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Abstract: Community structure is a significant characteristic of complex networks, and community
detection has valuable applications in network structure analysis. Non-negative matrix factorization
(NMF) is a key set of algorithms used to solve the community detection issue. Nevertheless, the
localization of feature vectors in the adjacency matrix, which represents the characteristics of complex
network structures, frequently leads to the failure of NMF-based approaches when the data matrix has
a low density. This paper presents a novel algorithm for detecting sparse network communities using
non-negative matrix factorization (NMF). The algorithm utilizes local feature vectors to represent
the original network topological features and learns regularization matrices. The resulting feature
matrices effectively reveal the global structure of the data matrix, demonstrating enhanced feature
expression capabilities. The regularized data matrix resolves the issue of localized feature vectors
caused by sparsity or noise, in contrast to the adjacency matrix. The approach has superior accuracy in
detecting community structures compared to standard NMF-based community detection algorithms,
as evidenced by experimental findings on both simulated and real-world networks.

Keywords: community detection; sparse network; non-negative matrix factorization; regularization matrix

MSC: 05C85

1. Introduction

Many complex systems in reality can be represented as network structures [1], such
as social networks, protein interaction networks, the computer internet, and biological
disease transmission networks [2]. Network nodes symbolize entities, whereas linked
edges symbolize the relationships between these things. The network structure of complex
systems has an associative nature, meaning that the entire network comprises several
community structures that are highly interconnected within each community and sparsely
interconnected between communities. Nevertheless, the relevance of a community in terms
of its physical implications is mostly determined by the specific field of application with
which the network is associated. For example, in social networks, communities are defined
as groups with common interests or preferences [3]. Functional units in metabolic networks
are represented by communities.

The accurate identification of community structure in networks has significant theoret-
ical importance and practical utility for analyzing the component structure of complex sys-
tems, understanding the internal mechanisms of system interactions, revealing the patterns
of system evolution, and predicting the behavior of complex systems [4–6]. Over the last
several years, numerous techniques for community detection have been suggested [7], such
as spectral clustering-based approaches [7], modularity-based approaches [8], NMF-based
approaches [9], and others. Ye et al. [9] developed a deep non-negative matrix factorization
(NMF) autoencoder to uncover the community structure in complex networks by using
both hierarchical and structural information. Their approach was influenced by the deep
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self-encoder and aimed to learn hierarchical features with hidden information. Li et al. [8]
observed that many existing community detection algorithms mostly rely on the original
network topology and overlook the underlying community structure information. In their
study, they utilized the node attribute matrix and the community structure to address
this limitation. The attribute community identification issue may be represented as a non-
negative matrix optimization problem, where the embedding matrix is used to identify all
the communities in the attribute graph.

Nevertheless, the majority of current community detection algorithms, such as those
based on NMF, struggle to accurately identify community structures in vast and sparse
networks. In the realm of community detection research, several strategies have been
presented in recent years to tackle the issue of network sparsity. Amini et al. [4] intro-
duced a semi-supervised approach for identifying communities in social networks by
integrating deep learning techniques with the topological characteristics of the networks.
Santo et al. [4] addressed the challenges of dimensionality and sparsity by enhancing the
conventional CNN convolution layer. They proposed an optimized convolution layer
specifically designed for efficient convolutional computation on large, high-dimensional
sparse matrices. This approach focuses on non-zero values, effectively reducing mem-
ory usage while performing sparse matrix computations. Sperli et al. [3] introduced a
method that combines deep learning and the topological characteristics of social networks
to automatically identify communities. This method utilizes a specialized convolutional
neural network to collect and depict common user interactions in online social networks.
Xie et al. [1] examined four distinct network representations in order to determine the
most optimal representation for inputting into a deep sparse filtering network. The objec-
tive was to produce a mapping of the community attributes that are represented at each
node. Sparse filtering is a straightforward two-layer learning model capable of processing
high-dimensional graph data and representing very sparse inputs as low-dimensional
feature vectors. The utilization of deep learning techniques as the foundation for the sparse
network community detection approach also proves effective in addressing the issue of
network sparsity. The complexity of the algorithm needs to be further reduced only during
the parametric learning of the model and feature engineering. Furthermore, there is a need
to find adaptive techniques to estimate the number of possible communities. Thus, due
to the sparsity constraint, the development of an efficient community detection method
remains a difficult undertaking.

Presently, community detection methods based on NMF are evaluated based on two
primary perspectives. One aspect to consider is the parameterization of the method, which
often includes setting values for various parameters used in NMF-based algorithms [9–11].
These parameters often have reasonable default values. This includes the identification of
prospective variables, particularly for the issue of community detection, i.e., the determi-
nation of the number of communities. However, this pertains to the creation of the data
matrix, which is also referred to as the feature matrix [12,13]. This matrix is the one that
will undergo decomposition in the NMF model.

In order to address the above issues, given the limited number of connections in the
network, we propose a community detection technique called CDNMF, which is based
on non-negative matrix factorization. The CDNMF technique addresses the problem of
localizing the eigenvectors of data matrices caused by sparsity or noise. It improves the
accuracy and practicality of the NMF community-finding approach. The main contributions
of this study are as follows:

1. We propose a matrix regularization procedure to enhance the representation of the
overall topological characteristics of the network, addressing the issue of localizing
the eigenvectors of the data matrix while dealing with sparse networks.

2. We have designed a method for discovering sparse network communities by decom-
posing a non-negative matrix. This method utilizes regularization transformations
and incorporates the spectral analysis of non-backtracking matrices. It effectively
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determines the number of community divisions without adding computational com-
plexity and enhances the algorithm’s performance.

3. The experimental findings obtained from many datasets demonstrate that our pro-
posed CDNMF algorithm achieves superior accuracy in community segmentation for
sparse networks, surpassing existing state-of-the-art NMF-based techniques.

This paper is organized in the following manner. The text presents a demonstration of
the equality between the goal functions of symmetric non-negative matrix factorization
(NMF) and spectral clustering. Based on this premise, a CDNMF technique is presented for
community finding in sparse networks by utilizing a regularization transform. Furthermore,
the efficacy of the suggested approach in addressing community detection in networks
with a low density is also assessed by experimentation on both actual and artificially made
sparse networks. Ultimately, the approach is condensed and examined, and potential
avenues for expansion in the future are suggested.

2. Related Work

This section focuses on traditional community detection methods and related methods
based on non-negative matrix decomposition and discusses their limitations.

2.1. Traditional Algorithms

Community detection methods, which have been around for a long time, intelli-
gently exploit the inherent qualities of networks to uncover the strong links that exist
between nodes and coordinate them into highly cohesive clusters. Researchers such as
Newman et al. [14] have made significant contributions to this field, and their work is
particularly noteworthy. In the beginning, they were the ones who proposed a framework
for community detection that is currently extensively utilized. Through the investigation
of several measures of “betweenness” (also referred to as “edge degree”, which is the
significance of nodes in linking various modules in the network), this study was able
to successfully uncover the essence of the community structure that is concealed within
complex networks. In addition, Newman suggested a quantitative metric that he named
“modularity” in order to evaluate the validity and durability of the community structure
that was established. When it comes to dealing with big networks, modularity theory
still needs to be improved in terms of its computing efficiency, despite the fact that it has
demonstrated considerable advantages as an assessment criterion for determining the
quality of community partitioning.

2.2. Learning-Model-Based Community Detection

Blondel et al. [15] later created a novel approach called the Louvain algorithm, which
was built particularly to effectively mine community structures in big, complex networks.
This step was taken in order to overcome the efficiency difficulties that modular-based
community detection methods presented over time. The speed at which optimal modular
assignments may be found is dramatically improved by the use of heuristic optimization
procedures. As a result, the analysis process is greatly accelerated, while the quality of
the community in question is preserved. Meanwhile, Palla et al. [16] pioneered the first
overlapping community detection algorithm capable of effectively detecting and charac-
terizing the multi-membership properties of nodes in the network. This was in response
to the common phenomenon of overlapping communities that occurs in social networks
and other complex systems. Therefore, a node is no longer restricted to participation in a
single community but rather has the ability to be a member of numerous communities in a
flexible manner. A number of heuristic community detection methods have been developed
since that time. These algorithms are designed to capture and make use of the overlapping
aspects of communities. As a result, the theoretical and practical toolbox in this subject has
been continually enriched and improved.

Learning-based community identification approaches aim to identify the compact
feature representations of nodes in order to reveal the organizational structure inherent to
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the communities contained within the network. The application of the non-negative matrix
factorization (NMF) concept is a strategy that is particularly effective for the purpose of
community discovery. A factorization analysis of the adjacency matrix is performed in this
approach in order to investigate the structure of the community. In addition to its extensive
variety of possible uses, it is valued because it possesses substantial explanatory power [17].
Psorakis et al. [18] were among the pioneers in the community when they presented an
innovative method for determining whether communities in a network overlap with one
another. Community information was extracted using a Bayesian non-negative matrix
factorization framework based on probability theory.

A data representation method that has its origins in graph theory was developed
further by Cai et al. [19], who built upon the notion of GNMF, which stands for graph-
regularized non-negative matrix factorization. This method leverages matrix factorization
and makes use of an affinity graph to describe geometric data. Additionally, the integrity
of the graph structure is maintained for the duration of this process. This area has contin-
ued to expand as a result of further research, and a number of specialists have proposed
community identification methods based on a three-factor matrix decomposition method-
ology. For example, Zhang et al. [20] presented a restricted non-negative three-factor
matrix decomposition technique that is able to directly simulate and learn the community
membership of nodes, as well as the interactions between communities. On the other hand,
Jin et al. [21] suggested a graph-regularized non-negative three-factor matrix decomposition
model that intelligently exploits the spectral aspects of networks to increase the efficacy of
community discovery.

Furthermore, Filippo and other scholars [22] highlighted the essential significance
of orthogonality in community discovery. The authors introduced the orthogonal non-
negative matrix factorization (ONMF) model in a creative manner. This approach enhances
the utility of community structure analysis by imposing constraints on the community
member matrix, namely, by ensuring that it is non-negative and orthogonal. During the
process of node embedding, Wang et al. [23] successfully maintained the original struc-
tural properties and intrinsic qualities of the network. Consequently, they proposed the
implementation of the Modularized Non-Negative Matrix Factorization (MNMF) model.
This model effectively incorporates community structures into the node embedding rep-
resentation. Sun and his colleagues [24] recognized that NMF only works as a decoder.
Therefore, they introduced an approach to community detection known as the non-negative
symmetric encoder–decoder technique (NNSED). This method effectively combines the
encoder and decoder components under a single loss function framework. Ye and his
colleagues [25] took an additional step and innovatively developed a new category of deep
autoencoder NMF (DANMF) models for community detection tasks. This model extends
Sun’s NNSED approach by constructing a framework like that of a deep autoencoder.
This enables the network to acquire knowledge about complex relationships at different
levels, starting from the basic network and ending with the final community assignment.
Additionally, it effectively captures both subtle and prominent characteristics across several
layers. Li et al. [26] developed the CDE model by studying the dense connection patterns in
communities. The purpose of this model is to capture and retain the information associated
with dense connectivity structures in node embeddings. Ma et al. [27] introduced two
frameworks of evolving non-negative matrix factorization to examine the development
of communities in dynamic contexts. These frameworks are designed to accommodate
alterations in the network topology as time progresses.

Semi-supervised community detection approaches have gained significant attention
from the academic community in recent years as a crucial area of community detection
research. For instance, Liu et al. [6] presented a novel semi-supervised non-negative matrix
factorization (NMF) model that integrates graph regularization principles with pairwise
constraint mechanisms. This model is especially tailored to uncover community structures.
Wu et al. [5] introduced a novel semi-supervised clustering technique called pairwise
constraint propagation-induced SymmNMF. This approach is based on SymmNMF and
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has the ability to intelligently learn and optimize both the similarity matrix and the node
assignment matrix concurrently.

However, most of the aforementioned community discovery algorithms based on
non-negative matrix factorization (NMF) focus primarily on the initial network topology,
namely, the adjacency matrix. In the context of sparse regularization, it is common to
apply identical regularization constraints to all nodes. However, this approach does not
adequately take into account the higher-order adjacency relationships within the graph
and the unique characteristics of individual nodes. Consequently, this limitation can affect
the accuracy of the community detection results. Our solution overcomes this limitation
by using a novel similarity measure and a sparse regularization mechanism, resulting in
improved accuracy and quality of community detection.

3. Equivalence Proof

The spectral clustering approach shows promising application potential and continues
to be a highly researched data clustering method, especially when the data can be repre-
sented in matrix form. The objective functions for spectral clustering can be categorized
into three types: ratio cuts, normalized cuts, and maximum–minimum cuts. To establish the
similarity between the objective function for symmetric non-negative matrix decomposition
and the objective function for spectral clustering, this section specifically examines the
clustering objective function expressed as a ratio cut.

Let us consider a weighted undirected graph, denoted by G = (V,E), where V represents
the set of nodes and E represents the set of edges. The graph G has a weighted adjacency
matrix indicated by =

(
wij
)
. The elements of the set are denoted by xi,j, where i and j

range from 1 to n. All element values are greater than or equal to zero. The value of wij
is 0. The absence of an edge between nodes vi and vj is denoted by wij = 0, whereas a
non-negative weight is denoted by wij > 0 for the connecting edges between nodes vi and
vj. The total of the weights for node vi in the set V is represented by Oi, which is equal to
the summation of all weights wij for j ranging from 1 to n.

A matrix U is a diagonal matrix with diagonal elements represented by u1, u2, ..., un.
The ratio cut technique may be mathematically represented by Equations (1) and (2) for a
certain number of subsets, denoted by K, which are labeled as C1, C, ..., Ck.

minRatioCut(C1, C2, ..., CK) =
1
2

K

∑
i=1

W(Ci, C̄i)

|Ci|
(1)

cut(C1, C2, ..., Ck)=
1
2

K

∑
i=1

W(Ci, C̄i) (2)

where the subset of the node set is indicated by Ci (Ci ∈ V), and its complement is denoted
by C̄i. The function W(Ci, C̄i) is defined as the sum of the weights wij for all pairs of
elements i in Ci and j in C̄i. The symbol |Ci| represents the cardinality of the subset Ci,
which is the number of nodes it contains.

To define K indication nodes, denoted by
(
h1,j, h2,j, ..., hn,j

)T , j=1,2,...,K, for a given K
subsets of C1, C, ..., Ck, refer to Equation (3).

hi,j

{
1/
√
|Cj|, i f vi ∈ Cj(i = 1, 2, ..., n)

0, others
(3)

The nodes indicated by K are utilized as column vectors to create a new matrix
represented by H ∈ Rn×K. The column nodes in the matrix H are mutually perpendicular,
ensuring the validity of Equation (4).

hT
i Lhi =

cut(Ci, C̄i)

|Ci|
(4)
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Combining the traces of the matrix, Equation (5) can be obtained.

hT
i Lhi =

(
HT LH

)
ij

(5)

where the matrix L represents the non-normalized Laplace matrix, which is represented by
the equation L = U −W. In addition, the objective function of the ratio cut clustering can
be simplified to Equation (6) when K takes any value.

RatioCut(C1, C2, ..., CK) =
K

∑
i=1

hT
i Lhi

= Tr
(

HT LH
) (6)

Assuming that tr denotes the trace of the matrix, the minimization ratio cut problem
can be expressed as shown in Equation (7).

min
C1,C2,...,CK

tr
(

HT LH
)

(7)

where HT H = I. By allowing the values of the elements of the matrix H to be any real value,
the relaxed optimization case of the problem can be obtained, as shown in Equation (8).

min
H∈Rn×K

tr
(

HT LH
)

(8)

As a result of this transformation, the trace minimization problem has been trans-
formed into its standard form. The spectral clustering solution, denoted by the symbol H,
can be considered the corresponding spectral clustering result for K-mean clustering. This is
due to the fact that the theoretical frameworks of spectral clustering and K-mean clustering
have a unified structure. In the case of a set of n data points, which are represented by
the equation X = (x1, x2,...,)

T , the objective function of K-mean clustering can be stated as
Equation (9).

min JK = ∑
i
∥xi∥2 −

K

∑
k=1

1
nk

∑
i,j∈Ck

xT
i xj (9)

where mk = ∑i∈Ck
xi/nk is the center of clustering among the nk points of the cluster Ck.

K non-negative indicator vectors are defined as solutions to the clustering, which can be

expressed as Y = (y1, y2, ..., yK) and yk =

0, ..., 0,

nk︷ ︸︸ ︷
1, ..., 1, 0, ..., 0

T

/n1/2
k .

The solution of the K-means clustering, denoted by the matrix Y, and the solution of
the ratio cut clustering, denoted by the matrix H, are almost identical. Consequently, it can
then be expressed as Equation (9).

JK = tr
(

XTX
)
− tr

(
HTXTXH

)
(10)

Therefore, Equation (9) may be rewritten as Equation (11) due to the fact that the first
component is a constant.

max
YTY=I,Y⩾0

JW(H) = tr
(

HTXTXH
)

(11)

The solution representation is the only difference between the two methods. In the
data representation, the ratio cut uses a Laplace matrix, denoted by L, whereas the K-
mean method uses the matrix XTX. To summarize, the weighted adjacency matrix W
may be regarded as a versatile data representation. The proof of equivalence between the
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spectral clustering objective function and the symmetric NMF objective function can be
demonstrated using Equation (12).

H = arg max
HT H=I,H⩾0

tr
(

HTW H
)

= arg min
HT H=I,H⩾0

−2tr
(

HTW H
)

= arg min
HT H=I,H⩾0

∥∥∥W − HHT
∥∥∥2

(12)

In order to finish the proof that was presented before, it is possible to loosen the
restriction that HT H = I. After the research described above, it was found that spectral
clustering is directly related to K-mean clustering. The K-mean clustering algorithm is
somewhat similar to the NMF algorithm. Therefore, in a simple way, NMF and spectral
clustering are compatible with each other.

4. Proposed Model

Before outlining the basics of NMF-based community detection techniques, we will
first give a brief introduction to the definition of classical community detection methods and
their mathematical constructions. The goal of community detection is to divide the set of
nodes of a graph G = (V,E) into a number of unique subsets in such a way that the solution
satisfies the fundamental characteristics of the community structure. The partitioning result
of the network is then represented by the partitioning matrix P, as shown in Equation (13).
This is based on the assumption that n represents the total number of nodes and that the
community solution with c subsets has been provided in advance.

Pik =

{
1
0

, s.t.
c

∑
k=1

Pik = 1(1 ⩽ i ⩽ n) (13)

The size of the k-th community may be represented as the sum of Pik for i ranging from
1 to n. In addition, when considering a community, we make the assumption that each
value of k satisfies the constraint 0 < ∑n

i=1 Pik < n. These divisions are referred to as hard
divisions because they create partitions where each node is assigned to a certain community.

Evidently, nodes that share similarities are found within the same community. Con-
sequently, we can establish the similarity function as a means of assessing the similarity
between nodes. If nodes vi and vj are identical, then the similarity score s(P, vi, vj) is equal
to 1. If nodes vi and vj are entirely different, then the similarity score s(P, vi, vj) is equal
to 0. We find the value of s

(
P, vi, vj

)
, which is between 0 and 1. The function s(P, vi, vj) is

continuously differentiable for every Pij.
The aforementioned similarity function is denoted by sij. When evaluating the similar-

ity between nodes, one might make acceptable assumptions based on existing knowledge.
For instance, a connection between nodes vi and vj signifies their similarity, but the absence
of a connection suggests their dissimilarity. We can evaluate a given partition by calculating
the proximity of the actual similarity value to the required similarity value, as shown
in Equation (14).

E(P) =
n

∑
i=1

n

∑
j=1

(
s̃ij − sij

)2 (14)

In order to represent this concept using matrices, we define the matrices S(P) =
[
sij
]

and S̃(P) =
[
s̃ij
]
. In general, we regard the adjacency matrix A of a given graph as a

reasonable choice for capturing a priori similarity. Therefore, the matrix S̃ is equal to the
matrix A. Given that, the adjacency matrix fulfills the similarity assumption, meaning that
it is equal to 1 for pairs of nodes that are connected by edges. For pairs of nodes that are not
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connected by edges, their similarity is equal to 0. This is demonstrated by implementing
the provided similarity function and satisfying the above requirement.

sij =
c

∑
k=1

PikPjk (15)

The similarity of a node to another node belonging to the same partition must be one
for the idea described above to hold; otherwise, it must be zero. If it is represented in matrix
form, it can simply be written as

S(P) =
[
sij
]
= PPT (16)

To minimize the function E(P), we create an NMF problem and acquire a partition
matrix P that is suitable for this purpose. The formal statement of this problem is given
by Equation (17).

min E(P)
P⩾0

=
n

∑
i=1

n

∑
j=1

(
s̃− sij

)2

=
(

A− PPT
)2

=
∥∥∥A− PPT

∥∥∥2

(17)

The user provides the desired similarity matrix and the number of communities as
input to the adjacency matrix A. The number of communities is determined by setting the
potential factor k.

4.1. Algorithm Principles

The spectral technique outperforms general spectral clustering on sparse networks
by using the regularization matrix derived from local feature vectors as an alternative
matrix representation of the network. Thus, we incorporate regularization matrices into
the community detection process based on non-negative matrix factorization (NMF).

Localization characterizes the local arrangement of the network system, while delocal-
ization expands the scope of these localized vectors, resulting in feature vectors that capture
the broader global structural information with higher eigenvalues. The Inverse Participation
Ratio (IPR) is a metric employed in spectral clustering to quantify the level of localization of
feature vectors. It is defined as the sum of the fourth power of each element in the feature
vector, represented as IPR(l) = ∑n

i=1 l4
i . Greater IPR values suggest that the vectors exhibit

a higher level of localized structure. The values of I(l) vary between 1
n and 1. These values

correspond to two sets of vectors:
{

1√
n , 1√

n , ..., 1√
n

}
and {0, ..., 0, 1, 0, ..., 0}, respectively.

The proposed technique involves creating a regularized matrix, denoted as a Z-
Laplacian (LZ), that has a comparable structure to that of the adjacency matrix (A). The reg-
ularization matrix, indicated by LZ, is defined as the sum of A and Z, where A represents
the data matrix or a variation of it. The regularization learning procedure yields Z.

The regularization matrix Z mentioned above is a diagonal matrix. Each diagonal ele-
ment of this matrix is learned incrementally from the most localized vectors. The learning
process involves applying penalties to the localized eigenvectors to suppress the corre-
sponding eigenvalues. The learning process concludes after all g primary characteristic
vectors have been disentangled from their specific locations. The resultant Z-Laplacian
matrix is believed to be a simple representation of the overall structure of the matrix A,
excluding its individual nodes. The steps of the CDNMF algorithm are illustrated in
Algorithm 1.
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Algorithm 1 Learning process of the CDNMF model

Require: Regularization matrix Lz, number of communities k
Ensure: Community detection results

1: Use non-backtracking matrices to estimate appropriate values for the number of com-
munities k

2: Compute symmetric non-negative matrix factorization Lz = PPT

3: The update rule is Pij ← Pij|1− β + β
(LzP)ij

(PPT P)ij

4: 0 < β ⩽ 1
5: P← max

(
LzP

(
PT P

)−1, 0
)

6: After the objective function, i.e., Equation (19), converges, the partition matrix can be
obtained

For every row vector Pi for the matrix P, it is necessary to normalize Pi in such a
way that the cumulative sum of all elements in Pi is equal to one, which is denoted by
the expression ∑k

j=1 pij = 1. The element Pij in the normalized P reflects the strength of
the affiliation of node i to community j. Furthermore, the community that has the highest
degree of attachment is the one that is allocated node i.

4.2. Parameter Learning

In this part, we select a straightforward and speedy approach to estimate the number
of communities k for community detection methods that are founded on non-negative
matrix decompositions. The spectral qualities of particular graph operators, such as non-
backtracking matrices, serve as the foundation and basis for this.

In the context of a complex network, the adjacency matrix A represents the connections
between nodes in the network. The degree of a certain node k may be calculated by
summing the values in the k-th row of the matrix A. Below is the definition of the non-
backtracking matrix, which is utilized to estimate the number of communities.

In an undirected complex network, the variable m represents the number of edges,
while B represents the associated non-backtracking matrix. When generating the matrix B,
two directed edges are used to represent the connection between nodes i and j. One path
travels from node i to node j, while the other path travels from node j to node i. The matrix
B has dimensions of 2m × 2m and can be represented by Equation (18).

Bi→p,q→l =

{
1, p = q and i ̸= l
0, otherwise

(18)

The spectrum of the matrix B is demonstrated to have two components, namely, ±1,
along with the eigenvalues of the 2n × 2n matrix, as given in Equation (19).

B̃ =

(
0n U − In
−In A

)
(19)

where 0n is a matrix of size n × n, with all elements being zero. The symbol I represents the
identity matrix of size n× n, and U is a diagonal matrix of size n× n with diagonal elements
di. If the network is divided into k communities, the first k greatest eigenvalues of the matrix
B̃ are real. Specifically, they are distinct from the areas where the remaining eigenvalues are
concentrated. The regions where the remaining eigenvalues are grouped are enclosed by a
circle with a radius equal to the square root of the norm of the matrix B̃. The eigenvalues of
the B̃ matrix that contain information are denoted by the symbol k. Equation (20) provides
an approximation of the spectral characteristics of the non-retrospective matrix.

d̃ =

(
n

∑
i=1

di

)−1( n

∑
i=1

d2
i

)
− 1 (20)
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The non-backtracking matrix information eigenvalues are real and separated from the

other eigenvalues in a circle with the radius
∥∥B̃
∥∥ 1

2 . To obtain an idea of the k value, we
count the number of eigenvalues that are not in this circle. Experiments also show that
the parameter learning process performs well, especially when communities of complex
networks are known to have similar sizes and edge densities.

The number of true out-of-circle eigenvalues seems to be a natural indication of
the number of clusters present in the network when it comes to networks formed using
the random block model. In some networks, true eigenvalues with high out-of-circle
distributions may correlate with tiny clusters on the network graph. This is something that
can be taken into account in actual network segmentation procedures.

5. Experiments

This research performed a comparative analysis using numerous approaches that are
considered to be the state of the art on both synthetic and actual networks. The purpose of
this analysis was to validate the efficacy of CDNMF. The experimental hardware platform
consists of an Intel Core i7-9700 CPU operating at 2.4 GHz, 32 gigabytes of random-
access memory (RAM), and Windows 10 as the operating system. Python 3.7 was used to
implement each of the compared methods.

5.1. Compared Methods

We chose a number of algorithms that are considered to be the state of the art in order
to provide a comparison with the approach that is given in this work.

DCSBM [28]: This strategy separates the row labels from the column labels in the
probability function to achieve fast alternation maximization. This novel technique has
great computational efficiency, is suitable for both small and large networks, and includes
guarantees of convergence that can be demonstrated.

NMF [11]: This method uses the basic NMF model to directly decompose the adjacency
matrix A to obtain the matrices U and V, ∥A−UV∥2

F, where U serves as the community
membership representation matrix.

SNMF [12]: This technique is founded on the symmetrical non-negative matrix decom-
position model, whereby

∥∥A− HHT
∥∥2

F and H may directly reflect the degree of affiliation
that a community member has with the community.

M-NMF [13]: The non-negative matrix decomposition and modularity-based com-
munity detection approaches are simultaneously optimized by this modularity-based
NMF community detection model. This model incorporates the community structure of the
network into the network embedding and takes into account the modularity of the network.

ONMF [29]: The approach is founded on the orthogonal non-negative matrix factor-
ization model. The main concept involves imposing orthogonal constraints on the matrix W
within the framework of the NMF model ∥A−WH∥2

F, resulting in the condition WTW = I.
HPNMF [30]: The graph regularization NMF model serves as the foundation for this

technique. This model has the capability to use both the topology of the network and the
homogeneity information of the nodes in order to establish community detection.

NSED [24]: In addition to being based on the joint NMF model, the approach includes
both an encoder and a decoder, both of which are capable of being utilized in order to
obtain the community membership representation matrix.

5.2. Datasets

Both synthetic and real networks were included in the datasets used for the studies,
which are described below.

Artificial Synthetic Networks: We utilized the LFR benchmark network synthesis
program [31] to create artificial networks with actual community labels. This tool offers
several configurable settings, as shown in Table 1. Various distinct sets of artificial networks
are created by manipulating the parameters. To begin with, a collection of five networks
is created by keeping the variables n, k, maxk, minc, and maxc constant. The value of mu
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ranges from 0.1 to 0.3, with an increment of 0.05 for each iteration. By manipulating the
variables k, maxk, minc, maxc, and mu, the number of nodes n is incremented from 1000 to
5000. This process is repeated five times, with each iteration increasing n by 1000, resulting
in the generation of five distinct networks. The precise parameter configurations of the two
sets of networks are shown in Table 2.

Real Networks: We selected four datasets consisting of actual networks, namely,
WebKB, Cora, Citeseer, and Pubmed [32]. The precise characteristics of these datasets are
provided in Table 3. The aforementioned datasets may be downloaded from the following
URL: https://linqs.org/datasets/ (accessed on 14 January 2024).

Table 1. Adjustable settings of LFR.

Parameters Descriptions

n Number of nodes
k Average degree of nodes

maxk Maximum degree of nodes
mu Confusion factor, adjustable in the range [0, 1]

minc Number of nodes contained in the smallest community
maxc Number of nodes contained in the largest community

Table 2. Parameter settings of synthetic networks.

Parameters Group I Group II

n 3000 1000∼5000
k 4 4

maxk 15 15
mu 50 n/20

minc 100 n/40
maxc 0.1∼0.3 0.2

Table 3. Parameters of real networks.

Datasets No. of Nodes No. of Edges Feature Dimension No. of Communities

WebKB 877 1399 1703 4
Cora 2708 5409 1433 7

Citeseer 3327 4732 3703 6
Pubmed 19,717 44,338 500 3

5.3. Experimental Setup

In order to assess the effectiveness of community discovery outcomes, we employ four
widely accepted assessment metrics: normalized mutual information (NMI), the adjusted
Rand index (ARI), accuracy (ACC), and modularity (Q). When evaluating the results of
synthetic networks, we utilize all four of these metrics. In the case of actual networks, when
there is no specific labeling for community segmentation, we employ the modularity Q as a
means of evaluating the results. Greater values for all rating categories indicate superior
performance, whereas smaller values indicate the opposite.

In order to ensure that the comparisons made in the experiment are accurate, the pa-
rameters of all of the compared techniques are based on the default values that were found
in the original text. For the M-NMF algorithm, the regularization parameters α equals
1 and β equals 5. The value of the regularization parameter λ is equal to 1 for HPNMF.
In addition, the tests were carried out ten times according to each approach, and the average
of each evaluation indicator was taken into consideration for the assessment.

https://linqs.org/datasets/
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5.4. Synthetic Networks

An examination of the similarities and differences between the two synthetic network
datasets, shown in Table 2, was carried out, and the results of the experiments carried out
on the first network are shown in Table 4.

Table 4. Performance comparison of synthetic networks with different mu.

mu Metric NMF SNMF M-NMF ONMF HPNMF NSED DCSBM CDNMF

0.1

ACC 0.841 0.851 0.552 0.824 0.812 0.493 0.711 0.917
NMI 0.861 0.864 0.641 0.851 0.851 0.624 0.698 0.891
ARI 0.767 0.772 0.384 0.746 0.737 0.359 0.536 0.836
Q 0.864 0.885 0.789 0.878 0.877 0.697 0.769 0.906

0.15

ACC 0.803 0.782 0.466 0.791 0.757 0.372 0.648 0.873
NMI 0.801 0.788 0.599 0.793 0.779 0.498 0.635 0.844
ARI 0.678 0.661 0.302 0.668 0.636 0.213 0.461 0.756
Q 0.837 0.841 0.756 0.842 0.834 0.624 0.725 0.861

0.2

ACC 0.735 0.714 0.381 0.703 0.686 0.331 0.376 0.795
NMI 0.728 0.721 0.484 0.714 0.711 0.454 0.402 0.768
ARI 0.581 0.567 0.202 0.555 0.545 0.188 0.193 0.662
Q 0.782 0.799 0.708 0.796 0.793 0.611 0.553 0.816

0.25

ACC 0.652 0.649 0.319 0.622 0.617 0.316 0.351 0.719
NMI 0.646 0.653 0.413 0.637 0.633 0.401 0.383 0.689
ARI 0.479 0.482 0.152 0.453 0.445 0.142 0.173 0.556
Q 0.759 0.769 0.682 0.762 0.759 0.593 0.575 0.784

0.30

ACC 0.511 0.512 0.144 0.522 0.533 0.226 0.157 0.623
NMI 0.452 0.503 0.236 0.505 0.538 0.336 0.197 0.575
ARI 0.318 0.313 0.038 0.334 0.336 0.095 0.037 0.388
Q 0.724 0.737 0.581 0.732 0.729 0.577 0.409 0.739

The data shown in Table 4 demonstrate that when the confusion factor increases,
the community structure of the network becomes less transparent, and it becomes more
challenging to locate existing communities. The approach that is discussed in this work,
CDNMF, performs better on all of the methods, despite the fact that the performance of
each method decreases more significantly as a consequence of this. As an illustration, when
the value of mu is equal to 0.1, CDNMF exhibits significant improvements in ACC, NMI,
ARI, and modularity Q of 7.7%, 3.1%, 8.2%, and 2.4%, respectively, in comparison to SNMF,
which is the most effective community detection algorithm based on NMF. In addition,
CDNMF demonstrates varying degrees of improvement across the four assessment mea-
sures when applied to several distinct datasets. The results of the experiments carried
out on the second set of synthetic networks are shown in Figure 1. In this figure, it is
also possible to observe that CDNMF achieves the highest level of performance across all
networks, regardless of the number of nodes present.

The aforementioned experimental results on synthetic networks show that CDNMF
outperforms current NMF-based community detection techniques.

5.5. Real Networks

In order to provide more evidence that CDNMF is successful, comparative studies
were carried out on four actual networks. The results of these experiments are presented
in Tables 5 and 6. The results of CDNMF on each real network are found to be superior
to the results obtained by the comparative techniques, as can be observed. After com-
paring the modularity of CDNMF to that of HPNMF, the best-performing NMF-based
approach, the modularity of CDNMF is increased by 5.4%, 1.5%, 9.3%, and 1.3%, respec-
tively, on WebKB, Cora, Citeseer, and Pubmed. The complexity of real networks is often
higher, and they typically include a greater number of nonlinear node properties than
synthetic networks. On synthetic networks, the SNMF model performs better than average,
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but on the three real datasets, its performance is average. On the other hand, CDNMF
is a nonlinear community detection model that performs better than the other models
in both real and synthetic networks. It is particularly effective in the former. The results
reported above demonstrate that CDNMF has the potential to enhance the manner in which
the nonlinear characteristics of networks are represented, which, in turn, improves the
performance of NMF community detection.

Figure 1. Performance comparison of synthetic networks with different n.

Table 5. Modularity Q comparison on real networks.

Dataset NMF SNMF M-NMF ONMF HPNMF NSED DCSBM CDNMF

WebKB 0.573 0.631 0.624 0.642 0.684 0.667 0.615 0.754
Cora 0.531 0.526 0.703 0.616 0.714 0.685 0.648 0.726

Citeseer 0.594 0.607 0.629 0.584 0.654 0.593 0.495 0.714
Pubmed 0.454 0.423 0.509 0.504 0.536 0.395 0.325 0.541

Table 6. Comparison of NMI on real-world networks.

Dataset NMF SNMF M-NMF ONMF HPNMF NSED DCSBM CDNMF

WebKB 0.624 0.651 0.643 0.657 0.674 0.662 0.647 0.681
Cora 0.584 0.601 0.594 0.604 0.623 0.617 0.599 0.642

Citeseer 0.574 0.586 0.576 0.597 0.618 0.605 0.576 0.638
Pubmed 0.548 0.553 0.549 0.571 0.587 0.554 0.551 0.607
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5.6. Time Complexity

In the analysis described in this section, the real network Pubmed was chosen as
the experimental data, and the NMF-based community detection methods NMF, SNMF,
M-NMF, ONMF, HPNMF, and NSED were chosen for comparison. The purpose of this
experiment was to investigate the minimum number of iterations required for CDNMF
to achieve the best community delineation results. The minimum number of iterations,
denoted by Tm, and the time required for each approach to achieve the best possible results
in terms of community delineation were evaluated and documented.

The experimental results are shown in Figure 2, which shows that, in terms of running
time, NMF and SNMF take less time to obtain the best neighborhood delineation result due
to the simplicity of the models and their higher running efficiency, while ONMF takes the
longest time, which is mainly due to the high complexity of the orthogonality constraint
computation, and HPNMF takes only the second-longest time due to the high complexity
of the model in calculating the similarity matrix and the corresponding larger value of Tm.
Consequently, it takes the second-longest amount of time, behind only ONMF. With a Tm of
11, the CDNMF model is able to obtain community segmentation results that are optimal
with a reduced number of iterations compared to the other models. When compared to
ONMF and HPNMF, CDNMF has a far more glaring advantage in terms of the amount of
time it takes to operate.

Figure 2. Runtime comparison.

6. Conclusions

The aim of this study is to propose a sparse network community detection algorithm
(CDNMF) based on NMF. This particular technique was inspired by an approach to solving
the localization problem in spectral approaches based on matrix representations. It is
possible for spectral approaches to be effective in revealing the implicit global structure
of data if the data in question can be represented in a matrix configuration. Traditional
spectral approaches, on the other hand, often fail to work properly when the data matrix
is either sparse or noisy. This is because the localization of feature vectors (or singular
vectors) induced by sparsity or noise is a common problem. Recently, a generic technique
for learning regularization matrices from localized feature vectors has been presented as a
solution to the localization problem present in spectral methods.

The CDNMF algorithm described in this study has two main advantages. Learn-
ing regularization matrices from local feature vectors to represent complicated network
topologies is the first step in improving the accuracy and utility of the approach used to
discover community structures in sparse networks. The second step is to find potential
factor values for key parameters of the NMF-based algorithm using a method that is both
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simple and fast. Future work will continue to explore the problem of community discovery
in sparse networks. In addition, adaptive techniques will be developed for the problem
of determining key parameters based on the NMF approach in order to make the preset
values of the parameters more adaptable.

Author Contributions: Conceptualization, C.H. and Y.Z.; methodology, Y.Z.; software, C.H.; vali-
dation, C.H.; formal analysis, Y.Z.; writing—original draft preparation, C.H.; writing—review and
editing, C.H. and Y.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Xie, Y.; Gong, M.; Wang, S.; Yu, B. Community discovery in networks with deep sparse filtering. Pattern Recognit. 2018, 81, 50–59.

[CrossRef]
2. Ma, Z.; Nandy, S. Community detection with contextual multilayer networks. IEEE Trans. Inf. Theory 2023, 69, 3203–3239.

[CrossRef]
3. Sperlí, G. A deep learning based community detection approach. In Proceedings of the 34th ACM/SIGAPP Symposium on

Applied Computing, Limassol, Cyprus, 8–12 April 2019; pp. 1107–1110.
4. De Santo, A.; Galli, A.; Moscato, V.; Sperlì, G. A deep learning approach for semi-supervised community detection in Online

Social Networks. Knowl.-Based Syst. 2021, 229, 107345. [CrossRef]
5. Wu, W.; Jia, Y.; Kwong, S.; Hou, J. Pairwise constraint propagation-induced symmetric nonnegative matrix factorization. IEEE

Trans. Neural Netw. Learn. Syst. 2018, 29, 6348–6361. [CrossRef]
6. Liu, X.; Wang, W.; He, D.; Jiao, P.; Jin, D.; Cannistraci, C.V. Semi-supervised community detection based on non-negative matrix

factorization with node popularity. Inf. Sci. 2017, 381, 304–321. [CrossRef]
7. Niu, Y.; Kong, D.; Liu, L.; Wen, R.; Xiao, J. Overlapping community detection with adaptive density peaks clustering and iterative

partition strategy. Expert Syst. Appl. 2023, 213, 119213. [CrossRef]
8. GÃk, sgens, M.; van der Hofstad, R.; Litvak, N. The hyperspherical geometry of community detection: modularity as a distance. J.

Mach. Learn. Res. 2023, 24, 1–36.
9. Liu, Z.; Yi, Y.; Luo, X. A high-order proximity-incorporated nonnegative matrix factorization-based community detector. IEEE

Trans. Emerg. Top. Comput. Intell. 2023, 7, 700–714. [CrossRef]
10. Su, S.; Guan, J.; Chen, B.; Huang, X. Nonnegative Matrix Factorization Based on Node Centrality for Community Detection.

ACM Trans. Knowl. Discov. Data 2023, 17, 1–21. [CrossRef]
11. Zhang, S.; Wang, R.S.; Zhang, X.S. Uncovering fuzzy community structure in complex networks. Phys. Rev. E 2007, 76, 046103.

[CrossRef]
12. Kuang, D.; Ding, C.; Park, H. Symmetric nonnegative matrix factorization for graph clustering. In Proceedings of the 2012 SIAM

International Conference on data Mining (SIAM), Anaheim, CA, USA, 26–28 April 2012; pp. 106–117.
13. Ma, X.; Gao, L.; Yong, X.; Fu, L. Semi-supervised clustering algorithm for community structure detection in complex networks.

Phys. A Stat. Mech. Its Appl. 2010, 389, 187–197. [CrossRef]
14. Newman, M.E.J.; Girvan, M. Finding and Evaluating Community Structure in Networks. Phys. Rev. E 2004, 69, 026113. [CrossRef]

[PubMed]
15. Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory

Exp. 2008, 2008, P10008. [CrossRef]
16. Palla, G.; Derényi, I.; Farkas, I.; Vicsek, T. Uncovering the overlapping community structure of complex networks in nature and

society. Nature 2005, 435, 814–818. [CrossRef]
17. Lee, D.D.; Seung, H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401, 788–791. [CrossRef]
18. Psorakis, I.; Roberts, S.; Ebden, M.; Sheldon, B. Overlapping community detection using Bayesian non-negative matrix

factorization. Phys. Rev. E 2011, 83, 066114. [CrossRef]
19. Cai, D.; He, X.; Han, J.; Huang, T.S. Graph regularized nonnegative matrix factorization for data representation. IEEE Trans.

Pattern Anal. Mach. Intell. 2010, 33, 1548–1560.
20. Zhang, Y.; Yeung, D.Y. Overlapping community detection via bounded nonnegative matrix tri-factorization. In Proceedings of

the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012;
pp. 606–614.

21. Jin, H.; Yu, W.; Li, S. Graph regularized nonnegative matrix tri-factorization for overlapping community detection. Phys. A Stat.
Mech. Its Appl. 2019, 515, 376–387. [CrossRef]

http://doi.org/10.1016/j.patcog.2018.03.026
http://dx.doi.org/10.1109/TIT.2023.3238352
http://dx.doi.org/10.1016/j.knosys.2021.107345
http://dx.doi.org/10.1109/TNNLS.2018.2830761
http://dx.doi.org/10.1016/j.ins.2016.11.028
http://dx.doi.org/10.1016/j.eswa.2022.119213
http://dx.doi.org/10.1109/TETCI.2022.3230930
http://dx.doi.org/10.1145/3578520
http://dx.doi.org/10.1103/PhysRevE.76.046103
http://dx.doi.org/10.1016/j.physa.2009.09.018
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://www.ncbi.nlm.nih.gov/pubmed/14995526
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1038/nature03607
http://dx.doi.org/10.1038/44565
http://dx.doi.org/10.1103/PhysRevE.83.066114
http://dx.doi.org/10.1016/j.physa.2018.09.093


Mathematics 2024, 12, 619 16 of 16

22. Tong, C.; Wei, J.; Qi, S.; Yao, Y.; Zhang, T.; Teng, Y. A majorization–minimization based solution to penalized nonnegative matrix
factorization with orthogonal regularization. J. Comput. Appl. Math. 2023, 421, 114877. [CrossRef]

23. Yang, M.; Chen, X.; Chen, B.; Lu, P.; Du, Y. DNETC: Dynamic network embedding preserving both triadic closure evolution and
community structures. Knowl. Inf. Syst. 2023, 65, 1129–1157. [CrossRef]

24. Liu, Z.; Luo, X.; Zhou, M. Symmetry and graph bi-regularized non-negative matrix factorization for precise community detection.
IEEE Trans. Autom. Sci. Eng. 2023, in press. [CrossRef]

25. Lv, L.; Bardou, D.; Liu, Y.; Hu, P. Deep Autoencoder-like non-negative matrix factorization with graph regularized for link
prediction in dynamic networks. Appl. Soft Comput. 2023, 148, 110832. [CrossRef]

26. Wu, X.; Zhang, H.; Quan, Y.; Miao, Q.; Sun, P.G. Graph embedding based on motif-aware feature propagation for community
detection. Phys. A Stat. Mech. Its Appl. 2023, 630, 129205. [CrossRef]

27. Ma, X.; Dong, D. Evolutionary nonnegative matrix factorization algorithms for community detection in dynamic networks. IEEE
Trans. Knowl. Data Eng. 2017, 29, 1045–1058. [CrossRef]

28. Kaneko, A.; Hashiguchi, H. Greedy separation algorithm finding community for a stochastic block model. Commun. Stat. Simul.
Comput. 2023, 1–11. [CrossRef]

29. Ding, C.; Li, T.; Peng, W.; Park, H. Orthogonal nonnegative matrix t-factorizations for clustering. In Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, 20–23 August 2006;
pp. 126–135.

30. Ye, F.; Chen, C.; Wen, Z.; Zheng, Z.; Chen, W.; Zhou, Y. Homophily preserving community detection. IEEE Trans. Neural Netw.
Learn. Syst. 2019, 31, 2903–2915. [CrossRef]

31. Tessone, P.C.J. Hierarchical benchmark graphs for testing community detection algorithms. Phys. Rev. E 2017, 96, 052311.
32. Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Eliassi-Rad, T. Collective Classification in Network Data. AI Mag. 2008, 29, 93.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.cam.2022.114877
http://dx.doi.org/10.1007/s10115-022-01792-4
http://dx.doi.org/10.1109/TASE.2023.3240335
http://dx.doi.org/10.1016/j.asoc.2023.110832
http://dx.doi.org/10.1016/j.physa.2023.129205
http://dx.doi.org/10.1109/TKDE.2017.2657752
http://dx.doi.org/10.1080/03610918.2023.2240982
http://dx.doi.org/10.1109/TNNLS.2019.2933850
http://dx.doi.org/10.1609/aimag.v29i3.2157

	Introduction
	Related Work
	Traditional Algorithms
	Learning-Model-Based Community Detection

	Equivalence Proof
	Proposed Model
	Algorithm Principles
	Parameter Learning

	Experiments
	Compared Methods
	Datasets
	Experimental Setup
	Synthetic Networks
	Real Networks
	Time Complexity

	Conclusions
	References

