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Abstract: The process capability index is a tool for quality measurement and analysis widely used
in the industry. It is also a good tool for the sales department to communicate with customers.
Although the value of the process capability index can be affected by the accuracy and precision of the
process, the index itself cannot be differentiated. Therefore, the process incapability index is directly
divided into two items, accuracy and precision, based on the expected value of the Taguchi process
loss function. In fact, accuracy and precision are two important reference items for improving the
manufacturing process. Thus, the process incapability index is good for evaluating process quality.
The process incapability index contains two unknown parameters, so it needs to be estimated with
sample data. Since point estimates are subject to misjudgment incurred by the inaccuracy of sampling,
and since modern businesses are in the era of rapid response, the size of sampling usually tends to
be small. A number of studies have suggested that a fuzzy testing method built on the confidence
interval be adopted at this time because it integrates experts and the experience accumulated in the
past. In addition to a decrease in the possibility of misjudgment resulting from sampling error, this
method can improve the test accuracy. Therefore, based on the confidence interval of the process
incapability index, we proposed the fuzzy testing method to assess whether the process capability
can attain a necessary level of quality. If the quality level fails to meet the requirement, then an
improvement must be made. If the quality level exceeds the requirement, then it is equivalent to
excess quality, and a resource transfer must be considered to reduce costs.

Keywords: process incapability index; Taguchi loss function; confidence interval; fuzzy testing
method; sampling error

MSC: 62C05; 62C86

1. Introduction

The process capability index is a tool for quality measurement and analysis widely
used in the industry. It is also a tool for process engineers to self-examine the process quality
and judge whether to make an improvement at any time [1–4]. Since the promotion of
Industry 4.0, new technologies, including the Internet of Things (IOT) and Big Data analysis,
have rapidly developed and evolved [5–7]. In this environment, numerous scholars have
put forward various production data analyses and evaluation models by integrating the
rapid collection of production data with process capability indicators. Then, a smart
manufacturing environment with a comprehensive network is gradually formed so that
various manufacturing industries step into the goal of smart manufacturing [8–10].
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Suppose X (random variable) is normally distributed with µ (mean) and σ (standard
deviation), expressed as X ∼ N

(
µ, σ2). Kane [11] proposed process capability indices CP

and CPK of bilateral specifications as follows:

CP =
USL − LSL

6σ
=

d
3σ

(1)

and

CPK =
USL − LSL

6σ
=

d − |µ − T|
3σ

. (2)

In the above equations, USL stands for “upper specification limit”, LSL stands for
“lower specification limit”, T = (USL + LSL)/2 denotes the target value, and
d = (USL − LSL)/2 denotes half the specification interval. Since process capability in-
dex CP excludes mean µ, it means that CP fails to reflect the process when the process
is shifted. Thus, the index CPK is proposed to make up for this problem. Additionally,
in order to solve the problem that process capability index CP cannot reflect the process
deviation, Chan et al. [12] proposed the second-generation process capability index CPM,
as expressed below:

CPM =
USL − LSL

6
√

σ2 + (µ − T)2
=

d

3
√

σ2 + (µ − T)2
, (3)

where d = (USL − LSL)/2. Both the CPK and the second-generation index CPM belong to
bilateral specifications used for processes that suit the nominal-the-best characteristic. In
addition, the Taguchi loss function can be expressed as:

L(X) = k(X − T)2. (4)

The denominator of CPM is the expected value of the Taguchi loss function containing
k = 1. Similar to the index CPM, Greenwich and Jahr-Schaffrath [13] came up with a process
incapability index as follows:

CPP =

(
µ − T

d

)2
+
(σ

d

)2
. (5)

Let the random variable be Y = (X − T)/d, where Y is normally distributed with
δ and γ, denoted by Y ∼ N

(
δ, γ2). Also, its Taguchi loss function can be rewritten as

L(Y) = k′Y2. In fact, δ = (µ − T)/d is seen as an index of accuracy while γ = σ/d is
viewed as an index of precision. Since incapability index CPP is the square of the reciprocal
of index CPM, incapability index CPP can be expressed as follows:

CPP = (3δ)2 + (3γ)2. (6)

As a matter of fact, the incapability index CPP is three times higher than the expected
Taguchi Loss Function (E[L(Y)] = δ2 + γ2). Obviously, the incapability index is suitable
for evaluating the quality characteristic of the nominal-the-best type (NTB). According to
the concept by Chen and Chen [14], there is a relation between the process yield (Yield%)
and the index, expressed as follows:

Yield% ≥ 2Φ
(

3/
√

CPP

)
− 1 for QPP <

(√
3
)−1

. (7)

Obviously, the incapability index CPP can reflect the expected loss and the yield of
the process, showing that it is a good indicator for the evaluation of process quality. In
addition, the process incapability index is directly divided into two items, accuracy and
precision, based on the expected value of the Taguchi process loss function. Accuracy
and precision are two important reference items for improving the manufacturing process.
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Thus, the process incapability index is good for evaluating process quality. According to
some studies, the incapability index CPP contains two unknown parameters, so it needs to
be estimated with sample data. Since point estimates are subject to wrong judgments for
sampling error [15–17], the size of the sample is normally small in the sampling test, given
the consideration of costs and the emphasis on timeliness of the quick response [18,19]. In
order to solve the above problems, we follow the suggestions made by numerous studies. A
fuzzy testing method built on the confidence interval can be used at this time because this
method integrates experts and their experiences accumulated in the past. This method can
help lessen the occurrence of misjudgment resulting from sampling error as well as level up
the test accuracy [20]. In the paper, we first deduce the corresponding relation between the
process incapability index and the six-sigma quality level. Next, according to the engineers’
requirements for the process quality level, a lower-confidence-limit-based fuzzy testing
method is proposed to evaluate the quality level that is required by the process capability
of the product. If the quality level fails to meet the requirement, then it is necessary to make
an improvement on the process.

To follow the introduction in Section 1, we derive the lower confidence limit of the
process incapability index in Section 2. Next, the lower confidence limit of the process
incapability index is developed using the mathematical programming (MP) model in
Section 3. In Section 4, a fuzzy testing model based on the confidence interval is established.
In Section 5, an example is taken to demonstrate the application of the fuzzy testing method
proposed in Section 4. Finally, the conclusions are made in Section 6.

2. Lower Confidence Limit of Incapability Index

Let (X1, . . . , Xi, . . . , Xn) be a set of random samples with the sample size n. Suppose
X (random variable) is normally distributed with µ (mean) and σ2 (variance), expressed
as X ∼ N

(
µ, σ2). When the random variable is Y = (X − T)/d, (Y1, . . . , Yi, . . . , Yn) is a set

of random samples of the random variable Y, and Y is distributed as N
(
δ, γ2). Then, the

mean of the samples is the estimator of δ, and their standard deviation is the estimator of γ,
displayed as follows:

δ∗ =
1
n

n

∑
i=1

Yi; (8)

γ∗ =

√
1
n

n

∑
i=1

(Yi − δ∗)2. (9)

According to Equations (8) and (9), the estimator of the incapability index CPP is

C∗
PP = (3δ∗)2 + (3γ∗)2. (10)

Furthermore, this paper lets the random variable Z be expressed as follows:

Z =

√
n(δ∗ − δ)

γ
. (11)

Under the assumption of normality, Z is regarded as a standard normal distribution,
i.e., Z ∼ N(0, 1). Similarly, this paper lets the random variable K be expressed as follows:

K =
nγ∗2

γ2 . (12)

Suppose Z is normally distributed and viewed as a chi-square distribution having
n − 1 degree of freedom, i.e., K ∼ χ2

n−1. Thus,

p
{
−Z0.5−

√
1−α/2 ≤ Z ≤ Z0.5−

√
1−α/2

}
=

√
1 − α (13)
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and
p
{

χ2
0.5−

√
1−α/2;n−1 ≤ K ≤ χ2

0.5+
√

1−α/2;n−1

}
=

√
1 − α, (14)

where Z0.5−
√

1−α/2 means the upper 0.5 −
√

1 − α/2 quintile of N(0, 1), χ2
a/2;n−1 denotes

the lower a/2 quintile of χ2
n−1, and

√
1 − α refers to the confidence level. δ∗ and γ∗2 are

mutually independent with the normal distribution, and so are Z and K [21]. Thus, the
equation can be further obtained below:

p
{
−Z0.5−

√
1−α/2 ≤ Z ≤ Z0.5−

√
1−α/2, χ2

0.5−
√

1−α/2;n−1 ≤ K ≤ χ2
0.5+

√
1−α/2;n−1

}
= 1 − α. (15)

Equivalently,

p


δ∗ − Z0.5−

√
1−α/2 ×

(
γ√
n

)
≤ δ ≤ δ∗ + Z0.5−

√
1−α/2 ×

(
γ√
n

)
,√

n−1
χ2

0.5+
√

1−α/2;n−1
γ∗ ≤ γ ≤

√
n−1

χ2
0.5−

√
1−α/2;n−1

γ∗

 = 1 − α. (16)

Suppose (y1, . . . , yi, . . . , yn) is the observed set of (Y1, . . . , Y, . . . , Yn); δ∗0 and γ∗
0 , the

observed values of δ∗ and γ∗, are expressed individually as follows:

δ∗0 =
1
n

n

∑
i=1

yi, (17)

and

γ∗
0 =

√
1

n − 1

n

∑
i=1

(
yi − δ∗0

)2. (18)

Then, the confidence region is expressed as follows:

CR = { (δ, γ)|δ∗0 − Eγ ≤ δ ≤ δ∗0 + Eγ, γL ≤ γ ≤ γU}, (19)

where

Eγ = Z0.5−
√

1−α/2 ×
(

γ√
n

)
, (20)

γL =

√
n − 1

χ2
0.5+

√
1−α/2;n−1

γ∗
0 , (21)

and

γU =

√
n − 1

χ2
0.5−

√
1−α/2;n−1

γ∗
0 . (22)

Clearly, the process incapability index CPP is a function of mean δ and standard devia-
tion γ. Thus, this study denotes the incapability index as CPP(δ, γ), uses this incapability
index as an objective function, and defines the confidence region CR(δ, γ) as a feasible
solution area. For any γ ≥ γL, then CPP(δ, γ) ≥ CPP(δ, γL). Based on the mathematical
programming model, the lower confidence limit of the incapability index CPP is presented
as follows: 

LCPP = min CPP(δ, γL)
subject to
δL ≤ δ ≤ δU

(23)

where δL = δ∗0 − EγL , δU = δ∗0 + EγL , and EγL = Z0.5−
√

1−α/2 × γL/
√

n. Based on the
abovementioned information, the lower confidence limit of the process incapability index
CPP is deduced in the following section.

3. Develop Lower Confidence Limit of Process Incapability Index Using MP Model

In this section, this paper employs the method of statistical inference with the confi-
dence interval and the mathematical programming model to derive the lower confidence



Mathematics 2024, 12, 623 5 of 11

limit of the process incapability index. We discover the lower confidence limit based on
Situation 1 0 ≤ δL, Situation 2 δL ≤ 0 ≤ δU , and Situation 3 δU ≤ 0, respectively.

Situation 1: 0 ≤ δL
In this situation, we can conclude that δ > 0, and then the MP model can be rewritten

as follows: 0 ≤ δL 
LCPP = min CPP(δ, γL)
subject to
0 < δL ≤ δ ≤ δU

. (24)

According to Equation (24), for any δ ≥ δL, then CPP(δ, γL) ≥ CPP(δL, γL). Therefore,
the lower confidence limit of the process incapability index is defined below:

LCPP = CPP(δL, γL) =9δ2
L+9γ2

L = 9

δ∗0 −
Z0.5−

√
1−α/2√
n

×
√

n − 1
χ2

0.5+
√

1−α/2;n−1

γ∗
0

2

+9

√ n − 1
χ2

0.5+
√

1−α/2;n−1

γ∗
0

2

. (25)

Situation 2: δL ≤ 0 ≤ δU
δ = 0 is concluded in this situation. Then, the objective function of the MP model is

CPP = (3γ)2, and the lower confidence limit of the process incapability index is written as:

LCPP = CPP(0, γL) =9γ2
L =

n − 1
χ2

0.5+
√

1−α/2;n−1

γ∗2
0 . (26)

Situation 3: δU ≤ 0
In this situation, we can conclude δ < 0 and then rewrite the MP model as follows:

LCPP = min CPP(δ, γL)
subject to
δL ≤ δ ≤ δU < 0

. (27)

According to Equation (27), for any δ ≤ δU , then δ ≤ δU . Accordingly, the lower
confidence limit of the process incapability index is expressed as:

LCPP = CPP(δL, γL) =9δ2
U+9γ2

L = 9

δ∗0 +
Z0.5−

√
1−α/2√
n

×
√

n − 1
χ2

0.5+
√

1−α/2;n−1

γ∗
0

2

+9

√ n − 1
χ2

0.5+
√

1−α/2;n−1

γ∗
0

2

. (28)

Based on the three situations and according to Equations (25), (26), and (28), the
100 × (1 − α)% lower confidence limit of process incapability index is defined as:

LCPP(α) =



9

(
δ∗0 − Z0.5−

√
1−α/2√
n ×

√
n−1

χ2
0.5+

√
1−α/2;n−1

γ∗
0

)2

+ 9

(√
n−1

χ2
0.5+

√
1−α/2;n−1

γ∗
0

)2

, 0 < δL

9

(√
n−1

χ2
0.5+

√
1−α/2;n−1

γ∗
0

)2

, δL ≤ 0 ≤ δU

9

(
δ∗0 +

Z0.5−
√

1−α/2√
n ×

√
n−1

χ2
0.5+

√
1−α/2;n−1

γ∗
0

)2

+ 9

(√
n−1

χ2
0.5+

√
1−α/2;n−1

γ∗
0

)2

, δU < 0

. (29)

According to Equation (29), this paper adopts the lower confidence limit of the process
incapability index to build the fuzzy testing method of the incapability index CPP built on
the confidence interval in the next section.

4. Confidence-Interval-Based Fuzzy Testing Method of Incapability Index

Based on Motorola’s requirements defined by Harry [22] and Chen et al. [23], a process
is called “excellent” if the process incapability index is no more than 0.25 (CPP ≤ 0.25).
Analogously, the Motorola requirements can be met by transforming the process capability
index CPK ≥ 1.5 from CP ≥ 2.0 to CPP ≤ 0.81, serving as a process capability standard.
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Furthermore, a few studies have also indicated that the process quality level can be said
to have reached 6 sigma when the mean deviates from the target value by 1.5 sigma and
the standard deviation is d/6 in the process. In other words, when d = |µ − T|/d ≤ 1.5/k
and σ = d/k, the process quality level gets to k sigma [24]. Thus, the relation of the process
incapability index to the k-sigma quality level can be denoted as:

CPP = (3δ)2 + (3γ)2 ≤ (4.5/k)2 + (3/k)2 = 9 × 3.25
k2 (30)

According to Equation (30), the value of the process incapability index corresponding
to the k-sigma quality level is shown in the following Table 1:

Table 1. Quality levels and their corresponding index values.

Quality Level Value of the Incapability Index

4.0 sigma CPP ≤ 1.83
4.5 sigma CPP ≤ 1.44
5.0 sigma CPP ≤ 1.17
5.5 sigma CPP ≤ 0.97
6.0 sigma CPP ≤ 0.81

When quality engineers or customers request the quality level of the product to reach
k sigma, the value of the process incapability index must be C at most. The values of C are
shown in Table 1. Thus, the null hypothesis and the alternative hypothesis for the test are
written as:

Null hypothesis is H0 : CPP ≤ C;
Alternative hypothesis is H1 : CPP > C.
The index has unknown parameters. Consequently, if we want to judge whether the

process quality level can satisfy the requirement of the quality level, we can use the lower
confidence limit of the process incapability index to perform the above hypothesis test.
Thus, we obtained the following statistical testing rules including a significance level at
0.01:

(1) If LCPP ≤ C, then do not reject H0 and conclude CPP ≤.
(2) If LCPP > C, then reject H0 and conclude CPP > C.
LCPP is the lower confidence limit of the process incapability index with α = 0.01.
According to Equation (29), the α-cuts of the half-triangular-shaped fuzzy number

L̃CPP are displayed below [22]:

L̃CPP[α]= [LCPP(α), LCPP(1)], for 0.01 ≤ α ≤ 1.00 (31)

It is recalled that for 0 < α < 0.01, the α-cuts of L̃CPP [α] equal L̃CPP. Thus, the half-
triangular-shaped fuzzy number ∆L̃CPP = (LCPPL, LCPPM), where LCPPM = LCPPM (1)
and LCPPL = LCPP (0.01) (see Equation (29)).

This paper used the variable x to denote the lower confidence limit of the process
incapability index LCPP, that is, x = LCPP. Then, we defined the fuzzy membership function
of x as:

η(x) =


0 i f x < LCPPL
α i f LCPPL ≤ x < LCPPM
1 i f x = LCPPM
0 i f LCPPM < x

, (32)

where α is determined by LCPP(α) = x. Figure 1 presents a diagram of the membership
function η(x) with the vertical line x = C.
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Based on Chen et al. [21], let set AT be the area in the graph of η(x) and set AR be the
area in the graph of η(x) but to the left of the vertical line x = C. Set AT and set AR are
presented below:

AT = { (x, α)|LCPP(α) ≤ x ≤ LCPP(1), 0 ≤ α ≤ 1} (33)

and
AR = { (x, α)|LCPP(α) ≤ x ≤ C, 0 ≤ α ≤ a}, (34)

where α = a such that LCPP(α) = C. According to Equation (33), the bottom length dR
of set AR is equal to C minus LCPPL, that is, dR = C− LCPPL. Similarly, according to
Equation (32), the bottom length dT of set AT is equal to LCPPM minus LCPPL, that is,
dT = LCPPM − LCPPL. According to Chen and Lin [20], suppose 0 < ϕ ≤ 0.5, and ϕ is
determined by either production data or expert experience accumulated in the past [21,24].
The fuzzy evaluation and decision rules are explained below:

(1) If dR/2dT ≤ ϕ, then reject H0 and conclude CPP > C.
(2) If ϕ < dR/2dT <0.5, then do not reject H0 and conclude CPP ≤ C.

5. A Practical Application

Plenty of studies have suggested that Taiwan’s machinery and machine tool industry
was ranked No. 5 in export and No. 7 in production worldwide. In addition to machine
tools, including lathes, milling machines, drilling machines, grinders, and broaching ma-
chines, hand tools as well as woodworking machinery are also produced [25,26]. According
to numerous studies, the central region in Taiwan is the core of the machine tool industry,
and numerous component processing factories are located in the surrounding area. Given
the concept of the Taguchi loss function, the cost expenditure and carbon emissions caused
by fault maintenance will increase after the product is sold if the quality level of the com-
ponent manufacturing process is poor and the size of the processed product deviates too
far from the target value [27–29]. Moreover, machine tools will also be unable to continue
working due to component failures, which will most likely lead to insufficient production
and failure to deliver as scheduled, resulting in cost losses. In an attempt to boost the
process quality level of these components, the outer diameter of the shaft processed by a
machining factory in Central Taiwan is taken as an example to describe how to apply the
confidence-interval-based fuzzy testing model suggested by this paper. When the quality
engineers require that the product quality level should reach 6 sigma, it is equivalent to
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requiring that the process incapability index must be 0.81 at most. Thus, we rewrite the
null hypothesis and alternative hypothesis applied to the test as follows:

Null hypothesis is H0 : CPP ≤ 0.81;
Alternative hypothesis is H1 : CPP > 0.81.
As noted above, since the index contains unknown parameters, we can use the lower

confidence limit of the process incapability index to perform the above hypothesis test if we
want to decide whether the process quality level meets the requirement. Aiming to perform
the above fuzzy test, 20 samples were randomly chosen from the product processed by a
certain machining shaft. These 20 samples are described in detail below:

x1 = 1.225, x2 = 1.214, x3 = 1.215, x4 = 1.216,
x5 = 1.213, x6 = 1.222, x7 = 1.220, x8 = 1.229,
x9 = 1.223, x10 = 1.194, x11 = 1.194, x12 = 1.218,
x13 = 1.195, x14 = 1.217, x15 = 1.197, x16 = 1.210,
x17 = 1.222, x18 = 1.192, x19 = 1.213, x20 = 1.238.

The tolerance of the machining shaft of a certain model being processed is
1.2 ± 0.05, that is, target T = 1.2 and d = 0.05. As noted above, the values of random vari-
able Yi = (Xi − 1.2)/0.05 and (y1, . . . , yi, . . . , y20), the observed set of (Y1, . . . , Y, . . . , Y20),
are shown as follows:

y1 = 0.494, y2 = 0.276, y3 = 0.304, y4 = 0.315,
y5 = 0.257, y6 = 0.447, y7 = 0.401, y8 = 0.571,
y9 = 0.456, y10 = −0.116, y11 = −0.127, y12 = 0.370,
y13 = −0.094, y14 = 0.340, y15 = −0.061, y16 = 0.206,
y17 = 0.448, y18 = −0.169, y19 = 0.264, y20 = 0.763.

Then, δ∗0 and γ∗
0 , the observed values of δ∗ and γ∗, are denoted by:

δ∗0 =
1

20

20

∑
i=1

yi = 0.267 and γ∗
0 =

√√√√ 1
19

20

∑
i=1

(yi − 0.261)2 = 0.258.

Therefore,

E =
Z0.0025√

20

√
19

χ2
0.9975;19

=
2.807√

20
×
√

19
40.885

= 0.428,

EγL = E × γ∗
0 =0.428 × 0.258 = 0.110,

δL = δ∗0 − EγL = 0.267 − 0.110 = 0.157,

δR = δ∗0 + EγL = 0.267 + 0.110 = 0.377.

Obviously, δL = 0.157 is bigger than zero. According to Equations (32) and (33), dR
and dT are denoted as follows:

dR = C − 9

(δ∗0 − E × γ∗
0)

2 +

(√
n−1

χ2
0.9975;n−1

γ∗
0

)2


= 0.97 − 9 ×
{
(0.157)2 +

(√
19

40.885 × 0.258
)2
}

= 0.97 − 9 × (0.0246 + 0.0309)
= 0.81 − 0.50 = 0.31

;



Mathematics 2024, 12, 623 9 of 11

dT = 9

(δ∗0 )
2 +

(√
n−1

χ2
0.5;n−1

γ∗
0

)2
−9

(δ∗0 − E × γ∗
0)

2 +

(√
n−1

χ2
0.9975;n−1

γ∗
0

)2


= 9 ×
{
(0.267)2 +

(√
19

18.338 × 0.258
)2
}
−9

{
(0.157)2 +

(√
19

40.885 × 0.258
)2
}

= 9 × (0.0713 + 0.0690)− 9 × (0.0246 + 0.0309)
= 1.26 − 0.50 = 0.76

.

Therefore, the value of dR/2dT is derived as:

dR/2dT =
0.31

2 × 0.76
= 0.20.

Let ϕ = 0.2. According to the fuzzy testing rule (1), if dR/2dT ≤ ϕ = 0.2, then do not
reject H0 and conclude CPP > 0.81. That means the process quality level has not reached 6
sigma, so an improvement must be made in the process.

Based on the above information, we have δ∗0 = 0.267 and γ∗
0 = 0.258 = 1/3.876.

According to Chen and Lin [20] and Wu et al. [26], they mean that the process mean
shift exceeds 1/4 of the tolerance, and the process only reaches 3.876-sigma quality level.
Obviously, both the process accuracy and the process precision are insufficient, and they
must be improved to boost the overall process quality level.

6. Conclusions, Research Limitations, and Future Research

The process incapability index, CPP, which can reflect the expected loss and the yield
in the process, is a good indicator to assess the process quality level. Because the process
incapability index CPP contains two unknown parameters, it is necessary to estimate the
index with sample data. Given that enterprises consider costs and emphasize the timeliness
of the quick response, the sample applied to sampling inspection is mostly small in size. A
lot of research has indicated that a fuzzy testing method built on the confidence interval
can be applied at this time since this method incorporates experts and experience gathered
in the past. By means of this method, wrong judgements led by sampling error can be
diminished, and the test accuracy can be boosted, as well [20,21,24,25]. Given this effect,
we first deduced the process incapability index corresponding to the six-sigma quality
level. Next, we defined the null hypothesis and the alternative hypothesis of the test based
on engineers’ requirements for the process quality level. Furthermore, we derived the
100× (1 − α)% lower confidence limit of the process incapability index and developed a
confidence-interval-based fuzzy test of the index. Then, we put forward a fuzzy testing
method based on the lower confidence limit to evaluate the quality level required by the
process capability of the product. If the quality level fails to satisfy the requirement of the
quality level, then an improvement must be made. Finally, an example was demonstrated to
explain the application of the fuzzy testing method addressed in Section 4 so as to facilitate
the application and promotion for relevant enterprises.

In the case study of Section 5, according to the equation E[L(Y)] = k′
(
δ2 + γ2), as

long as the corresponding value of k′ is calculated based on the company’s relevant data,
the point estimate of the expected loss can be obtained. However, the value of k′ usually
varies with different cases or companies. Moreover, it has been discovered from the fuzzy
evaluation model proposed by this case study that both process accuracy and process
precision are insufficient, so both of them must be improved to raise the overall process
quality level. Like the value of k′, the cost of enhancing accuracy and precision also varies
with different enterprises, but they are not within the scope of this study. The future
research can emphasize k′, which is worth exploring, and construct the evaluation model
of the improving costs or benefits.
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