Prediction Model of Ammonia Nitrogen Concentration in Aquaculture Based on Improved AdaBoost and LSTM
Abstract
:1. Introduction
2. Introduction of Basic Theory
2.1. Adaptive Enhancement Algorithm
2.2. Long and Short-Term Memory Neural Networks
3. XAdaBoost–LSTM Based Ammonia Concentration Prediction Model
3.1. Fundamentals of Predictive Models
3.2. Improved Adaptive Enhancement Algorithm (XAaBoost)
- (1)
- If the prediction error is less than d in each of the T iterations, then the prediction value of each iteration is less than the error range, which means that each sub-model is correct in processing this sample.
- (2)
- The number of errors less than d in T iterations is greater than T/2, which means that the number of correct predictions in T sub-models is greater than the number of errors in this data.
- (3)
- Similarly, less than T/2 means that the number of correctly predicted sub-models is less than the number of incorrect ones.
- (4)
- The error rate is greater than d in all T iterations, which means that none of the samples are accurate after T iterations.
3.3. Constructing a Prediction Model
3.4. Forecasting Process
4. Analysis of Results
4.1. Raw Data
4.2. Data Pre-Processing
4.3. Operating Environment and Evaluation Criteria
4.4. Experimental Analysis and Evaluation
4.5. Model Stability Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.X.; Li, J.Y.; Li, S.J.; Shi, Y.Q.; Gao, Y.; Ji, G.J. Exploration of aquaculture standardization in China. China Aquac. 2019, 4, 31–34. [Google Scholar]
- Zhang, C.L.; Xu, H.; Wang, S.M.; Liu, H.; Chen, X.J. Current situation and considerations on the development of deep-sea fisheries based on large-scale fisheries platforms. China Agron. Bull. 2020, 36, 152–157. [Google Scholar]
- Nagaraju, T.V.; Sunil, B.M.; Chaudhary, B.; Prasad, C.D.; Gobinath, R. Prediction of ammonia contaminants in the aquaculture ponds using soft computing coupled with wavelet analysis. Environ. Pollut. 2023, 331 Pt 2, 121924. [Google Scholar] [CrossRef] [PubMed]
- Le, P.T.T.; Boyd, C.E. Comparison of Phenate and Salicylate Methods for Determination of Total Ammonia Nitrogen in Freshwater and Saline Water. J. World Aquac. Soc. 2012, 43, 885–889. [Google Scholar] [CrossRef]
- Xu, G.; Xu, G.; Wei, H.; Wei, H.; Wang, J.; Wang, J.; Chen, X.; Chen, X.; Zhu, B.; Zhu, B. A Local Weighted Linear Regression (LWLR) Ensemble of Surrogate Models Based on Stacking Strategy: Application to Hydrodynamic Response Prediction for Submerged Floating Tunnel (SFT). Appl. Ocean. Res. 2022, 125, 103228. [Google Scholar] [CrossRef]
- Ottaviani, F.M.; De Marco, A. Multiple Linear Regression Model for Improved Project Cost Forecasting. Procedia Comput. Sci. 2022, 196, 808–815. [Google Scholar] [CrossRef]
- Chen, W.B.; Liu, W.C. Artificial neural network modeling of dissolved oxygen in the reservoir. Environ. Monit. Assess. 2014, 186, 1203–1217. [Google Scholar] [CrossRef] [PubMed]
- Nong, X.; Lai, C.; Chen, L.; Shao, D.; Zhang, C.; Liang, J. Prediction modeling framework comparative analysis of dissolved oxygen concentration variations using support vector regression coupled with multiple feature engineering and optimization methods: A case study in China. Ecol. Indic. 2023, 146, 109845. [Google Scholar] [CrossRef]
- Zhao, S.; Gui, F.L.; Liu, H.Q. Prediction of nitrogen concentration in Taihu Lake based on AdaBoost machine learning model. China Rural. Water Hydropower 2022, 6, 24–28. [Google Scholar]
- Belavadi, S.V.; Rajagopal, S.; Ranjani, R.; Mohan, R. Air Quality Forecasting using LSTM RNN and Wireless Sensor Networks. Procedia Comput. Sci. 2020, 170, 241–248. [Google Scholar] [CrossRef]
- Farhi, N.; Kohen, E.; Mamane, H.; Shavitt, Y. Prediction of wastewater treatment quality using LSTM neural network. Environ. Technol. Innov. 2021, 23, 101632. [Google Scholar] [CrossRef]
- Huan, J.; Li, H.; Li, M.; Chen, B. Prediction of dissolved oxygen in aquaculture based on gradient boosting decision tree and long short-term memory network: A study of Chang Zhou fishery demonstration base. Comput. Electron. Agric. 2020, 175, 105530. [Google Scholar] [CrossRef]
- Yan, K.; Li, C.; Zhao, R.; Zhang, Y.; Duan, H.; Wang, W. Predicting the ammonia nitrogen of wastewater treatment plant influent via integrated model based on rolling decomposition method and deep learning algorithm. Sustain. Cities Soc. 2023, 94, 104541. [Google Scholar] [CrossRef]
- Ruma, J.F.; Adnan, M.S.G.; Dewan, A.; Rahman, R.M. Particle swarm optimization based LSTM networks for water level forecasting: A case study on Bangladesh river network. Results Eng. 2023, 17, 100951. [Google Scholar] [CrossRef]
- Busari, G.A.; Lim, D.H. Crude oil price prediction: A comparison between AdaBoost-LSTM and AdaBoost-GRU for improving forecasting performance. Comput. Chem. Eng. 2021, 155, 107513. [Google Scholar] [CrossRef]
- Xiao, C.; Chen, N.; Hu, C.; Wang, K.; Gong, J.; Chen, Z. Short and mid-term sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach. Remote Sens. Environ. 2019, 233, 111358. [Google Scholar] [CrossRef]
- Wadud, M.A.H.; Kabir, M.M.; Mridha, M.F.; Ali, M.A.; Hamid, M.A.; Monowar, M.M. How can we manage Offensive Text in Social Media—A Text Classification Approach using LSTM-BOOST. Int. J. Inf. Manag. Data Insights 2022, 2, 100095. [Google Scholar] [CrossRef]
- Shi, W.; Hu, L.; Lin, Z.; Zhang, L.; Wu, J.; Chai, W. Short-term motion prediction of floating offshore wind turbine based on muti-input LSTM neural network. Ocean Eng. 2023, 280, 114558. [Google Scholar] [CrossRef]
- Qiu, K.; Li, J.; Chen, D. Optimized long short-term memory (LSTM) network for performance prediction in unconventional reservoirs. Energy Rep. 2022, 8, 15436–15445. [Google Scholar] [CrossRef]
- Zhou, L.; Boyd, C.E. Comparison of Nessler, phenate, salicylate, and ion selective electrode procedures for determination of total ammonia nitrogen in aquaculture. Aquaculture 2016, 450, 187–193. [Google Scholar] [CrossRef]
- Li, Y.; Li, R. Predicting ammonia nitrogen in surface water by a new attention-based deep learning hybrid model. Environ. Res. 2023, 216 Pt 3, 114723. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Guo, G. Soft-sensing model of ammonia nitrogen concentration in perception based on random configuration network. Trans. Chin. Soc. Agric. Mach. 2020, 51, 214–220. [Google Scholar]
- Nasiri, A.; Yoder, J.; Zhao, Y.; Hawkins, S.; Prado, M.; Gan, H. Pose estimation-based lameness recognition in broiler using CNN-LSTM network. Comput. Electron. Agric. 2022, 197, 106931. [Google Scholar] [CrossRef]
- Yu, H.; Yang, L.; Li, D.; Chen, Y. A hybrid intelligent soft computing method for ammonia nitrogen prediction in aquaculture. Inf. Process. Agric. 2021, 8, 64–74. [Google Scholar] [CrossRef]
Moment | Temperature °C | Dissolved Oxygen (mg·L−1) | pH | Electrical Conductivity (ms·cm−1) | Ammonia Nitrogen Concentration (mg·L−1) |
---|---|---|---|---|---|
8:00 | 14.9 | 8.2 | 7.85 | 41.1 | 0.18 |
10:00 | 14.7 | 8.26 | 7.85 | 41.1 | 0.21 |
12:00 | 14.5 | 8.27 | 7.91 | 41.2 | 0.23 |
... | ... | ... | ... | ... | |
18:00 | 14.3 | 8.33 | 7.91 | 41.1 | 0.24 |
Models | RMSE | MAE | MAPE |
---|---|---|---|
MLP | 0.0634 | 0.0523 | 41.4199 |
LSTM | 0.0601 | 0.0456 | 38.1255 |
CNN–LSTM | 0.0489 | 0.0412 | 31.9996 |
ADABOOST–LSTM | 0.0441 | 0.0348 | 31.7202 |
XADABOOST–LSTM | 0.0352 | 0.0276 | 23.0314 |
Models | RMSE | MAE | MAPE |
---|---|---|---|
CNN | 0.0685 | 0.0610 | 52.8130 |
GRU | 0.0546 | 0.0424 | 37.307 |
CONV-GRU | 0.0416 | 0.0313 | 26.4624 |
XADABOOST–LSTM | 0.0352 | 0.0276 | 23.0314 |
Number of Iterations | RMSE | MAE | MAPE |
---|---|---|---|
1 | 0.0591 | 0.0443 | 38.1255 |
2 | 0.0441 | 0.0348 | 31.7202 |
3 | 0.0352 | 0.0276 | 23.0314 |
4 | 0.0426 | 0.0344 | 28.1742 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xu, D.; Li, X.; Wang, W. Prediction Model of Ammonia Nitrogen Concentration in Aquaculture Based on Improved AdaBoost and LSTM. Mathematics 2024, 12, 627. https://doi.org/10.3390/math12050627
Wang Y, Xu D, Li X, Wang W. Prediction Model of Ammonia Nitrogen Concentration in Aquaculture Based on Improved AdaBoost and LSTM. Mathematics. 2024; 12(5):627. https://doi.org/10.3390/math12050627
Chicago/Turabian StyleWang, Yiyang, Dehao Xu, Xianpeng Li, and Wei Wang. 2024. "Prediction Model of Ammonia Nitrogen Concentration in Aquaculture Based on Improved AdaBoost and LSTM" Mathematics 12, no. 5: 627. https://doi.org/10.3390/math12050627
APA StyleWang, Y., Xu, D., Li, X., & Wang, W. (2024). Prediction Model of Ammonia Nitrogen Concentration in Aquaculture Based on Improved AdaBoost and LSTM. Mathematics, 12(5), 627. https://doi.org/10.3390/math12050627