two theorems explain that the limit of
the generalized entropy density is the generalized entropy rate.

Theorem 3. Let {X, Y} = {(Xn, Yn), n ≥ 0} be an NHMM. Q = (q(t; s))N×N is another
transition matrix, and assume that Q is periodic and strongly ergodic. Let

βn(t) = ∑
s∈S

∑
l∈L

qn(t; s)pn(s; l) log qn(t; s)pn(s; l), (55)

β(t) = ∑
s∈S

∑
l∈L

q(t; s)p(s; l) log q(t; s)p(s; l), (56)

where βn(t), β(t), t ∈ S are the elements of column vectors βn and β, respectively, and assume that
{∥ βn ∥, n ≥ 1} are bounded. If Equation (22) holds,

lim
n→∞

1
f (n)

n+ f (n)

∑
k=n+1

∥Qk − Q∥ = 0, (57)

and

lim
n→∞

1
f (n)

n+ f (n)

∑
k=n+1

∥βk − β∥ = 0, (58)
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then the generalized entropy rate of {X, Y} exists, and

lim
n→∞

1
f (n)

H(Xn, Yn, · · · , Xn+ f (n), Yn+ f (n)) = −πβ, a.s. (59)

where π = (π1, π2, · · · , πN) is the unique stationary distribution determined by Q.

Proof. Let q(k−1) be a row vector with elements P(Xk−1 = t), t ∈ S . Hence, using the
definition and properties of βn, we have

H(Xk, Yk, |Xk−1) = −q(k−1)βk. (60)

Simply take B as a constant random matrix whose rows are equal to π. Note that
π = q(0)B, where q(0) is an initial distribution of the Markov chain. Since

∥ 1
f (n)

n+ f (n)

∑
k=n+1

q(k−1) − π∥

=∥ 1
f (n)

n+ f (n)

∑
k=n+1

q(0)Q(0,k−1) − q(0)B∥

≤∥ 1
f (n)

n+ f (n)

∑
k=n+1

Q(0,k−1) − B∥, (61)

where Q(0,k−1) = Q1 · · · Qk−1, Q(0,0) = I (I is the identical matrix), by Equations (57)
and (61) and Lemma 5, we have

lim
n→∞

∥ 1
f (n)

n+ f (n)

∑
k=n+1

q(k−1) − π∥ = 0. (62)

By Equation (58) and Lemma 5, there exists a subsequence {βnk}∞
k=1 of {βn}∞

n=1
such that

lim
k→∞

∥βnk − β∥ = 0. (63)

Hence, ∥β∥ is finite. By Equation (62) and properties of entropy, we have

| 1
f (n)

H(Xn, Yn, · · · , Xn+ f (n), Yn+ f (n)) + πβ|

=| 1
f (n)

H(Xn, Yn) +
1

f (n)

n+ f (n)

∑
k=n+1

H(Xk, Yk|Xk−1) + πβ|

≤| 1
f (n)

H(Xn, Yn)|+ | 1
f (n)

n+ f (n)

∑
k=n+1

q(k−1)βk − πβ|

≤| 1
f (n)

H(Xn, Yn)|+ | 1
f (n)

n+ f (n)

∑
k=n+1

q(k−1)βk −
1

f (n)

n+ f (n)

∑
k=n+1

q(k−1)β|+ | 1
f (n)

n+ f (n)

∑
k=n+1

q(k−1)β − πβ|

≤ 1
f (n)

|H(Xn, Yn)|+
1

f (n)

n+ f (n)

∑
k=n+1

∥βk − β∥+ ∥β∥∥ 1
f (n)

n+ f (n)

∑
k=n+1

q(k−1) − π∥

→0 as n → ∞. (64)

This completes the proof of Theorem 3.
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Theorem 3 gives a method to compute the generalized entropy rate of an NHMM
under some mild conditions, and when the model degenerates into a homogeneous HMM
and a nonhomogeneous Markov chain, the results are still the same. The two corollaries
are existing results, which indirectly demonstrate the correctness of this theorem.

Corollary 1. Let {X, Y} = {(Xn, Yn), n ≥ 0} be an NHMM with a periodic and strongly ergodic
transition matrix Q = (q(t; s))N×N and an emission probability matrix P = (p(s; l))N×M, where
t, s ∈ S , l ∈ L. Let

β(t) = ∑
s∈S

∑
l∈L

q(t; s)p(s; l) log q(t; s)p(s; l), (65)

where β(t), t ∈ S are the elements of column vector β. Assume that ∥ β ∥ is bounded. If Equation (22)
holds, then the generalized entropy rate of {X, Y} exists, and

lim
n→∞

1
f (n)

H(Xn, Yn, · · · , Xn+ f (n), Yn+ f (n)) = −πβ, a.s. (66)

where π = (π1, π2, · · · , πN) is the unique stationary distribution determined by Q.

Corollary 2. Let X = {(Xn), n ≥ 0} be a nonhomogeneous Markov chain. Q = (q(t; s))N×N is
another transition matrix, and assume that Q is periodic and strongly ergodic, where t, s ∈ S . Let

βn(t) = ∑
s∈S

qn(t; s) log qn(t; s), (67)

β(t) = ∑
s∈S

q(t; s) log q(t; s), (68)

where βn(t), β(t), t ∈ S are the elements of column vectors βn and β, respectively. Assume that
{∥ βn ∥, n ≥ 1} are bounded. If Equation (22) holds,

lim
n→∞

1
f (n)

n+ f (n)

∑
k=n+1

∥Qk − Q∥ = 0, (69)

and

lim
n→∞

1
f (n)

n+ f (n)

∑
k=n+1

∥βk − β∥ = 0, (70)

then the generalized entropy rate of X exists, and

lim
n→∞

1
f (n)

H(Xn, · · · , Xn+ f (n)) = −πβ, a.s. (71)

where π = (π1, π2, · · · , πN) is the unique stationary distribution determined by Q.

5. Conclusions

Entropy ergodic theorems reflect the almost surely convergence of the entropy rate to
a constant. The generalized entropy rate in the form of delayed averages can overcome
the redundancy of initial information while ensuring stationarity and, therefore, it has
better practical value. An NHMM provides the idea by allowing the transition matrix of
the hidden states in a homogeneous HMM to be related to a set of observed covariates.
Although there have been fruitful achievements in the two fields of generalized entropy
ergodic theorems and NHMMs, research on the generalized entropy ergodic theorems for
NHMMs is limited. Therefore, we consider extending the application scenarios of the gen-
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eralized entropy rate. In this paper, we give the basic concepts of NHMMs and the entropy
rate in the form of delayed averages, list some lemmas including a strong limit theorem
and limit properties of a norm, and prove some generalized entropy ergodic theorems with
an almost surely convergence for NHMMs. These results, which are generalizations of
previous findings of [17,27], provide concise formulas for the computation and estimation
of the generalized entropy rate in the form of delayed averages. Theoretical analysis has
proven the existence and limit formula of entropy rate, but its numerical calculation is also
very complex and challenging. Specifically, this process requires calculating the integration
on a certain measure, which is related to the parameters of HMMs. Many methods have
been proposed for this, such as approximate formulas, series expansion, and statistical
calculation methods. Due to the fact that approximate formulas are not applicable to any
parameters, and their accuracy is difficult to estimate, the convergence conditions of the
series are difficult to prove, and the sample size required for statistical convergence is
difficult to estimate. Therefore, approximating with upper and lower limits is a reliable
method, and its accuracy can be estimated, with relatively lenient requirements for HMM
parameters. In the future, we will conduct numerical case studies based on the theoretical
analysis above.
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