

 mathematics-12-00610

mathematics-12-00610

Mathematics 2024, 12(4), 610; doi:10.3390/math12040610

Article

Single Machine Scheduling Proportionally Deteriorating Jobs with Ready Times Subject to the Total Weighted Completion Time Minimization

Zheng-Guo Lv, Li-Han Zhang, Xiao-Yuan Wang and Ji-Bo Wang *

School of Computer, Shenyang Aerospace University, Shenyang 110136, China

*

Correspondence: wangjibo@sau.edu.cn

Citation: Lv, Z.-G.; Zhang, L.-H.; Wang, X.-Y.; Wang, J.-B. Single Machine Scheduling Proportionally Deteriorating Jobs with Ready Times Subject to the Total Weighted Completion Time Minimization. Mathematics 2024, 12, 610. https://doi.org/10.3390/math12040610

Academic Editor: Pavel Novoa-Hernández

Received: 7 January 2024 / Revised: 30 January 2024 / Accepted: 2 February 2024 / Published: 19 February 2024

Abstract

:

In this paper, we investigate a single machine scheduling problem with a proportional job deterioration. Under release times (dates) of jobs, the objective is to minimize the total weighted completion time. For the general condition, some dominance properties, a lower bound and an upper bound are given, then a branch-and-bound algorithm is proposed. In addition, some meta-heuristic algorithms (including the tabu search (T S), simulated annealing (S A) and heuristic (N E H) algorithms) are proposed. Finally, experimental results are provided to compare the branch-and-bound algorithm and another three algorithms, which indicate that the branch-and-bound algorithm can solve instances of 40 jobs within a reasonable time and that the N E H and S A are more accurate than the T S .

Keywords:

scheduling; single machine; proportional job deterioration; release dates; total weighted completion time

MSC:

90B35

1. Introduction

The classical scheduling models assume that the job processing time is a fixed constant. However, in many real-life situations (e.g., scheduling derusting operations (see Gawiejnowicz et al. [1]), and timely medical treatment (Wu et al. [2])), the job processing time is an increasing function of its starting time, i.e., this is the deterioration effect (for more detail on deteriorating jobs, see Mosheiov [3], Gawiejnowicz [4], Oron [5]). Lee et al. [6] and Wang et al. [7] considered single-machine two-agent problems with deteriorating jobs. Wu et al. [8] scrutinized single-machine scheduling with a truncated linear deteriorating effect. For the makespan minimization with ready times, they proposed a branch-and-bound algorithm and some heuristic algorithms. Yin and Kang [9] studied flow shop scheduling with proportional deterioration. They proved that some special cases of makespan minimization are polynomially solvable. Pei et al. [10] considered the single serial-batching machine with deteriorating jobs. Jafari and Lotfi [11] studied single-machine scheduling with deteriorating jobs. For the maximum tardiness minimization, they proposed branch-and-bound and heuristic algorithms. Miao and Zhang [12] discussed the parallel-machine scheduling with step-deteriorating jobs. For the makespan minimization, some NP-hard results were given. Huang [13] investigated the single-machine scheduling problem with deterioration effects. Under the group technology, they proved that the bicriterion minimization problem remains polynomially solvable. Liu et al. [14] studied the single-machine makespan minimization problem with deterioration effects. Under the group technology and ready times, they proposed heuristic and branch-and-bound algorithms. Sun and Geng [15] investigated single-machine scheduling with deteriorating effects. Under machine maintenance, they showed that the makespan and sum of job completion times minimizations can be solved in polynomial time. Cheng et al. [16] explored single-machine total completion time minimization with step-deteriorating jobs. They showed that this problem is binary NP-hard, and proposed a dynamic programming algorithm to solve the problem. Li and Lu [17] explored single-machine parallel-batch scheduling problem with job rejection. Under deterioration effects, they proved that the makespan (total weighted completion time) minimization is NP-complete under the total rejection penalty is limited. They also proposed dynamic programming algorithms and FPTASs (i.e., fully polynomial time approximation schemes) to solve the problem. Zhang et al. [18] scrutinized parallel-machine scheduling with deterioration effects. Under machine maintenance activities of the non-resumable case and resumable case, the goal is to minimize the expected sum of completion times. They determined the time complexity of various cases, and proposed pseudo-polynomial time algorithms. Huang et al. [19] considered due window assignment scheduling with deteriorating jobs. He et al. [20] considered parallel-machine problems with deteriorating jobs. Under processor maintenance activities, the objective is to minimize the total completion time (machine load). Qian and Han [21] and Qian and Zhan [22] scrutinized single-machine scheduling with proportional job deterioration. Under due-date and due-window assignments, they showed that some earliness-tardiness problems remain polynomially solvable. Miao et al. [23] studied parallel-machine scheduling with step-deterioration effect, where the job deteriorating dates are identical. They proved that the total (weighted) completion time minimization is NP-hard in the strong sense. They also showed that some special cases of the problem are polynomially solvable. Jia et al. [24] and Sun et al. [25] considered single machine scheduling with deteriorating jobs and a maintenance activity. Miao et al. [26] investigated single machine scheduling with deteriorating jobs and delivery times. Wang et al. [27] studied single-machine resource allocation scheduling with deterioration effect. Zhang et al. [28] delved into due-window scheduling with linear proportional deterioration. Shabtay and Mor [29] discussed the proportionate flow shop problems with step-deteriorating. They proved that the makespan and total load minimizations are NP-hard. A book (resp. survey) on time-dependent (deterioration effect) scheduling problems can be found in Gawiejnowicz [30] (resp. Gawiejnowicz [31]).

Recently, Miao [32] explored a single-machine scheduling problem with the proportional job deterioration. Under different ready times (i.e., release dates), she showed that the total weighted completion time minimization is binary NP-hard. For a special condition, Miao [32] proved that this problem can be solved in polynomial time. For the importance of ready times (please refer to Zhong et al. [33]; Bai et al. [34]; Qian et al. [35]) and deteriorating jobs, in this study, we continue the work of Miao [32], but deal with a general case of Miao [32]. The contributions of this article are: (1) we consider the single machine scheduling with proportionally deteriorating jobs; (2) under ready times, we provide the optimality analysis for the total weighted completion time minimization; (3) under the optimal properties of an optimal schedule, we propose some solution algorithms (including the branch-and-bound, tabu search, simulated annealing and heuristic algorithms).

The remainder of this article is organized as follows. Section 2 presents the problem formulation. In Section 3 and Section 4, the branch-and-bound and complex algorithms are proposed. Section 5 gives the computational experiments of randomly generated instances. In the last Section, we conclude this article.

2. Problem Formulation

A set of n jobs, N ^ = { J 1 , J 2 , … , J n } , is to be processed (scheduled) on a single machine, and all the jobs are available at time t 0 > 0 . As in Mosheiov [3], Oron [5] and Miao [32], the following model with the proportional job deterioration will be addressed, i.e., the actual processing time p ^ j of job J j (j = 1 , 2 , … , n) is

 p ^ j = b ^ j s ^ j ,

(1)

where b ^ j is the deterioration rate of job J j (i.e., the unit growth rate of its starting processing time), and s ^ j is its starting time. Let C ¯ j = C ¯ j (Ψ) be the completion time of job J j under some schedule Ψ . The objective is to find a schedule that minimizes the total weighted completion time T W C T ˜ = ∑ j = 1 n μ j C j ¯ , where μ j is the weight of job J j . Using the three-field notation (see Gawiejnowicz [30,31]), for problem classification, the problem can be represented as 1 | p ^ j = b ^ j s ^ j , r j | T W C T ˜ , where r j ≥ 0 is the release time (date) of job J j . The comparison with proportional job deterioration is given in Table 1.

3. Branch-and-Bound Algorithm

Miao [32] proved that the problem 1 | p ^ j = b ^ j s ^ j , r j | T W C T ˜ is binary NP-hard. Hence, a branch-and-bound algorithm (where we need some dominance properties, a lower bound and an upper bound) is a good way to solve 1 | p ^ j = b ^ j s ^ j , r j | T W C T ˜ .

3.1. Dominance Properties

The following dominance properties can efficiently disregard numerous nodes and reduce the computation load. Let Ψ 1 = (τ , J h , J j , τ ′) and Ψ 2 = (τ , J j , J h , τ ′) be the orders of schedules, i.e., the jobs in the bracket represent an order of schedule, where τ and τ ′ are partial sequences. Let the completion time of the last job in τ be s, to show that Ψ 1 dominates Ψ 2 (i.e., the objective value of the schedule Ψ 1 = (τ , J h , J j , τ ′) is less than or equal to the schedule Ψ 2 = (τ , J j , J h , τ ′)), it is sufficient to show that C ¯ j (Ψ 1) ≤ C ¯ h (Ψ 2) , and μ h C ¯ h (Ψ 1) + μ j C ¯ j (Ψ 1) ≤ μ j C ¯ j (Ψ 2) + μ h C ¯ h (Ψ 2) .

Proposition 1.

For any two jobs J h and J j , if r h = r j , b ^ h μ h (1 + b ^ h) ≤ b ^ j μ j (1 + b ^ j) , then Ψ 1 dominates Ψ 2 .

Proof.

Under Ψ 1 = (τ , J h , J j , τ ′) , and Ψ 2 = (τ , J j , J h , τ ′) , we have

 C ¯ h (Ψ 1) = max { s , r h } + b ^ h max { s , r h } = max { s (1 + b ^ h) , r h (1 + b ^ h) } ,

(2)

 C ¯ j (Ψ 1) = max { C ^ h (Ψ 1) , r j } (1 + b ^ j) = max { s (1 + b ^ h) (1 + b ^ j) , r h (1 + b ^ h) (1 + b ^ j) , r j (1 + b ^ j) } ,

(3)

 C ¯ j (Ψ 2) = max { s (1 + b ^ j) , r j (1 + b ^ j) } ,

(4)

 C ¯ h (Ψ 2) = max { s (1 + b ^ j) (1 + b ^ h) , r j (1 + b ^ j) (1 + b ^ h) , r h (1 + b ^ h) } .

(5)

If r h = r j ≤ s , we have C ¯ j (Ψ 1) = C ¯ h (Ψ 2) = s (1 + b ^ j) (1 + b ^ h) , and

 μ h C ¯ h (Ψ 1) + μ j C ¯ j (Ψ 1) − μ j C ¯ j (Ψ 2) − μ h C ¯ h (Ψ 2) = s μ h (1 + b ^ h) + s μ j (1 + b ^ h) (1 + b ^ j) − s μ j (1 + b ^ j) − s μ h (1 + b ^ h) (1 + b ^ j) = s μ j μ h (1 + b ^ j) (1 + b ^ h) b ^ h μ h (1 + b ^ h) − b ^ j μ j (1 + b ^ j) ≤ 0 .

If r h = r j > s , we have C ¯ j (Ψ 1) = C ¯ h (Ψ 2) = r (1 + b ^ j) (1 + b ^ h) , and

 μ h C ¯ h (Ψ 1) + μ j C ¯ j (Ψ 1) − μ j C ¯ j (Ψ 2) − μ h C ¯ h (Ψ 2) = r μ j μ h (1 + b ^ j) (1 + b ^ h) b ^ h μ h (1 + b ^ h) − b ^ j μ j (1 + b ^ j) ≤ 0 ,

the result follows. □

Similarly, we have the following propositions:

Proposition 2.

For any two jobs J i and J j , if b ^ h = b ^ j , r h ≤ r j , μ h ≥ μ j , then Ψ 1 dominates Ψ 2 .

Proposition 3.

For any two jobs J i and J j , if b ^ h ≤ b ^ j , r h ≤ r j , μ h = μ j , then Ψ 1 dominates Ψ 2 .

3.2. Lower Bound

Lemma 1.

(Rau [36], Kelly [37]) Term ∑ j = 1 n μ j ∏ h = k + 1 j (1 + b ^ h) can be minimized by the non-decreasing order of b ^ j μ j (1 + b ^ j) , i.e., b ^ < 1 > μ < 1 > (1 + b ^ < 1 >) ≤ b ^ < 2 > μ < 2 > (1 + b ^ < 2 >) ≤ … ≤ b ^ < n > μ < n > (1 + b ^ < n >) .

Suppose Θ = { Ψ p s , Ψ p u } is a set of jobs in which Ψ p s is the scheduled part, Ψ p u is a unscheduled part, and there are ζ jobs in Ψ p s , then, the completion time of the (ζ + 1) th job is

 C ¯ [ζ + 1] (Ψ p u) = max { C ¯ [ζ] (Ψ) , r [ζ + 1] } + b ^ [ζ + 1] max { C ¯ [ζ] (Ψ) , r [ζ + 1] }

 = max { C ¯ [ζ] (Ψ) , r [ζ + 1] } (1 + b ^ [ζ + 1]) ,

where [ζ] denotes some job scheduled in ζ th position. Similarly,

 C ¯ [ζ + 2] (Ψ p u) = max { C ¯ [ζ + 1] (Ψ) , r [ζ + 2] } (1 + b ^ [ζ + 2]) = max { C ¯ [ζ] (Ψ) (1 + b ^ [ζ + 1]) (1 + b ^ [ζ + 2]) , r [ζ + 1] (1 + b ^ [ζ + 1]) (1 + b ^ [ζ + 2]) , r [ζ + 2] (1 + b ^ [ζ + 2]) } , ⋮ C ¯ [n] (Ψ p u) = max { C ¯ [ζ] (Ψ) ∏ h = ζ + 1 n (1 + b ^ [h]) , r [ζ + 1] ∏ h = ζ + 1 n (1 + b ^ [h]) , r [ζ + 2] ∏ h = ζ + 2 n (1 + b ^ [h]) , … , r [n] (1 + b ^ [n]) } .

The T W C T ˜ is

 T W C T ˜ = ∑ j = 1 n μ j C ¯ j = ∑ j = 1 ζ μ j C ¯ j (Ψ p s) + ∑ j = ζ + 1 n μ [j] C ¯ [j] (Ψ p u) ≥ ∑ j = 1 ζ μ j C ¯ j (Ψ p s) + C ¯ [ζ] (Ψ p s) ∑ j = ζ + 1 n μ [j] ∏ h = k + 1 j (1 + b ^ [h]) .

(6)

Obviously, the terms ∑ j = 1 ζ μ j C ¯ j (Ψ p s) and C ¯ [ζ] (Ψ p s) on the right hand side of Equation (6) are fixed. From Lemma 1, we obtain the first lower bound

 L B 1 ⏞ = ∑ j = 1 ζ μ j C ¯ j (Ψ p s) + C ¯ [ζ] (Ψ p s) ∑ j = ζ + 1 n μ < j > ∏ h = k + 1 j (1 + b ^ < h >) ,

(7)

where b ^ < ζ + 1 > μ < ζ + 1 > (1 + b ^ < ζ + 1 >) ≤ b ^ < ζ + 2 > μ < ζ + 2 > (1 + b ^ < ζ + 2 >) ≤ … ≤ b ^ < n > μ < n > (1 + b ^ < n >) is a nondecreasing order of b ^ j μ j (1 + b ^ j) for the remaining unscheduled jobs.

However, if the ready times are large, then this lower bound may not be tight. To overcome this situation, we need to take the ready times into consideration. In general, we have

 T W C T ˜ = ∑ j = 1 ζ μ j C ¯ j (Ψ p s) + ∑ j = ζ + 1 n μ [j] C ¯ [j] (Ψ p u) ≥ ∑ j = 1 ζ μ j C ¯ j (Ψ p s) + ∑ j = ζ + 1 n μ [j] r [j] (1 + b [j]) .

(8)

It is noticed that the first term (i.e., ∑ j = 1 ζ μ j C ¯ j (Ψ p u)) on the right hand side of Equation (8) is fixed, and ∑ j = ζ + 1 n μ [j] r [j] (1 + b ^ [j]) = ∑ j ∈ Ψ p u μ j r j (1 + b ^ j) is a constant. Consequently, we obtain the second lower bound

 L B 2 ⏞ = ∑ j = 1 ζ μ j C ¯ j (Ψ p s) + ∑ j ∈ Ψ p u μ j r j (1 + b ^ j) .

(9)

In addition, we have

 T W C T ˜ ≥ ∑ j = 1 ζ μ j C ¯ j (Ψ p s) + r [ζ + 1] ∑ j = ζ + 1 n μ [j] ∏ h = ζ + 1 j (1 + b ^ [h]) .

(10)

Let r min = min { r j | j ∈ Ψ p u } , from Equation (10), we have the third lower bound:

 L B 3 ⏞ = ∑ j = 1 ζ μ j C ¯ j (Ψ p s) + r min ∑ j = ζ + 1 n μ < j > ∏ h = ζ + 1 j (1 + b ^ < h >) .

(11)

where b ^ < ζ + 1 > μ < ζ + 1 > (1 + b ^ < ζ + 1 >) ≤ b ^ < ζ + 2 > μ < ζ + 2 > (1 + b ^ < ζ + 2 >) ≤ … ≤ b ^ < n > μ < n > (1 + b ^ < n >) .

To make the lower bound tighter, the maximum value of Equations (7), (9) and (11) is selected as a lower bound for 1 | p ^ j = b ^ j s ^ j , r j | T W C T ˜ , i.e., the lower bound for 1 | p ^ j = b ^ j s ^ j , r j | T W C T ˜ is

 L B ⏞ = max { L B 1 ⏞ , L B 2 ⏞ , L B 3 ⏞ } .

(12)

3.3. Upper Bound

From Section 3.1, the following Algorithm 1 is given as the upper bound (denoted by U B) of problem 1 | p ^ j = b ^ j s ^ j , r j | T W C T ˜ .

	Algorithm 1: U B

	(Step 1). Arrange the jobs by the non-decreasing order of r j , i.e., r 1 ≤ r 2 ≤ … ≤ r n (call the obtained schedule Ψ 1).

(Step 2). Arrange the jobs by the non-decreasing order of b ^ j , i.e., b ^ 1 ≤ b ^ 2 ≤ … ≤ b ^ n (call the obtained schedule Ψ 2).

(Step 3). Arrange the jobs by the non-decreasing order of b ^ j μ j (1 + b ^ j) , i.e., b ^ 1 μ 1 (1 + b ^ 1) ≤ b ^ 2 μ 2 (1 + b ^ 2) ≤ … ≤ b ^ n μ n (1 + b ^ n) (call the obtained schedule Ψ 3).

(Step 4). Arrange the jobs by the non-increasing order of μ j , i.e., μ 1 ≥ μ 2 ≥ … ≥ μ n (call the obtained schedule Ψ 4).

(Step 5). Find the best schedule from schedules Ψ 1 , Ψ 2 , Ψ 3 and Ψ 4 .

3.4. Branch-and-Bound Algorithm

From Section 3.1, Section 3.2 and Section 3.3, the standard branch-and-bound (denoted by B B) Algorithm 2 can be proposed as follows.

	Algorithm 2: B B

	Step 1. Use Algorithm 1 to obtain an initial solution (i.e., U B).

Step 2. In the κ th level node, the first κ positions are occupied by κ specific jobs. Select one of the remaining n − κ jobs for the node at level κ + 1 .

Step 3. First apply Propositions 1–3, to eliminate the dominated partial schedules.

Step 4. Calculate the L B ⏞ for T W C T ˜ of the node. If the lower bound for an unfathomed partial schedule of jobs is larger than or equal to the value of T W C T ˜ of the initial solution, eliminate the node and all the nodes following it in the branch. Calculate the value T W C T ˜ of the completed schedule, if it is less than the initial solution, replace it as the new solution; otherwise, eliminate it.

Step 5. Continue to search all the nodes, and the remaining initial solution is an optimal schedule.

4. Meta-Heuristic Algorithms

4.1. Tabu Search

In this subsection, the tabu search (T S) in Algorithm 3 is used to solve 1 | p ^ j = b ^ j s ^ j , r j | T W C T ˜ . The initial schedule used in the T S is chosen by using Algorithm 1, and the maximum number of iterations for the T S is set at 1000 n .

	Algorithm 3: T S

	Step 1. Let the tabu list be empty and the iteration number be zero.

Step 2. Set the initial sequence of the T S algorithm, calculate its objective function T W C T ˜ and set the current schedule as the best solution Ψ * .

Step 3. Search the associated neighborhood of the current schedule and resolve if there is a schedule Ψ * * with the smallest objective function in associated neighborhoods and it is not in the tabu list.

Step 4. If Ψ * * is better than Ψ * , then let Ψ * = Ψ * * . Update the tabu list and the iteration number.

Step 5. If there is not a schedule in associated neighborhoods but it is not in the tabu list or the maximum number of iterations is reached, then output the local optimal schedule Ψ and objective function value T W C T ˜ . Otherwise, update the tabu list and go to Step 3.

4.2. N E H Algorithm

Adapted from Nawaz et al. [38], the N E H Algorithm 4 can be adopt to solve 1 | p ^ j = b ^ j s ^ j , r j | T W C T ˜ .

	Algorithm 4: N E H

	(Step 1). Arrange all the jobs by Algorithm 1.

(Step 2). Set ϑ = 2 . Select the first two jobs from the sorted list (by Step 1) and select the best of the two possible schedules. Do not change the relative positions of these two jobs with respect to each other in the remaining steps of the algorithm. Set ϑ = 3 .

(Step 3). Pick the job in the ϑ th position of the list generated in Step 1 and find the best schedule by placing it at all possible ϑ positions in the partial sequence found in the previous step, without changing the relative positions to each other of the already assigned jobs. The number of enumerations at this step is equal to ϑ .

(Step 4). If ϑ = n , STOP; otherwise set ϑ = ϑ + 1 and go to Step 3.

4.3. Simulated Annealing

In this subsection, the simulated annealing (S A) in Algorithm 5 is proposed to solve 1 | p ^ j = b ^ j s ^ j , r j | T W C T ˜ (see Lai et al. [39] and Liu et al. [40]).

	Algorithm 5: S A

	Step 1. Initial schedule can be obtained by Algorithm 1.

Step 2. Pairwise interchange (PI) neighborhood generation method will be used.

Step 3. When a new schedule is generated (by Step 2), it is accepted if its objective function value (i.e., T W C T ˜) is smaller than that of the original schedule; otherwise, it is accepted with some probability that decreases as the process evolves. The probability of acceptance is generated from an exponential distribution,

 P (a c c e p t) = e x p (− ψ × Δ G) ,

where ψ is a control parameter and Δ G is the change in the objective function value, ψ in the kth iteration is

 ψ = k η

and η is an experimental constant. After preliminary trials, η = 1 was used in our experiments.

If the objective function value increases as a result of a random pairwise interchange, the new schedule is accepted when P (a c c e p t) > ς , where ς is randomly sampled from the uniform distribution U (0 , 1) .

Step 4. Stopping condition: 1000n iterations.

4.4. A Mixed Integer Programming (MIP) Model

Let

 x j , k = 1 , if job J j is assigned to position k , 0 , otherwise .

The optimal schedule of 1 | p ^ j = b ^ j s ^ j , r j | T W C T ˜ can be written as the following MIP:

 M i n ∑ k = 1 n μ [k] C ¯ [k]

(13)

 s . t . ∑ j = 1 n x j , k = 1 , k = 1 , 2 , … , n ,

(14)

 ∑ k = 1 n x j , k = 1 , j = 1 , 2 , … , n ,

(15)

 b ^ [k] = ∑ j = 1 r x j , k b ^ j , k = 1 , 2 , … , n ,

(16)

 r [k] = ∑ j = 1 r x j , k r j , k = 1 , 2 , … , n ,

(17)

 μ [k] = ∑ j = 1 r x j , k μ j , k = 1 , 2 , … , n ,

(18)

 S [k] ≥ r [k] , k = 1 , 2 , … , n ,

(19)

 S [k] ≥ C [k − 1] , k = 1 , 2 , … , n ,

(20)

 C [k] ≥ S [k] (1 + b ^ j) x j , k , j , k = 1 , 2 , … , n ,

(21)

where (13) is the objective cost of optimization, and (14) and (15) ensure that each job must be processed in a unique position; constraints (16)–(18) denote the deterioration rate the release time and the weight of some job at the kth position, respectively; constraint (19) means that the start time of the job at the kth position is not later than its release time; constraint (20) means that the start time of some job at the kth position is not later than the completion time of some job at the k − 1 st position; (21) is the completion time constraint.

5. Computational Results

In this section, computational experiments are conducted to evaluate the accuracy and efficiency of the U B , T S , N E H , S A and B B algorithms. Detailed programming and testing configurations are as follows.

	
C++ version: Visual studio 2019, the max memory allowed was restricted to 64 G, for the U B , T S , N E H , S A and B B algorithms.

	
Testing computer: One desktop workstation with one AMD R7-4700H CPU (2.9–4.2 GHz, 8 cores, 16 threads) and 128 G of physical memory.

The following test parameters are randomly generated:

	
 b ^ j is uniformly distributed over [0.05, 0.1] (i.e., b ^ j ∈ U [0.05 , 0.1]), [0.1, 0.15] (i.e., b ^ j ∈ U [0.1 , 0.15]) and [0.05, 0.15] (i.e., b ^ j ∈ U [0.05 , 0.15]);

	
 r j is uniform integers distributed over [1, 50] (i.e., r j ∈ U [1 , 50]), [50, 100] (i.e., r j ∈ U [50 , 100]) and [1, 100] (i.e., r j ∈ U [1 , 100]);

	
 μ j is uniform integers distributed over [1, 10] (i.e., μ j ∈ U [1 , 10]);

	
n = 15, 20, 25, 30, 35, 40.

For each combination of parameters, 20 randomly generated instances were evaluated, and there were 1080 instances tested in total. For the B B , the average and maximum numbers of nodes and the average and maximum time (in millisecond) were recorded. For the heuristics, the average and maximum error were recorded. The error of the solution produced by a heuristic was calculated as T W C T ˜ (H A) T W C T ˜ (O P T) , where H A ∈ { U B , T S , N E H , S A } , and O P T is the optimal schedule by B B . For the CPU time of the B B , from Table 2, Table 3 and Table 4, it should be noted that the CPU time increases when n becomes bigger, and the maximum CPU time (i.e., n = 40 and r j ∈ U [1 , 100]) is 39,870,200 milliseconds. In addition, from Table 2, Table 3 and Table 4, we obtain that the CPU time becomes lesser for r j ∈ U [50 , 100] . From Table 5, Table 6 and Table 7, we obtain that error results of the N E H and S A appear to be more accurate than the U B and T S .

To demonstrate the superiority of the B B algorithm, experiments were conducted between the B B algorithm and the mathematical programming model, where the mathematical programming model (13)–(17) is solved by CPLEX (IBM ILOG Optimization Stdio, version 12.10), n = 20, 25, 30, and 10 testing instances were generated for each combination. In order to make the comparative experiments more objective and simple, we assign special values to each instance, without too much sorting, but only for comparison. This is also the reason why CPU time in the comparative experiment is shorter than that in the previous experiments. Results reported in Table 8, Table 9 and Table 10 are the objective values and CPU times. In terms of the CUP time, when r j ∈ U [50 , 100] , the B&B algorithm dominates CPLEX significantly for about 92.22% (83 out of 90) of the examples.

6. Conclusions

This paper studies single-machine scheduling with proportional deterioration and ready times simultaneously. The objective function is to minimize T W C T ˜ . For the general condition of the problem, we propose the branch-and-bound algorithm and some meta-heuristic algorithms. Experimental study demonstrate that the B B algorithm can solve instances of 40 jobs in less than 39,870,200 milliseconds, and the algorithms of NEH and SA are more accurate than TS. Further research should further explore the T W C T ˜ minimization problem with the general linear deterioration (i.e., 1 | p ^ j = a ^ j + b ^ j s ^ j , r j | T W C T ˜ , where a ^ j is the normal processing time of job J j), extend our model to problems with scenario-dependent processing times (Wu et al. [41] and Wu et al. [42]), or consider the extension to parallel machines and hybrid flow shop setting (Yu et al. [43]).

Author Contributions

Methodology, J.-B.W.; writing—original draft, Z.-G.L.; writing—review and editing, Z.-G.L., L.-H.Z., X.-Y.W. and J.-B.W. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the Science Research Foundation of the Educational Department of Liaoning Province (LJKMZ20220532).

Data Availability Statement

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare no conflicts of interest.

References

	

Gawiejnowicz, S.; Kurc, W.; Pankowska, L. Pareto and scalar bicriterion scheduling of deteriorating jobs. Comput. Oper. Res. 2006, 33, 746–767. [Google Scholar] [CrossRef]

	

Wu, Y.; Dong, M.; Zheng, Z. Patient scheduling with periodic deteriorating maintenance on single medical device. Comput. Oper. Res. 2014, 49, 107–116. [Google Scholar] [CrossRef]

	

Mosheiov, G. Scheduling jobs under simple linear deterioration. Comput. Oper. Res. 1994, 21, 653–659. [Google Scholar] [CrossRef]

	

Gawiejnowicz, S. Scheduling deteriorating jobs subject to job or machine availability constraints. Eur. J. Oper. Res. 2007, 180, 472–478. [Google Scholar] [CrossRef]

	

Oron, D. Single machine scheduling with simple linear deterioration to minimize total absolute deviation of completion times. Comput. Oper. Res. 2008, 35, 2071–2078. [Google Scholar] [CrossRef]

	

Lee, W.-C.; Wang, W.J.; Shiau, Y.R.; Wu, C.-C. A single-machine scheduling problem with two-agent and deteriorating jobs. Appl. Math. Model. 2010, 34, 3098–3107. [Google Scholar] [CrossRef]

	

Wang, Z.Y.; Wei, C.M.; Wu, Y.B. Single machine two-agent scheduling with deteriorating jobs. Asia-Pac. J. Oper. Res. 2016, 33, 1650034. [Google Scholar] [CrossRef]

	

Wu, C.-C.; Wu, W.-H.; Wu, W.-H.; Hsu, P.-H.; Yin, Y.; Xu, J. A single-machine scheduling with a truncated linear deterioration and ready times. Inf. Sci. 2014, 256, 109–125. [Google Scholar] [CrossRef]

	

Yin, N.; Kang, L. Minimizing makespan in permutation flow shop scheduling with proportional deterioration. Asia-Pac. J. Oper. Res. 2015, 32, 1550050. [Google Scholar] [CrossRef]

	

Pei, J.; Liu, X.B.; Pardalos, P.M.; Fan, W.J.; Yang, S.L. Scheduling deteriorating jobs on a single serial-batching machine with multiple job types and sequence-dependent setup times. Ann. Oper. Res. 2017, 249, 175–195. [Google Scholar] [CrossRef]

	

Jafari, A.A.; Lotfi, M.M. Single-machine scheduling to minimize the maximum tardiness under piecewise linear deteriorating jobs. Sci. Iran. 2018, 25, 370–385. [Google Scholar] [CrossRef]

	

Miao, C.X.; Zhang, Y.Z. Scheduling with step-deteriorating jobs to minimize the makespan. J. Ind. Manag. Optim. 2019, 15, 1955–1964. [Google Scholar] [CrossRef]

	

Huang, X. Bicriterion scheduling with group technology and deterioration effect. J. Appl. Math. Comput. 2019, 60, 455–464. [Google Scholar] [CrossRef]

	

Liu, F.; Yang, J.; Lu, Y.-Y. Solution algorithms for single-machine group scheduling with ready times and deteriorating jobs. Eng. Optim. 2019, 51, 862–874. [Google Scholar] [CrossRef]

	

Sun, X.; Geng, X.-N. Single-machine scheduling with deteriorating effects and machine maintenance. Int. J. Prod. Res. 2019, 57, 3186–3199. [Google Scholar] [CrossRef]

	

Cheng, T.C.E.; Kravchenko, S.-A.; Lin, B.M.T. Scheduling step-deteriorating jobs to minimize the total completion time. Comput. Ind. Eng. 2020, 144, 106329. [Google Scholar] [CrossRef]

	

Li, D.-W.; Lu, X.-W. Parallel-batch scheduling with deterioration and rejection on a single machine. Appl. Math. J. Chin. Univ. 2020, 35, 141–156. [Google Scholar] [CrossRef]

	

Zhang, X.; Liu, S.-C.; Lin, W.-C.; Wu, C.-C. Parallel-machine scheduling with linear deteriorating jobs and preventive maintenance activities under a potential machine disruption. Comput. Ind. Eng. 2020, 145, 106482. [Google Scholar] [CrossRef]

	

Huang, X.; Yin, N.; Liu, W.-W.; Wang, J.-B. Common due window assignment scheduling with proportional linear deterioration effects. Asia-Pac. J. Oper. Res. 2020, 37, 1950031. [Google Scholar] [CrossRef]

	

He, H.; Hu, Y.; Liu, W.-W. Scheduling with deteriorating effect and maintenance activities under parallel processors. Eng. Optim. 2021, 53, 2070–2087. [Google Scholar] [CrossRef]

	

Qian, J.; Han, H. The due date assignment scheduling problem with the deteriorating jobs and delivery time. J. Appl. Math. Comput. 2022, 67, 2173–2186. [Google Scholar] [CrossRef]

	

Qian, J.; Zhan, Y. The due window assignment problems with deteriorating job and delivery time. Mathematics 2022, 10, 1672. [Google Scholar] [CrossRef]

	

Miao, C.; Kong, F.; Zou, J.; Ma, R.; Huo, Y. Parallel-machine scheduling with step-deteriorating jobs to minimize the total (weighted) completion time. Asia-Pac. J. Oper. Res. 2023, 40, 2240011. [Google Scholar] [CrossRef]

	

Jia, X.; Lv, D.-Y.; Hu, Y.; Wang, J.-B.; Wang, Z.; Wang, E. Slack due-window assignment scheduling problem with deterioration effects and a deteriorating maintenance activity. Asia-Pac. J. Oper. Res. 2022, 39, 2250005. [Google Scholar] [CrossRef]

	

Sun, X.; Liu, T.; Geng, X.-N.; Hu, Y.; Xu, J.-X. Optimization of scheduling problems with deterioration effects and an optional maintenance activity. J. Sched. 2023, 26, 251–266. [Google Scholar] [CrossRef]

	

Miao, C.; Song, J.; Zhang, Y. Single-machine time-dependent scheduling with proportional and delivery times. Asia-Pac. J. Oper. Res. 2023, 40, 2240011. [Google Scholar] [CrossRef]

	

Wang, J.-B.; Wang, Y.-C.; Wan, C.; Lv, D.-Y.; Zhang, L. Controllable processing time scheduling with total weighted completion time objective and deteriorating jobs. Asia-Pac. J. Oper. Res. 2023, 2350026. [Google Scholar] [CrossRef]

	

Zhang, L.-H.; Geng, X.-N.; Xue, J.; Wang, J.-B. Single machine slack due window assignment and deteriorating jobs. J. Ind. Manag. Optim. 2024, 20, 1593–1614. [Google Scholar] [CrossRef]

	

Shabtay, D.; Mor, B. Exact algorithms and approximation schemes for proportionate flow shop scheduling with step-deteriorating processing times. J. Sched. 2022. [Google Scholar] [CrossRef]

	

Gawiejnowicz, S. Models and Algorithms of Time-Dependent Scheduling; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]

	

Gawiejnowicz, S. A review of four decades of time-dependent scheduling: Main results, new topics, and open problems. J. Sched. 2020, 23, 3–47. [Google Scholar] [CrossRef]

	

Miao, C. Complexity of scheduling with proportional deterioration and release dates. Iran. J. Sci. Technol. Trans. A Sci. 2018, 42, 1337–1342. [Google Scholar] [CrossRef]

	

Zhong, X.L.; Pan, Z.M.; Jiang, D.K. Scheduling with release times and rejection on two parallel machines. J. Comb. Optim. 2017, 33, 934–944. [Google Scholar] [CrossRef]

	

Bai, D.Y.; Xue, H.; Wang, L.; Wu, C.-C.; Lin, W.-C.; Abdulkadir, D.H. Effective algorithms for single-machine learning-effect scheduling to minimize completion-time-based criteria with release dates. Expert Syst. Appl. 2020, 156, 113445. [Google Scholar] [CrossRef]

	

Qian, J.; Lin, H.X.; Kong, Y.F.; Wang, Y.S. Tri-criteria single machine scheduling model with release times and learning factor. Appl. Math. Comput. 2020, 387, 124543. [Google Scholar] [CrossRef]

	

Rau, G. Minimizing a function of permutations of n integers. Oper. Res. 1971, 19, 237–240. [Google Scholar] [CrossRef]

	

Kelly, F.-P. A remark on search and sequencing problems. Math. Oper. Res. 1982, 7, 154–157. [Google Scholar] [CrossRef]

	

Nawaz, M.; Enscore, J.E.E.; Ham, I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 1983, 11, 91–95. [Google Scholar] [CrossRef]

	

Lai, K.; Hsu, P.-H.; Ting, P.-H.; Wu, C.-C. A truncated sum of processing-times-based learning model for a two-machine flowshop scheduling problem. Hum. Factors Ergon. Manuf. Serv. Ind. 2014, 24, 152–160. [Google Scholar] [CrossRef]

	

Liu, S.; Wu, W.-H.; Kang, C.-C.; Lin, W.-C.; Cheng, Z. A single-machine two-agent scheduling problem by a branch-and-bound and three simulated annealing algorithms. Discret. Dyn. Nat. Soc. 2015, 2015, 681854. [Google Scholar] [CrossRef]

	

Wu, C.-C.; Bai, D.; Zhang, X.; Cheng, S.-R.; Lin, J.-C.; Wu, Z.-L.; Lin, W.-C. A robust customer order scheduling problem along with scenario-dependent component processing times and due dates. J. Manuf. Syst. 2021, 58, 291–305. [Google Scholar] [CrossRef]

	

Wu, C.-C.; Bai, D.; Chen, J.-H.; Lin, W.-C.; Xing, L.; Lin, J.-C.; Cheng, S.-R. Everal variants of simulated annealing hyper-heuristic for a single-machine scheduling with two-scenario-based dependent processing times. Swarm Evol. Comput. 2021, 60, 100765. [Google Scholar] [CrossRef]

	

Yu, Y.; Pan, Q.; Pang, X.; Tang, X. An attribution feature-based memetic algorithm for hybrid flowshop scheduling problem with operation skipping. IEEE Trans. Autom. Sci. Eng. 2024. [Google Scholar] [CrossRef]

Table 1. Summary results of proportional job deterioration.

Table 1. Summary results of proportional job deterioration.

	Problem
	Complexity or Algorithms
	Reference

	 1 | p ^ j = b ^ j s ^ j , c o n , d e l i v − t i m e | ∑ j = 1 n (α E j + β T j + γ d) }
	 O (n log n)
	Qian and Han [21]

	 1 | p ^ j = b ^ j s ^ j , s l k , d e l i v − t i m e | ∑ j = 1 n (α E j + β T j + γ q) }
	 O (n log n)
	Qian and Han [21]

	 1 | p ^ j = b ^ j s ^ j , d i f , d e l i v − t i m e | ∑ j = 1 n (α E j + β T j + γ d j) }
	 O (n log n)
	Qian and Han [21]

	 1 | p ^ j = b ^ j s ^ j , c o n w , d e l i v − t i m e | ∑ j = 1 n (α E j + β T j + γ d ′ + δ (d ″ − d ′))
	 O (n log n)
	Qian and Zhan [22]

	 1 | p ^ j = b ^ j s ^ j , s l k w , d e l i v − t i m e | ∑ j = 1 n (α E j + β T j + γ q ′ + δ (q ″ − q ′))
	 O (n log n)
	Qian and Zhan [22]

	 1 | p ^ j = b ^ j s ^ j | C ¯ max
	 O (n)
	Mosheiov [3]

	 1 | p ^ j = b ^ j s ^ j | ∑ j = 1 n C ¯ j
	 O (n log n) , b ^ j ↑
	Mosheiov [3]

	 1 | p ^ j = b ^ j s ^ j | L max
	 O (n log n) , d j ↑
	Mosheiov [3]

	 1 | p ^ j = b ^ j s ^ j | T W C T ˜
	 O (n log n) , b ^ j μ j (1 + b ^ j) ↑
	Mosheiov [3]

	 1 | p ^ j = b ^ j s ^ j | ∑ j = 1 n ∑ h = j + 1 n (C ¯ h − C ¯ j)
	open problem
	Oron [5]

	 1 | p ^ j = b ^ j s ^ j | f max
	 O (n)
	Gawiejnowicz [30] (Theorem 7.93)

	 1 | p ^ j = b ^ j s ^ j , r j | T W C T ˜
	NP-hard
	Miao [32]

	 1 | p ^ j = b ^ j s ^ j , b ^ j = b ^ , r h ≤ r j ⇒ μ h ≥ μ j | T W C T ˜
	 O (n log n) , r j ↑
	Miao [32]

	 1 | p ^ j = b ^ j s ^ j , r j | T W C T ˜
	BB and Meta-heuristic algorithms
	This paper

 α ≥ 0 , β ≥ 0 , γ ≥ 0 , δ ≥ 0 are given integers, E j (resp. T j) is the earliness (resp. tardiness) of J j , ↑ denotes non-decreasing order, d j is the due-date of J j (c o n denotes the common due-date, i.e., d j = d ; s l k denotes the slack due-date, i.e., d j = p ^ j + q ; d i f denotes the different due-dates), [d j ′ , d j ″] is the due-window of J j (c o n w denotes the common due-window, i.e., d j ′ = d ′ and d j ″ = d ″ ; s l k w denotes the slack due-window, i.e., d j ′ = p ^ j + q ′ and d j ″ = p ^ j + q ″ , C ¯ max (resp. L max , f max) denotes makespan (resp. lateness, maximum cost), d ″ − d ′ (resp. q ″ − q ′) is the size of the common (resp. slack) due-window, deliv-time denotes a delivery time

Table 2. CPU Results for b ^ j ∈ U [0.05 , 0.1] .

Table 2. CPU Results for b ^ j ∈ U [0.05 , 0.1] .

	

	
 r j

	
BB

	
UB

	
TS

	
NEH

	
SA

	
n

	

	
Mean

	
Max

	
Mean

	
Max

	
Mean

	
Max

	
Mean

	
Max

	
Mean

	
Max

	

	
 r j ∈ U [1 , 50]

	
122.60

	
564.00

	
4.85

	
9.00

	
5741.75

	
54,925.00

	
2.75

	
8.00

	
6.50

	
11.00

	
15

	
 r j ∈ U [50 , 100]

	
17.10

	
36.00

	
6.30

	
11.00

	
3667.05

	
64,462.00

	
5.90

	
73.00

	
8.90

	
16.00

	

	
 r j ∈ U [1 , 100]

	
75.70

	
359.00

	
5.70

	
9.00

	
5987.75

	
61,622.00

	
2.20

	
5.00

	
8.20

	
26.00

	

	
 r j ∈ U [1 , 50]

	
29,084.40

	
151,879.00

	
4.40

	
6.00

	
25,536.40

	
165,107.00

	
3.70

	
24.00

	
14.35

	
22.00

	
20

	
 r j ∈ U [50 , 100]

	
245.60

	
641.00

	
6.40

	
9.00

	
29,178.70

	
212,358.00

	
3.35

	
5.00

	
15.65

	
20.00

	

	
 r j ∈ U [1 , 100]

	
27,701.60

	
199,894.00

	
5.00

	
11.00

	
19,955.30

	
192,863.00

	
3.10

	
5.00

	
18.30

	
78.00

	

	
 r j ∈ U [1 , 50]

	
512,311.00

	
3,726,670.00

	
4.00

	
9.00

	
15,949.60

	
289,186.00

	
4.60

	
22.00

	
16.55

	
23.00

	
25

	
 r j ∈ U [50 , 100]

	
1990.10

	
5876.00

	
5.25

	
9.00

	
40,320.75

	
433,996.00

	
5.30

	
16.00

	
21.20

	
31.00

	

	
 r j ∈ U [1 , 100]

	
122,106.00

	
106,339.00

	
4.05

	
6.00

	
67,496.10

	
339,880.00

	
3.75

	
6.00

	
19.40

	
28.00

	

	
 r j ∈ U [1 , 50]

	
174,832.00

	
1,329,940.00

	
4.70

	
15.00

	
145,316.60

	
749,768.00

	
5.15

	
9.00

	
21.70

	
40.00

	
30

	
 r j ∈ U [50 , 100]

	
9390.05

	
17,815.00

	
4.25

	
10.00

	
59,158.80

	
567,654.00

	
7.60

	
50.00

	
24.30

	
30.00

	

	
 r j ∈ U [1 , 100]

	
6,343,906.00

	
47,881,400.00

	
3.95

	
10.00

	
148,253.20

	
722,566.00

	
5.50

	
10.00

	
26.6

	
66.00

	

	
 r j ∈ U [1 , 50]

	
3,148,041.85

	
9,034,400.00

	
8.85

	
71.00

	
117,052.00

	
1,359,553.00

	
6.60

	
21.00

	
28.15

	
46.00

	
35

	
 r j ∈ U [50 , 100]

	
44,630.25

	
70,439.00

	
2.35

	
4.00

	
57,802.85

	
1,054,277.00

	
6.00

	
16.00

	
33.00

	
41.00

	

	
 r j ∈ U [1 , 100]

	
4,296,541.70

	
30,627,000.00

	
3.40

	
7.00

	
216,026.10

	
1,075,473.00

	
4.80

	
17.00

	
22.80

	
27.00

	

	
 r j ∈ U [1 , 50]

	
2,150,283.40

	
10,695,000.00

	
2.50

	
8.00

	
89,874.20

	
850,713.00

	
5.50

	
14.00

	
29.20

	
49.00

	
40

	
 r j ∈ U [50 , 100]

	
102,262.90

	
159,458.00

	
3.25

	
7.00

	
92,418.60

	
896,981.00

	
5.90

	
11.00

	
23.55

	
38.00

	

	
 r j ∈ U [1 , 100]

	
9,961,003.10

	
39,870,200.00

	
3.60

	
13.00

	
58,957.00

	
711,500.00

	
4.90

	
8.00

	
34.40

	
47.00

Table 3. CPU Results for b ^ j ∈ U [0.1 , 0.15] .

Table 3. CPU Results for b ^ j ∈ U [0.1 , 0.15] .

	

	
 r j

	
BB

	
UB

	
TS

	
NEH

	
SA

	
n

	

	
Mean

	
Max

	
Mean

	
Max

	
Mean

	
Max

	
Mean

	
Max

	
Mean

	
Max

	

	
 r j ∈ U [1 , 50]

	
102.85

	
451.00

	
1.20

	
2.00

	
10,484.90

	
67,690.00

	
1.30

	
3.00

	
7.30

	
9.00

	
15

	
 r j ∈ U [50 , 100]

	
23.00

	
47.00

	
1.35

	
3.00

	
7173.15

	
68,005.00

	
1.60

	
3.00

	
7.15

	
9.00

	

	
 r j ∈ U [1 , 100]

	
243.90

	
3067.00

	
1.45

	
3.00

	
430.75

	
450.00

	
1.30

	
4.00

	
7.30

	
11.00

	

	
 r j ∈ U [1 , 50]

	
14,573.35

	
168,203.00

	
1.25

	
2.00

	
8838.95

	
160,111.00

	
1.75

	
2.00

	
10.15

	
11.00

	
20

	
 r j ∈ U [50 , 100]

	
237.85

	
509.00

	
1.35

	
3.00

	
28,075.60

	
215,786.00

	
1.75

	
2.00

	
10.70

	
18.00

	

	
 r j ∈ U [1 , 100]

	
3487.35

	
19,283.00

	
2.10

	
5.00

	
43,418.90

	
215,419.00

	
1.95

	
3.00

	
13.65

	
17.00

	

	
 r j ∈ U [1 , 50]

	
193,834.35

	
3,177,120.00

	
1.50

	
4.00

	
22,294.45

	
414,487.00

	
2.20

	
3.00

	
14.65

	
23.00

	
25

	
 r j ∈ U [50 , 100]

	
1450.20

	
2885.00

	
1.45

	
3.00

	
32,890.65

	
315,447.00

	
2.10

	
3.00

	
14.15

	
15.00

	

	
 r j ∈ U [1 , 100]

	
17,100.45

	
192,282.00

	
1.25

	
3.00

	
17,350.00

	
315,937.00

	
2.00

	
3.00

	
14.25

	
17.00

	

	
 r j ∈ U [1 , 50]

	
87,182.50

	
536,278.00

	
1.60

	
3.00

	
56,730.20

	
545,618.00

	
2.95

	
4.00

	
18.40

	
21.00

	
30

	
 r j ∈ U [50 , 100]

	
12,805.85

	
53,990.00

	
1.85

	
4.00

	
61,176.00

	
550,356.00

	
3.20

	
5.00

	
21.35

	
32.00

	

	
 r j ∈ U [1 , 100]

	
201,922.75

	
1,906,000.00

	
1.60

	
4.00

	
29,775.95

	
543,595.00

	
2.55

	
4.00

	
18.35

	
20.00

	

	
 r j ∈ U [1 , 50]

	
1,946,500.25

	
26,744,000.00

	
2.35

	
5.00

	
78,636.70

	
1,459,851.00

	
5.15

	
13.00

	
37.25

	
47.00

	
35

	
 r j ∈ U [50 , 100]

	
63,408.45

	
108,301.00

	
2.40

	
5.00

	
126,142.50

	
1,208,994.00

	
4.20

	
7.00

	
35.50

	
47.00

	

	
 r j ∈ U [1 , 100]

	
248,386.05

	
2,109,800.00

	
1.45

	
3.00

	
175,928.10

	
874,246.00

	
3.60

	
5.00

	
26.10

	
39.00

	

	
 r j ∈ U [1 , 50]

	
1,773,385.10

	
11,064,300.00

	
1.85

	
3.00

	
117,793.65

	
2,193,161.00

	
5.35

	
9.00

	
43.65

	
65.00

	
40

	
 r j ∈ U [50 , 100]

	
206,306.40

	
406,824.00

	
3.45

	
16.00

	
8535.20

	
10,565.00

	
5.35

	
6.00

	
43.55

	
69.00

	

	
 r j ∈ U [1 , 100]

	
1,335,705.85

	
8,545,740.00

	
3.30

	
14.00

	
308,533.45

	
2,184,809.00

	
5.00

	
7.00

	
41.70

	
53.00

Table 4. CPU Results for b ^ j ∈ U [0.05 , 0.15] .

Table 4. CPU Results for b ^ j ∈ U [0.05 , 0.15] .

	

	
 r j

	
BB

	
UB

	
TS

	
NEH

	
SA

	
n

	

	
Mean

	
Max

	
Mean

	
Max

	
Mean

	
Max

	
Mean

	
Max

	
Mean

	
Max

	

	
 r j ∈ U [1 , 50]

	
399.25

	
4462.00

	
2.75

	
5.00

	
9524.20

	
90,275.00

	
1.25

	
3.00

	
10.35

	
14.00

	
15

	
 r j ∈ U [50 , 100]

	
25.00

	
43.00

	
3.25

	
10.00

	
9380.70

	
88,716.00

	
1.20

	
2.00

	
10.10

	
13.00

	

	
 r j ∈ U [1 , 100]

	
185.55

	
833.00

	
1.25

	
2.00

	
13,540.00

	
87,656.00

	
1.05

	
2.00

	
8.70

	
14.00

	

	
 r j ∈ U [1 , 50]

	
28,036.50

	
205,993.00

	
1.05

	
2.00

	
1035.60

	
1089.00

	
1.05

	
2.00

	
11.75

	
12.00

	
20

	
 r j ∈ U [50 , 100]

	
391.70

	
817.00

	
1.05

	
2.00

	
11,391.85

	
208,018.00

	
1.05

	
2.00

	
12.45

	
19.00

	

	
 r j ∈ U [1 , 100]

	
473,980.00

	
558,400.00

	
3.85

	
5.00

	
20,517.15

	
376,660.00

	
3.15

	
5.00

	
16.15

	
22.00

	

	
 r j ∈ U [1 , 50]

	
143,789.80

	
1,284,350.00

	
3.75

	
6.00

	
42,196.80

	
207,211.00

	
3.65

	
5.00

	
10.55

	
14.00

	
25

	
 r j ∈ U [50 , 100]

	
2369.90

	
5584.00

	
3.85

	
5.00

	
20,517.15

	
376,660.00

	
3.15

	
5.00

	
16.15

	
22.00

	

	
 r j ∈ U [1 , 100]

	
1,427,065.00

	
2,1728,000.00

	
3.70

	
5.00

	
21,393.85

	
392,099.00

	
3.20

	
6.00

	
16.00

	
17.00

	

	
 r j ∈ U [1 , 50]

	
5,066,261.60

	
25,664,200.00

	
4.10

	
6.00

	
99,544.30

	
956,083.00

	
3.20

	
4.00

	
31.30

	
38.00

	
30

	
 r j ∈ U [50 , 100]

	
16,604.50

	
25,070.00

	
4.00

	
6.00

	
4375.70

	
4461.00

	
3.60

	
7.00

	
31.40

	
37.00

	

	
 r j ∈ U [1 , 100]

	
601,835.20

	
3,554,380.00

	
3.50

	
5.00

	
86,111.60

	
481,486.00

	
4.60

	
6.00

	
16.80

	
21.00

	

	
 r j ∈ U [1 , 50]

	
4,268,488.70

	
33,343,700.00

	
3.70

	
5.00

	
309,401.00

	
1,527,302.00

	
4.70

	
6.00

	
39.70

	
47.00

	
35

	
 r j ∈ U [50 , 100]

	
65,676.20

	
105,503.00

	
4.10

	
6.00

	
160,268.60

	
1,546,322.00

	
4.30

	
5.00

	
38.40

	
47.00

	

	
 r j ∈ U [1 , 100]

	
9,298,598.50

	
51,121,800.00

	
3.80

	
7.00

	
5772.70

	
7089.00

	
4.50

	
7.00

	
33.90

	
41.00

	

	
 r j ∈ U [1 , 50]

	
20,820,497.90

	
52,642,500.00

	
2.70

	
4.00

	
8565.50

	
8792.00

	
7.90

	
30.00

	
43.60

	
54.00

	
40

	
 r j ∈ U [50 , 100]

	
190,590.40

	
368,151.00

	
3.70

	
5.00

	
8691.50

	
8828.00

	
5.80

	
8.00

	
47.80

	
63.00

	

	
 r j ∈ U [1 , 100]

	
5,528,939.50

	
27,787,500.00

	
3.20

	
7.00

	
464,756.60

	
2,319,506.00

	
6.40

	
9.00

	
48.50

	
59.00

Table 5. Error results for b ^ j ∈ U [0.05 , 0.1] .

Table 5. Error results for b ^ j ∈ U [0.05 , 0.1] .

	

	
 r j

	
 TWCT ˜ (UB) TWCT ˜ (OPT)

	
 TWCT ˜ (TS) TWCT ˜ (OPT)

	
 TWCT ˜ (NEH) TWCT ˜ (OPT)

	
 TWCT ˜ (SA) TWCT ˜ (OPT)

	
n

	

	
Mean

	
Max

	
Mean

	
Max

	
Mean

	
Max

	
Mean

	
Max

	

	
 r j ∈ U [1 , 50]

	
1.01130

	
1.03500

	
1.00577

	
1.01900

	
1.00287

	
1.01980

	
1.00233

	
1.01364

	
15

	
 r j ∈ U [50 , 100]

	
1.09401

	
1.14836

	
1.06650

	
1.10572

	
1.02484

	
1.07558

	
1.01209

	
1.02651

	

	
 r j ∈ U [1 , 100]

	
1.00714

	
1.02365

	
1.00273

	
1.01707

	
1.00063

	
1.01201

	
1.00047

	
1.00470

	

	
 r j ∈ U [1 , 50]

	
1.03847

	
1.12905

	
1.02393

	
1.10072

	
1.00966

	
1.04217

	
1.01025

	
1.04472

	
20

	
 r j ∈ U [50 , 100]

	
1.18845

	
1.34761

	
1.13616

	
1.24466

	
1.06560

	
1.14771

	
1.03325

	
1.05427

	

	
 r j ∈ U [1 , 100]

	
1.02219

	
1.08104

	
1.01351

	
1.06151

	
1.00662

	
1.04503

	
1.00626

	
1.03186

	

	
 r j ∈ U [1 , 50]

	
1.07318

	
1.19098

	
1.05217

	
1.15483

	
1.02053

	
1.08778

	
1.03136

	
1.08909

	
25

	
 r j ∈ U [50 , 100]

	
1.26706

	
1.40217

	
1.20397

	
1.30864

	
1.10017

	
1.18650

	
1.04449

	
1.06906

	

	
 r j ∈ U [1 , 100]

	
1.09087

	
1.24151

	
1.06270

	
1.15799

	
1.03807

	
1.14498

	
1.02875

	
1.06715

	

	
 r j ∈ U [1 , 50]

	
1.15371

	
1.30613

	
1.10994

	
1.23900

	
1.05266

	
1.12934

	
1.07038

	
1.12488

	
30

	
 r j ∈ U [50 , 100]

	
1.35286

	
1.55295

	
1.27031

	
1.45067

	
1.12680

	
1.24768

	
1.05119

	
1.09875

	

	
 r j ∈ U [1 , 100]

	
1.11996

	
1.19086

	
1.09196

	
1.15247

	
1.03394

	
1.06876

	
1.04819

	
1.08544

	

	
 r j ∈ U [1 , 50]

	
1.21194

	
1.31187

	
1.16686

	
1.24187

	
1.06455

	
1.12493

	
1.10517

	
1.16566

	
35

	
 r j ∈ U [50 , 100]

	
1.40078

	
1.51959

	
1.31443

	
1.47948

	
1.11353

	
1.24715

	
1.05061

	
1.06747

	

	
 r j ∈ U [1 , 100]

	
1.23176

	
1.29278

	
1.17090

	
1.15716

	
1.09055

	
1.15716

	
1.07416

	
1.11478

	

	
 r j ∈ U [1 , 50]

	
1.27299

	
1.35269

	
1.21620

	
1.28419

	
1.07545

	
1.11756

	
1.11328

	
1.16429

	
40

	
 r j ∈ U [50 , 100]

	
1.47695

	
1.72109

	
1.38209

	
1.54249

	
1.08588

	
1.23025

	
1.04938

	
1.07340

	

	
 r j ∈ U [1 , 100]

	
1.26862

	
1.40423

	
1.20602

	
1.32286

	
1.09902

	
1.16624

	
1.10156

	
1.13899

Table 6. Error results for b ^ j ∈ U [0.1 , 0.15] .

Table 6. Error results for b ^ j ∈ U [0.1 , 0.15] .

	

	
 r j

	
 TWCT ˜ (UB) TWCT ˜ (OPT)

	
 TWCT ˜ (TS) TWCT ˜ (OPT)

	
 TWCT ˜ (NEH) TWCT ˜ (OPT)

	
 TWCT ˜ (SA) TWCT ˜ (OPT)

	
n

	

	
Mean

	
Max

	
Mean

	
Max

	
Mean

	
Max

	
Mean

	
Max

	

	
 r j ∈ U [1 , 50]

	
1.05674

	
1.20623

	
1.03471

	
1.16052

	
1.01539

	
1.07773

	
1.00858

	
1.05591

	
15

	
 r j ∈ U [50 , 100]

	
1.21500

	
1.48927

	
1.13875

	
1.32034

	
1.06802

	
1.20538

	
1.00852

	
1.02564

	

	
 r j ∈ U [1 , 100]

	
1.05543

	
1.16365

	
1.03285

	
1.10070

	
1.01011

	
1.06412

	
1.00527

	
1.01993

	

	
 r j ∈ U [1 , 50]

	
1.12471

	
1.33094

	
1.08136

	
1.26717

	
1.03191

	
1.08737

	
1.03051

	
1.03702

	
20

	
 r j ∈ U [50 , 100]

	
1.36101

	
1.49677

	
1.22776

	
1.34897

	
1.08376

	
1.24973

	
1.01623

	
1.02495

	

	
 r j ∈ U [1 , 100]

	
1.12802

	
1.31321

	
1.08137

	
1.23608

	
1.03908

	
1.12404

	
1.02079

	
1.04593

	

	
 r j ∈ U [1 , 50]

	
1.20745

	
1.47668

	
1.12907

	
1.34243

	
1.10286

	
1.75250

	
1.04990

	
1.08146

	
25

	
 r j ∈ U [50 , 100]

	
1.33965

	
1.59951

	
1.22889

	
1.36198

	
1.09476

	
1.27622

	
1.01893

	
1.03304

	

	
 r j ∈ U [1 , 100]

	
1.21767

	
1.35760

	
1.14856

	
1.27145

	
1.07122

	
1.14937

	
1.03475

	
1.08024

	

	
 r j ∈ U [1 , 50]

	
1.33229

	
1.88696

	
1.23170

	
1.62900

	
1.11628

	
1.30541

	
1.08435

	
1.17439

	
30

	
 r j ∈ U [50 , 100]

	
1.44481

	
1.79102

	
1.26830

	
1.51501

	
1.07284

	
1.38083

	
1.01785

	
1.02863

	

	
 r j ∈ U [1 , 100]

	
1.28357

	
1.49579

	
1.19603

	
1.35222

	
1.10025

	
1.25002

	
1.04630

	
1.09886

	

	
 r j ∈ U [1 , 50]

	
1.43892

	
1.77995

	
1.31996

	
1.56567

	
1.16249

	
1.40452

	
1.09702

	
1.24194

	
35

	
 r j ∈ U [50 , 100]

	
1.50847

	
1.81016

	
1.33659

	
1.54965

	
1.04960

	
1.26749

	
1.01678

	
1.02205

	

	
 r j ∈ U [1 , 100]

	
1.51732

	
1.85319

	
1.38176

	
1.65955

	
1.19011

	
1.39431

	
1.04774

	
1.10317

	

	
 r j ∈ U [1 , 50]

	
1.60847

	
1.99279

	
1.44337

	
1.75120

	
1.21726

	
1.45192

	
1.08691

	
1.13249

	
40

	
 r j ∈ U [50 , 100]

	
1.54510

	
1.91770

	
1.32820

	
1.56574

	
1.00914

	
1.02892

	
1.01318

	
1.01880

	

	
 r j ∈ U [1 , 100]

	
1.62767

	
1.93104

	
1.46706

	
1.70305

	
1.22651

	
1.40117

	
1.04229

	
1.06242

Table 7. Error results for b ^ j ∈ U [0.05 , 0.15] .

Table 7. Error results for b ^ j ∈ U [0.05 , 0.15] .

	

	
 r j

	
 TWCT ˜ (UB) TWCT ˜ (OPT)

	
 TWCT ˜ (TS) TWCT ˜ (OPT)

	
 TWCT ˜ (NEH) TWCT ˜ (OPT)

	
 TWCT ˜ (SA) TWCT ˜ (OPT)

	
n

	

	
Mean

	
Max

	
Mean

	
Max

	
Mean

	
Max

	
Mean

	
Max

	

	
 r j ∈ U [1 , 50]

	
1.03603

	
1.14926

	
1.01966

	
1.09956

	
1.00647

	
1.02747

	
1.00515

	
1.02818

	
15

	
 r j ∈ U [50 , 100]

	
1.16703

	
1.31754

	
1.10459

	
1.18828

	
1.07194

	
1.21232

	
1.01479

	
1.04807

	

	
 r j ∈ U [1 , 100]

	
1.17680

	
1.02650

	
1.09727

	
1.01306

	
1.07298

	
1.00554

	
1.02797

	
1.05021

	

	
 r j ∈ U [1 , 50]

	
1.08338

	
1.22684

	
1.05476

	
1.16968

	
1.02351

	
1.10015

	
1.02158

	
1.05933

	
20

	
 r j ∈ U [50 , 100]

	
1.28262

	
1.45748

	
1.18372

	
1.37350

	
1.10098

	
1.20654

	
1.02341

	
1.04308

	

	
 r j ∈ U [1 , 100]

	
1.40915

	
1.56852

	
1.27367

	
1.44357

	
1.11325

	
1.24789

	
1.03637

	
1.04900

	

	
 r j ∈ U [1 , 50]

	
1.15285

	
1.26169

	
1.10954

	
1.20068

	
1.04805

	
1.11419

	
1.05521

	
1.10118

	
25

	
 r j ∈ U [50 , 100]

	
1.40915

	
1.56852

	
1.27367

	
1.44357

	
1.11325

	
1.24789

	
1.03637

	
1.04900

	

	
 r j ∈ U [1 , 100]

	
1.15196

	
1.28620

	
1.10511

	
1.21874

	
1.04765

	
1.17361

	
1.04341

	
1.09800

	

	
 r j ∈ U [1 , 50]

	
1.26896

	
1.44796

	
1.20095

	
1.33424

	
1.09360

	
1.15919

	
1.10978

	
1.16231

	
30

	
 r j ∈ U [50 , 100]

	
1.38812

	
1.59121

	
1.27372

	
1.51491

	
1.07134

	
1.20100

	
1.03321

	
1.04538

	

	
 r j ∈ U [1 , 100]

	
1.25045

	
1.35469

	
1.17607

	
1.25551

	
1.08704

	
1.20058

	
1.06258

	
1.09529

	

	
 r j ∈ U [1 , 50]

	
1.40779

	
1.77403

	
1.29813

	
1.55328

	
1.13990

	
1.23679

	
1.12537

	
1.16885

	
35

	
 r j ∈ U [50 , 100]

	
1.49615

	
1.63735

	
1.28232

	
1.51277

	
1.10967

	
1.33036

	
1.03519

	
1.04811

	

	
 r j ∈ U [1 , 100]

	
1.33965

	
1.67159

	
1.24468

	
1.51793

	
1.11782

	
1.31976

	
1.07395

	
1.13762

	

	
 r j ∈ U [1 , 50]

	
1.51804

	
1.05095

	
1.39466

	
1.84225

	
1.18314

	
1.36730

	
1.14527

	
1.20916

	
40

	
 r j ∈ U [50 , 100]

	
1.51672

	
1.65812

	
1.37005

	
1.52064

	
1.02675

	
1.06001

	
1.02962

	
1.04718

	

	
 r j ∈ U [1 , 100]

	
1.49732

	
1.85312

	
1.37096

	
1.69225

	
1.18359

	
1.33773

	
1.07696

	
1.11406

Table 8. Results of B B and CPLEX for b ^ j ∈ U [0.05 , 0.1] .

Table 8. Results of B B and CPLEX for b ^ j ∈ U [0.05 , 0.1] .

	

	

	
 r j ∈ U [1 , 50]

	
 r j ∈ U [50 , 100]

	
 r j ∈ U [1 , 100]

	
n

	
Instance

	
Optimal Value

	
CPU Time (ms)

	
Optimal Value

	
CPU Time (ms)

	
Optimal Value

	
CPU Time (ms)

	

	

	

	
 BB / CPLEX

	

	
 BB / CPLEX

	

	
 BB / CPLEX

	

	
1

	
1877.64||1877.641

	
19||74

	
11,767.39||11,767.391

	
1||62

	
5032.861||5032.862

	
42||67

	

	
2

	
2230.077||2230.069

	
662||73

	
9018.022||9018.023

	
5||68

	
4381.909||4381.91

	
76||74

	

	
3

	
2331.78||2331.72

	
213||70

	
6552.248||6552.223

	
3||65

	
6676.791||6676.791

	
354||60

	

	
4

	
1930.146||1930.147

	
220||69

	
9691.73||9691.738

	
2||72

	
5332.758||5332.777

	
105||86

	
20

	
5

	
2584.912||2584.915

	
14||65

	
9536.494||9536.497

	
2||59

	
4078.021||4078.03

	
1054||75

	

	
6

	
1916.657||1916.632

	
262||63

	
8971.364||8971.365

	
4||69

	
4770.602||4770.602

	
876||88

	

	
7

	
2349.085||2349.09

	
109||72

	
12,743.678||12,743.678

	
1||76

	
3044.157||3044.158

	
686||68

	

	
8

	
2626.915||2626.91

	
458||82

	
9792.175||9792.177

	
6||55

	
3592.465||3592.457

	
156||56

	

	
9

	
3304.571||3304.571

	
62||66

	
11,234.99||11,234.99

	
2||59

	
4284.786||4284.787

	
253||63

	

	
10

	
3213.249||3213.25

	
20||77

	
8078.607||8078.611

	
3||63

	
6258.689 ||6258.689

	
11||73

	

	
1

	
2440.8766||2440.8766

	
29||78

	
13501.21||13,501.21

	
5||75

	
8185.514||8185.515

	
1825||75

	

	
2

	
3651.772||3651.773

	
32||82

	
17,962.842||17,962.843

	
1||76

	
8021.395||8021.396

	
682||88

	

	
3

	
3599.892||3599.889

	
33,846||75

	
12,834.31||12,834.32

	
24||80

	
5102.548||5102.549

	
21,541||72

	

	
4

	
2668.11||2668.11

	
1741||75

	
13,387.565||13,387.542

	
5||76

	
7913.71||7913.717

	
213||83

	
25

	
5

	
2929.49||2929.6

	
40||72

	
14,708.966||14,708.977

	
15||98

	
5360.984||5360.985

	
5017||70

	

	
6

	
3571.392||3571.39

	
408||77

	
13,661.573||13,661.58

	
78||73

	
4762.564||4762.542

	
35||85

	

	
7

	
3402.194||3402.194

	
614||78

	
14,761.3||14,761.3

	
3||73

	
5567.564||5567.56

	
34||70

	

	
8

	
2098.52||2098.525

	
12,589||73

	
16,402.6||16,402.63

	
3||71

	
5397.842||5397.885

	
96,618||89

	

	
9

	
3081.57||3081.562

	
74,684||88

	
15,497.219||15,497.22

	
30||88

	
5549.425||5549.423

	
28,735||87

	

	
10

	
3054.281||3054.288

	
57||69

	
12,570.492||12,570.488

	
3||77

	
7384.72||7384.724

	
16||59

	

	
1

	
4761.895||4761.895

	
13,576||80

	
20,825.46||20,825.468

	
2||85

	
7114.616||7114.615

	
4587||95

	

	
2

	
3930.492||3930.493

	
474,584||78

	
23,541.618||23,541.618

	
72||85

	
5594.15||5594.158

	
15,516||84

	

	
3

	
5184.257||5184.258

	
3145||82

	
21,762.827||21,762.828

	
5||83

	
10,639.97||10,639.97

	
78,565||89

	

	
4

	
3445.295||3445.295

	
448||98

	
19,283.161||19,283.162

	
5||93

	
6635.125||6635.151

	
35,242||82

	
30

	
5

	
5420.63||5420.645

	
3586||82

	
21,259.49||21,259.457

	
5||83

	
8109.199||8109.192

	
5334||97

	

	
6

	
3352.281||3352.267

	
9||98

	
22,234.591||22,234.587

	
1||76

	
4331.347||4331.378

	
87,785||87

	

	
7

	
3452.28||3452.281

	
8||35

	
17,115.157||17,115.15

	
14||78

	
6708.094||6708.051

	
15,5681||76

	

	
8

	
3800.062||3800.063

	
27,475||98

	
19,162.501||19,162.503

	
6||89

	
7251.21||7251.22

	
958,872|| 79

	

	
9

	
5389.884||5389.885

	
27,512||78

	
19,553.989||195,53.989

	
1||86

	
6495.424||6495.424

	
419||84

	

	
10

	
3226.58||3226.52

	
8755||86

	
16,351.4||16,351.4

	
10||85

	
7976.82||7976.82

	
987,855||92

Table 9. Results of B B and CPLEX for b ^ j ∈ U [0.1 , 0.15] .

Table 9. Results of B B and CPLEX for b ^ j ∈ U [0.1 , 0.15] .

	

	

	
 r j ∈ U [1 , 50]

	
 r j ∈ U [50 , 100]

	
 r j ∈ U [1 , 100]

	
n

	
Instance

	
Optimal Value

	
CPU Time (ms)

	
Optimal Value

	
CPU Time (ms)

	
Optimal Value

	
CPU Time (ms)

	

	

	

	
 BB / CPLEX

	

	
 BB / CPLEX

	

	
 BB / CPLEX

	

	
1

	
3224.206||3224.205

	
6||72

	
13,078.051||13,078.052

	
3||78

	
4581.808||4581.808

	
211||75

	

	
2

	
1920.143||1920.144

	
72||76

	
14,416.229||14,416.23

	
2||67

	
5984.757||5984.757

	
17||77

	

	
3

	
1791.398||1791.398

	
26||73

	
16,763.404||16,763.404

	
14||75

	
4306.999||4307.001

	
1||76

	

	
4

	
3194.432||3194.433

	
199||78

	
13,161.205||13,161.189

	
1||69

	
5299.028||5299.029

	
11||69

	
20

	
5

	
2599.284||2599.284

	
2||70

	
16,456.45||16,456.45

	
6||78

	
7654.312||7654.311

	
19||76

	

	
6

	
2309.754||2309.753

	
17||73

	
15,081.528||15,081.527

	
355||80

	
6500.897||6500.875

	
86||70

	

	
7

	
2352.418||2352.418

	
10||69

	
16,248.781||16,248.783

	
8||75

	
6551.345||6551.352

	
3||78

	

	
8

	
3382.56||3382.558

	
2||72

	
13,478.75||13,478.778

	
4||83

	
6473.928||6473.917

	
18||72

	

	
9

	
3103.121||3103.121

	
4||70

	
16,133.258||16,133.257

	
996||77

	
5987.109||5987.11

	
10||68

	

	
10

	
2467.09||2467.092

	
28||71

	
15,250.86||15,250.87

	
7||70

	
5011.23||5011.230

	
77||77

	

	
1

	
3381.737||3381.739

	
224||73

	
24,283.305||24,283.274

	
1||71

	
7095.573||7095.567

	
10||70

	

	
2

	
4686.301||4686.296

	
5||74

	
37,005.444||37,005.441

	
2||75

	
6754.407||6754.412

	
2||82

	

	
3

	
6456.931||6456.932

	
1||69

	
24,295.173||24,295.174

	
1||73

	
6870.603||6870.608

	
9||76

	

	
4

	
4357.681||4357.682

	
130||66

	
25,835.513||25,835.527

	
3||76

	
7434.996||7434.992

	
216||75

	
25

	
5

	
5452.679||5452.684

	
103||77

	
31,347.823||31,347.787

	
1||70

	
7352.652||7352.653

	
58|| 76

	

	
6

	
7397.109||7397.108

	
183||72

	
24,678.259||24,678.27

	
4||72

	
8575.343||8575.338

	
15||73

	

	
7

	
5200.723||5200.718

	
39||69

	
22,434.802||22,434.803

	
1||78

	
8431.151||8431.15

	
90||87

	

	
8

	
3852.579||3852.578

	
464||67

	
28,767.763||28,767.782

	
1||74

	
7703.809||7703.809

	
11||72

	

	
9

	
6625.675||6625.675

	
58||68

	
36,563.797||36,563.786

	
3||77

	
9380.949||9380.949

	
8||87

	

	
10

	
3153.421||3153.422

	
4||63

	
28,022.863||28,022.806

	
1||70

	
5833.467||5833.467

	
2